One important mission of the strategic defense is to develop an integrated, layered ballistic missile defense system(BMDS). Considering the problem of assigning limited defense weapons to incoming ballistic missiles...One important mission of the strategic defense is to develop an integrated, layered ballistic missile defense system(BMDS). Considering the problem of assigning limited defense weapons to incoming ballistic missiles, we illustrate how defense weapons, ballistic missiles, kill probability and effectiveness of defense(ED) are interrelated and how to understand this relationship for achieving the best allocation plan. Motivated by the queueing theory, in which the available resources are not sufficient to satisfy the demands placed upon them at all times, the layered deployed defense weapon is modeled as a queueing system to shoot Poisson arrived targets. Simultaneously, examples, of optimum intercepts allocation problems under different constraints are presented. The four theorems determine the allocation rules of intercepts to targets that maximize ED or minimize the cost to achieve a required ED.展开更多
As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respo...As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respond to threats and anticipate and mitigate them proactively. Beginning with understanding the critical need for a layered defense and the intricacies of the attacker’s journey, the research offers insights into specialized defense techniques, emphasizing the importance of timely and strategic responses during incidents. Risk management is brought to the forefront, underscoring businesses’ need to adopt mature risk assessment practices and understand the potential risk impact areas. Additionally, the value of threat intelligence is explored, shedding light on the importance of active engagement within sharing communities and the vigilant observation of adversary motivations. “Beyond Defense: Proactive Approaches to Disaster Recovery and Threat Intelligence in Modern Enterprises” is a comprehensive guide for organizations aiming to fortify their cybersecurity posture, marrying best practices in proactive and reactive measures in the ever-challenging digital realm.展开更多
In order to cope with the increasing threat of the ballistic missile(BM)in a shorter reaction time,the shooting policy of the layered defense system needs to be optimized.The main decisionmaking problem of shooting op...In order to cope with the increasing threat of the ballistic missile(BM)in a shorter reaction time,the shooting policy of the layered defense system needs to be optimized.The main decisionmaking problem of shooting optimization is how to choose the next BM which needs to be shot according to the previous engagements and results,thus maximizing the expected return of BMs killed or minimizing the cost of BMs penetration.Motivated by this,this study aims to determine an optimal shooting policy for a two-layer missile defense(TLMD)system.This paper considers a scenario in which the TLMD system wishes to shoot at a collection of BMs one at a time,and to maximize the return obtained from BMs killed before the system demise.To provide a policy analysis tool,this paper develops a general model for shooting decision-making,the shooting engagements can be described as a discounted reward Markov decision process.The index shooting policy is a strategy that can effectively balance the shooting returns and the risk that the defense mission fails,and the goal is to maximize the return obtained from BMs killed before the system demise.The numerical results show that the index policy is better than a range of competitors,especially the mean returns and the mean killing BM number.展开更多
基金supported by the Military Graduate Student Foundation of Army
文摘One important mission of the strategic defense is to develop an integrated, layered ballistic missile defense system(BMDS). Considering the problem of assigning limited defense weapons to incoming ballistic missiles, we illustrate how defense weapons, ballistic missiles, kill probability and effectiveness of defense(ED) are interrelated and how to understand this relationship for achieving the best allocation plan. Motivated by the queueing theory, in which the available resources are not sufficient to satisfy the demands placed upon them at all times, the layered deployed defense weapon is modeled as a queueing system to shoot Poisson arrived targets. Simultaneously, examples, of optimum intercepts allocation problems under different constraints are presented. The four theorems determine the allocation rules of intercepts to targets that maximize ED or minimize the cost to achieve a required ED.
文摘As cyber threats keep changing and business environments adapt, a comprehensive approach to disaster recovery involves more than just defensive measures. This research delves deep into the strategies required to respond to threats and anticipate and mitigate them proactively. Beginning with understanding the critical need for a layered defense and the intricacies of the attacker’s journey, the research offers insights into specialized defense techniques, emphasizing the importance of timely and strategic responses during incidents. Risk management is brought to the forefront, underscoring businesses’ need to adopt mature risk assessment practices and understand the potential risk impact areas. Additionally, the value of threat intelligence is explored, shedding light on the importance of active engagement within sharing communities and the vigilant observation of adversary motivations. “Beyond Defense: Proactive Approaches to Disaster Recovery and Threat Intelligence in Modern Enterprises” is a comprehensive guide for organizations aiming to fortify their cybersecurity posture, marrying best practices in proactive and reactive measures in the ever-challenging digital realm.
基金supported by the National Natural Science Foundation of China(7170120971771216)+1 种基金Shaanxi Natural Science Foundation(2019JQ-250)China Post-doctoral Fund(2019M653962)
文摘In order to cope with the increasing threat of the ballistic missile(BM)in a shorter reaction time,the shooting policy of the layered defense system needs to be optimized.The main decisionmaking problem of shooting optimization is how to choose the next BM which needs to be shot according to the previous engagements and results,thus maximizing the expected return of BMs killed or minimizing the cost of BMs penetration.Motivated by this,this study aims to determine an optimal shooting policy for a two-layer missile defense(TLMD)system.This paper considers a scenario in which the TLMD system wishes to shoot at a collection of BMs one at a time,and to maximize the return obtained from BMs killed before the system demise.To provide a policy analysis tool,this paper develops a general model for shooting decision-making,the shooting engagements can be described as a discounted reward Markov decision process.The index shooting policy is a strategy that can effectively balance the shooting returns and the risk that the defense mission fails,and the goal is to maximize the return obtained from BMs killed before the system demise.The numerical results show that the index policy is better than a range of competitors,especially the mean returns and the mean killing BM number.