In this work,we aim to show how to solve the continuous-time and continuous-space Krause model by using high-order finite difference(FD)schemes.Since the considered model admits solutions withδ-singularities,the FD m...In this work,we aim to show how to solve the continuous-time and continuous-space Krause model by using high-order finite difference(FD)schemes.Since the considered model admits solutions withδ-singularities,the FD method cannot be applied directly.To deal with the annoyingδ-singulariti-es,we propose to lift the solution space by introducing a spltting method,such that theδ-singularities in one spatial direction become step functions with dis-continuities.Thus the traditional shock-capturing FD schemes can be applied directly.In particular,we focus on the two dimensional case and apply a fifth-order weighted nonlinear compact scheme(WCNS)to ilustrate the validity of the proposed method.Some technical details for implementation are also presented.Numerical results show that the proposed method can captureδ-singularities well,and the obtained number of delta peaks agrees with the the-oretical prediction in the literature.展开更多
An optimal marine propeller design method is proposed,which integrates the lifting line and surface panel method and is characterized by the use of the surface panel method to take the hub effect into consideration.By...An optimal marine propeller design method is proposed,which integrates the lifting line and surface panel method and is characterized by the use of the surface panel method to take the hub effect into consideration.By developing an integrated approach instead of an iterative method for the calculation of the interaction between the hub and the designed blades,the hub effects on the optimal circulation can be accounted for throughout the theoretical design procedure.This new integrated method provides a fast and accurate enough method to model the straight forward hub surface,in the optimal propeller design.A systematic design procedure from the basic design inputs to the blade geometry determination is performed and the designed propellers are validated by the surface panel method and the RANS method.The design and analysis cases are considered by different approaches with comparison and validation.And a comparative study including different hub geometries is also performed to reveal the mechanism of the hub effect on the distributions of the propeller optimal loads.展开更多
Objective To compare the difference of clinical efficacy between acupuncture of lifting and pressing manipulation and conventional acupuncture in motor function recovery of hemiplegic upper limb after stroke, so as to...Objective To compare the difference of clinical efficacy between acupuncture of lifting and pressing manipulation and conventional acupuncture in motor function recovery of hemiplegic upper limb after stroke, so as to provide referential support for clinical application. Method Fifty-nine patients with upper limb hemiplegia after stroke were selected and divided into group A (conventional acupuncture ± lifting and pressing manipulation, 30 cases} and group B (conventional acupuncture, 29 cases} according to random number table method. Upper limb motor function and activity of daily living of patients in the two groups were scored before and after treatment, and the results were analyzed and compared. Results The score of upper limb FugI-Meyer motor function of patients was 22.4 ± 2.83 and 32.97 ± 2.92 before and after treatment in group A, and was 19.89 ± 3.13 and 26.62 ± 3.31 before and after treatment in group B, and the difference between the two groups before and after treatment was significant (P〈0.01}. The score of Barthel index of patients was 60.67 ± 4.65 and 73.00 ± 3.82 before and after treatment in group A, and was 50.52 ± 5.15 and 60.17 ± 4.89 before and after treatment in group B, and the difference between the two groups before and after treatment was not statistcally significant {P〉0.05). Conclusion Lifting and pressing manipulation combined with conventional acupuncture can better improve upper limb motor function of upper limb paralysis of patients after stroke.展开更多
A Finite-Volume based POD-Galerkin reduced ordermodel is developed for fluid dynamics problems where the(time-dependent)boundary conditions are controlled using two different boundary control strategies:the lifting fu...A Finite-Volume based POD-Galerkin reduced ordermodel is developed for fluid dynamics problems where the(time-dependent)boundary conditions are controlled using two different boundary control strategies:the lifting function method,whose aim is to obtain homogeneous basis functions for the reduced basis space and the penalty method where the boundary conditions are enforced in the reduced order model using a penalty factor.The penalty method is improved by using an iterative solver for the determination of the penalty factor rather than tuning the factor with a sensitivity analysis or numerical experimentation.The boundary control methods are compared and tested for two cases:the classical lid driven cavity benchmark problem and a Y-junction flow case with two inlet channels and one outlet channel.The results show that the boundaries of the reduced order model can be controlled with the boundary control methods and the same order of accuracy is achieved for the velocity and pressure fields.Finally,the reduced order models are 270-308 times faster than the full ordermodels for the lid driven cavity test case and 13-24 times for the Y-junction test case.展开更多
基金the National Natural Science Foundation(Grant No.11972370)the National Key Project(Grant No.GJXM92579)of China.
文摘In this work,we aim to show how to solve the continuous-time and continuous-space Krause model by using high-order finite difference(FD)schemes.Since the considered model admits solutions withδ-singularities,the FD method cannot be applied directly.To deal with the annoyingδ-singulariti-es,we propose to lift the solution space by introducing a spltting method,such that theδ-singularities in one spatial direction become step functions with dis-continuities.Thus the traditional shock-capturing FD schemes can be applied directly.In particular,we focus on the two dimensional case and apply a fifth-order weighted nonlinear compact scheme(WCNS)to ilustrate the validity of the proposed method.Some technical details for implementation are also presented.Numerical results show that the proposed method can captureδ-singularities well,and the obtained number of delta peaks agrees with the the-oretical prediction in the literature.
文摘An optimal marine propeller design method is proposed,which integrates the lifting line and surface panel method and is characterized by the use of the surface panel method to take the hub effect into consideration.By developing an integrated approach instead of an iterative method for the calculation of the interaction between the hub and the designed blades,the hub effects on the optimal circulation can be accounted for throughout the theoretical design procedure.This new integrated method provides a fast and accurate enough method to model the straight forward hub surface,in the optimal propeller design.A systematic design procedure from the basic design inputs to the blade geometry determination is performed and the designed propellers are validated by the surface panel method and the RANS method.The design and analysis cases are considered by different approaches with comparison and validation.And a comparative study including different hub geometries is also performed to reveal the mechanism of the hub effect on the distributions of the propeller optimal loads.
文摘Objective To compare the difference of clinical efficacy between acupuncture of lifting and pressing manipulation and conventional acupuncture in motor function recovery of hemiplegic upper limb after stroke, so as to provide referential support for clinical application. Method Fifty-nine patients with upper limb hemiplegia after stroke were selected and divided into group A (conventional acupuncture ± lifting and pressing manipulation, 30 cases} and group B (conventional acupuncture, 29 cases} according to random number table method. Upper limb motor function and activity of daily living of patients in the two groups were scored before and after treatment, and the results were analyzed and compared. Results The score of upper limb FugI-Meyer motor function of patients was 22.4 ± 2.83 and 32.97 ± 2.92 before and after treatment in group A, and was 19.89 ± 3.13 and 26.62 ± 3.31 before and after treatment in group B, and the difference between the two groups before and after treatment was significant (P〈0.01}. The score of Barthel index of patients was 60.67 ± 4.65 and 73.00 ± 3.82 before and after treatment in group A, and was 50.52 ± 5.15 and 60.17 ± 4.89 before and after treatment in group B, and the difference between the two groups before and after treatment was not statistcally significant {P〉0.05). Conclusion Lifting and pressing manipulation combined with conventional acupuncture can better improve upper limb motor function of upper limb paralysis of patients after stroke.
基金supported by the ENEN+project that has received funding from the Euratom research and training Work Programme 2016-2017-1#755576support provided by the European Research Council Executive Agency by the Consolidator Grant project AROMA-CFD“Advanced ReducedOrder Methodswith Applications in Computational Fluid Dynamics”-GA 681447,H2020-ERC CoG 2015 AROMA-CFD and INdAM-GNCS projects.
文摘A Finite-Volume based POD-Galerkin reduced ordermodel is developed for fluid dynamics problems where the(time-dependent)boundary conditions are controlled using two different boundary control strategies:the lifting function method,whose aim is to obtain homogeneous basis functions for the reduced basis space and the penalty method where the boundary conditions are enforced in the reduced order model using a penalty factor.The penalty method is improved by using an iterative solver for the determination of the penalty factor rather than tuning the factor with a sensitivity analysis or numerical experimentation.The boundary control methods are compared and tested for two cases:the classical lid driven cavity benchmark problem and a Y-junction flow case with two inlet channels and one outlet channel.The results show that the boundaries of the reduced order model can be controlled with the boundary control methods and the same order of accuracy is achieved for the velocity and pressure fields.Finally,the reduced order models are 270-308 times faster than the full ordermodels for the lid driven cavity test case and 13-24 times for the Y-junction test case.