期刊文献+
共找到46篇文章
< 1 2 3 >
每页显示 20 50 100
基于改进GWO-LightGBM的磨煤机故障预警方法研究 被引量:2
1
作者 陈思勤 周浩豪 茅大钧 《自动化仪表》 CAS 2024年第2期106-110,115,共6页
为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改... 为提高燃煤电厂磨煤机运维效率、降低运维成本,对磨煤机故障预警进行了研究。创新性地提出一种基于改进灰狼优化(GWO)算法的轻量级梯度提升机(LightGBM)故障预警方法。通过建立LightGBM轴承温度预测模型获取磨煤机轴承温度阈值,并引入改进GWO算法优化模型超参数,以提高算法效率和性能。试验结果表明,改进GWO-LightGBM算法相比支持向量机(SVM)等传统算法具有更高的精度和更优的泛化能力。通过实际故障案例证明,该方法能够提前2 h对磨煤机进行早期故障预警。该方法对燃煤电厂磨煤机安全运维具有指导意义。 展开更多
关键词 燃煤电厂 磨煤机 故障预警 改进灰狼优化算法 轻量级梯度提升机 滑动窗口法 Halton
下载PDF
基于LightGBM-SHAP的民机硬着陆可解释预测
2
作者 肖国松 刘嘉琛 +2 位作者 张元珊 董磊 陈曦 《中国安全科学学报》 CAS CSCD 北大核心 2024年第10期134-142,共9页
为预防民用飞机的硬着陆超限事件,首先,收集包含动力学变量、系统性能和其他工程参数的机载快速存取记录器(QAR)数据,开展机场航段聚类、样本平衡、统计特征提取等数据处理活动;然后,基于轻量级梯度提升机(LightGBM)模型预测民机硬着陆... 为预防民用飞机的硬着陆超限事件,首先,收集包含动力学变量、系统性能和其他工程参数的机载快速存取记录器(QAR)数据,开展机场航段聚类、样本平衡、统计特征提取等数据处理活动;然后,基于轻量级梯度提升机(LightGBM)模型预测民机硬着陆事件,并与极限梯度提升(XGBoost)、决策树(DT)、长短期记忆网络(LSTM)模型进行综合对比;最后,利用Shapley可加性解释(SHAP)算法进一步分析硬着陆事件的致因机制及各飞行参数特征对模型预测结果的影响。结果表明:所提方法不仅显示出良好的硬着陆事件预测性能,准确率、正确率和召回率分别达到99%,92%和88%,还可针对具体航段对硬着陆预测模型的决策过程提供定量的、可视化的解释信息。 展开更多
关键词 轻量级梯度提升机(lightgbm) 民用飞机 硬着陆 快速存取记录器(QAR)数据 机器学习 可解释
下载PDF
基于XGBoost与LightGBM集成的电动汽车充电负荷预测模型 被引量:6
3
作者 吴丹 雷珽 +2 位作者 李芝娟 王宁 段艳 《电子技术应用》 2022年第9期44-49,共6页
随着电动汽车规模化发展,充电站负荷对电网造成一定影响,为保障电网平稳运行,提出一种基于极端梯度提升(eXtreme Gradient Boosting,XGBoost)与轻量级梯度提升机(Light Gradient Boosting Machine,LightGBM)融合的电动汽车充电负荷预测... 随着电动汽车规模化发展,充电站负荷对电网造成一定影响,为保障电网平稳运行,提出一种基于极端梯度提升(eXtreme Gradient Boosting,XGBoost)与轻量级梯度提升机(Light Gradient Boosting Machine,LightGBM)融合的电动汽车充电负荷预测模型。该方法运用Stacking集成学习的策略:首先根据时间特征与历史负荷数据采用XGBoost与LightGBM算法构建负荷预测的基学习器,然后采用岭回归(Ridge Regression,RR)算法将基学习器的输出结果进行融合之后输出负荷预测值。为了对比多种不同的负荷预测模型,采用上海市嘉定区的充电站订单数据进行试验,结果表明,该方法所构建的负荷预测模型相比单一算法模型具有更高的预测准确度,对电网平稳运行有一定理论及实用价值。 展开更多
关键词 电动汽车 负荷预测 Stacking集成学习 极端梯度提升(XGboost) 轻量级梯度提升机(lightgbm)
下载PDF
基于LightGBM模型的甘肃省临夏县滑坡易发性评价
4
作者 何哲 石玉玲 +2 位作者 李富春 贾卓龙 晏长根 《水资源与水工程学报》 CSCD 北大核心 2024年第1期197-205,216,共10页
甘肃省临夏县地质环境复杂,滑坡灾害发育,对当地居民生产生活造成严重威胁,亦对工程建设的开展造成一定阻碍,因此,选取高效准确的机器学习方法对临夏县进行滑坡易发性评价具有重大意义。首先依据遥感影像和野外勘察资料,选取了1718处滑... 甘肃省临夏县地质环境复杂,滑坡灾害发育,对当地居民生产生活造成严重威胁,亦对工程建设的开展造成一定阻碍,因此,选取高效准确的机器学习方法对临夏县进行滑坡易发性评价具有重大意义。首先依据遥感影像和野外勘察资料,选取了1718处滑坡样本,遴选了滑坡灾变的16种影响因子并建立滑坡影响因子评价体系;再结合预测精度和运行时间等指标对比了轻量级梯度提升机(LightGBM)模型与主流机器学习模型的性能;最后利用混淆矩阵分级方法进行了基于LightGBM模型的临夏县滑坡易发性评价。结果表明:临夏县重要滑坡影响因子为地表植被和地形地貌因子,其中土地覆盖为最主要影响因子;LightGBM模型预测精度高达0.931,且运行速度仅为11.7 s,既能保证高精度又极大提升了运行效率;在抽稀后的数据集上,LightGBM模型的预测表现、校准程度和分级结果均优于随机森林(RF)模型;混淆矩阵分级法的较高和高易发区内滑坡分布更为集中,在14.94%的区域内分布着86.86%的滑坡灾害点。滑坡易发性评价结果较好地反映了研究区内滑坡分布发育情况,可为当地工程建设及防灾减灾工作提供一定指导。 展开更多
关键词 滑坡 易发性评价 轻量级梯度提升机 机器学习 甘肃省临夏县
下载PDF
基于SAO-LightGBM算法的致密砂岩储层孔隙度预测方法
5
作者 李庆 龙训荣 +2 位作者 吴秀慧 程子洋 杨天翔 《天然气技术与经济》 2024年第4期9-14,86,共7页
孔隙度是评价储层物性的关键参数,四川盆地中部NC地区钻井取心资料有限,储层孔隙度直接获取难度大,而基于常规测井资料的传统孔隙度预测方法误差大、精度低。为了明确NC地区致密砂岩气藏储层物性特征,以上三叠统须家河组四段储层为研究... 孔隙度是评价储层物性的关键参数,四川盆地中部NC地区钻井取心资料有限,储层孔隙度直接获取难度大,而基于常规测井资料的传统孔隙度预测方法误差大、精度低。为了明确NC地区致密砂岩气藏储层物性特征,以上三叠统须家河组四段储层为研究对象,提出了一种改进的机器学习算法SAO-LightGBM;使用该算法分析了孔隙度与地球物理测井参数之间的深层次潜在关系,指出了研究区储层孔隙度与声波时差、密度、中子孔隙度、地层电阻率和自然伽马具有较强的相关性,并基于以上测井参数建立了孔隙度预测模型。研究结果表明:①采用SAO优化算法独特的双重种群机制、高效的探索与利用策略,可以快速寻找到LightGBM的最优超参数组合,提升了模型的预测能力;②在测试数据集上,SAO-LightGBM的平均绝对误差为3.37%,决定系数为0.92。结论认为,较之于其他常规模型,SAO-LightGBM具有更为可靠的预测能力,能够高效完成目标层位孔隙度的预测工作,对NC地区的储层研究和后期勘探开发具有指导作用。 展开更多
关键词 致密砂岩 孔隙度 雪消融优化算法 轻量梯度提升机 机器学习算法 预测模型
下载PDF
基于LightGBM算法和出行链理论的电动汽车充电负荷多时间尺度预测模型
6
作者 庞松岭 范凯迪 +1 位作者 陈超 窦洁 《汽车技术》 CSCD 北大核心 2024年第6期9-16,共8页
为提高电动汽车充电负荷预测的准确性,设计了一种基于轻量级梯度提升机(LightGBM)算法和出行链理论的电动汽车充电负荷多时间尺度预测模型。利用出行链描述用户出行过程,采用蒙特卡洛法抽取时空数据,计算不同区域出行和停留时间的概率... 为提高电动汽车充电负荷预测的准确性,设计了一种基于轻量级梯度提升机(LightGBM)算法和出行链理论的电动汽车充电负荷多时间尺度预测模型。利用出行链描述用户出行过程,采用蒙特卡洛法抽取时空数据,计算不同区域出行和停留时间的概率密度函数,采用牛顿法划分多时间尺度充电概率,明确驾驶时空分布与充电状况,并运用模糊数学定理与LightGBM分类充电负荷数据,构建了多季节多时段预测模型。采用LightGBM高效并行计算模式,明确充电负荷变化规律,实现了多时间尺度预测。试验结果表明:所建立的模型在不同季节和电动汽车数量条件下,预测误差低于100 kW,预测空报率低于3%,可准确展现充电负荷的变化规律。 展开更多
关键词 轻量级梯度提升机 出行链理论 充电负荷 多时间尺度 预测模型
下载PDF
基于改进LightGBM的电力通信数据流量异常检测方法
7
作者 李丹 张子杨 《通信电源技术》 2024年第20期152-154,共3页
针对电力通信网络攻击模式多变、检测泛化能力不足的问题,提出基于改进轻量级梯度提升机(Light Gradient Boosting Machine,LightGBM)的电力通信数据流量异常检测方法。结合最近邻规则(Edited Nearest Neighbor,ENN)算法、小波包分解技... 针对电力通信网络攻击模式多变、检测泛化能力不足的问题,提出基于改进轻量级梯度提升机(Light Gradient Boosting Machine,LightGBM)的电力通信数据流量异常检测方法。结合最近邻规则(Edited Nearest Neighbor,ENN)算法、小波包分解技术和信息熵分析方法,提取电力通信数据流量异常特征,引入直方图算法和带深度限制的Leaf-wise生长策略,通过改进LightGBM算法建立电力通信数据流量异常检测模型,在模型中找到最优超参数配置,提高电力通信数据流量异常检测的准确率和效率。实验结果表明,设计方法在准确识别不同网络攻击类型和增强检测泛化能力方面具有显著优势,能够更好地应对电力通信网络中复杂多变的网络威胁,为电力通信系统的安全稳定运行提供有力保障。 展开更多
关键词 改进轻量级梯度提升机(lightgbm) 电力通信 数据流量 异常检测 超参数优化
下载PDF
基于LightGBM的电动汽车行驶工况下电池剩余使用寿命预测 被引量:25
8
作者 肖迁 焦志鹏 +2 位作者 穆云飞 陆文标 贾宏杰 《电工技术学报》 EI CSCD 北大核心 2021年第24期5176-5185,共10页
行驶工况下电动汽车锂离子电池剩余使用寿命(RUL)衰退情况复杂,准确的RUL预测可为电池的定期维护和安全稳定运行提供指导,避免安全隐患。为此,该文提出一种适用于行驶工况下电动汽车电池的RUL预测方法。首先,针对行驶工况,提出一种基于... 行驶工况下电动汽车锂离子电池剩余使用寿命(RUL)衰退情况复杂,准确的RUL预测可为电池的定期维护和安全稳定运行提供指导,避免安全隐患。为此,该文提出一种适用于行驶工况下电动汽车电池的RUL预测方法。首先,针对行驶工况,提出一种基于轻量型梯度提升机(LightGBM)的RUL预测模型,利用元学习超参数优化方法对其进行超参数调优;其次,搭建行驶工况下电池全生命周期容量测试系统,模拟行驶工况下电池所受振动应力、充放电应力环境和测试电池容量衰退情况;然后,基于动态时间规整对容量衰退的相似性分析结果,使用生成对抗网络(GAN)生成新的容量序列;最后,通过实验数据验证所提模型和生成容量序列的有效性。 展开更多
关键词 电动汽车 行驶工况 锂离子电池 剩余使用寿命 轻量型梯度提升机
下载PDF
基于LightGBM的航班延误多分类预测 被引量:26
9
作者 丁建立 孙玥 《南京航空航天大学学报》 CAS CSCD 北大核心 2021年第6期847-854,共8页
航班延误是民航业的一大难题,提前对航班的延误情况进行预测,以采取合理的应对措施,对缓解航班延误产生的负面影响有着重要意义。为提升预测性能,提出一种基于轻量级梯度提升机(Light gradient boosting machine,LightGBM)的航班延误多... 航班延误是民航业的一大难题,提前对航班的延误情况进行预测,以采取合理的应对措施,对缓解航班延误产生的负面影响有着重要意义。为提升预测性能,提出一种基于轻量级梯度提升机(Light gradient boosting machine,LightGBM)的航班延误多分类预测模型。该模型结合航班信息与天气信息,运用方差过滤与递归特征消除进行特征筛选,并采用合成少数过采样技术(Synthetic minority oversampling technique,SMOTE)与Tomek Link对数据进行不平衡处理,最后使用LightGBM进行建模,实现对航班延误时长的多分类预测。为验证模型的合理性,将所提模型与其他先进算法构建的模型进行对比。实验结果表明,所提模型在各种预测性能指标上结果更优,将预测精度提升至90%以上,同时大幅度降低了训练时间成本。 展开更多
关键词 航班延误 预测模型 轻量级梯度提升机 贝叶斯调参
下载PDF
基于边界自适应SMOTE和Focal Loss函数改进LightGBM的信用风险预测模型 被引量:8
10
作者 陈海龙 杨畅 +1 位作者 杜梅 张颖宇 《计算机应用》 CSCD 北大核心 2022年第7期2256-2264,共9页
针对信用风险评估中数据集不平衡影响模型预测效果的问题,提出一种基于边界自适应合成少数类过采样方法(BA-SMOTE)和利用FocalLoss函数改进LightGBM损失函数的算法(FLLightGBM)相结合的信用风险预测模型。首先,在边界合成少数类过采样(B... 针对信用风险评估中数据集不平衡影响模型预测效果的问题,提出一种基于边界自适应合成少数类过采样方法(BA-SMOTE)和利用FocalLoss函数改进LightGBM损失函数的算法(FLLightGBM)相结合的信用风险预测模型。首先,在边界合成少数类过采样(Borderline-SMOTE)的基础上,引入自适应思想和新的插值方式,使每个处于边界的少数类样本生成不同数量的新样本,并且新样本的位置更靠近原少数类样本,以此来平衡数据集;其次,利用FocalLoss函数来改进LightGBM算法的损失函数,并以改进的算法训练新的数据集以得到最终结合BA-SMOTE方法和FLLightGBM算法建立的BA-SMOTE-FLLightGBM模型;最后,在LendingClub数据集上进行信用风险预测。实验结果表明,与其他不平衡分类算法RUSBoost、CUSBoost、KSMOTE-AdaBoost和AK-SMOTE-Catboost相比,所建立的模型在G-mean和AUC两个指标上都有明显的提升,提升了9.0%~31.3%和5.0%~14.1%。以上结果验证了所提出的模型在信用风险评估中具有更好的违约预测效果。 展开更多
关键词 信用风险 不平衡数据 过采样 lightgbm FocalLoss
下载PDF
基于QPSO-LightGBM网络资产脆弱性评估模型
11
作者 戴泽淼 《吉林大学学报(信息科学版)》 CAS 2023年第4期667-675,共9页
为有效减少网络安全事件造成的损失,并对高风险网络资产进行漏洞评估,提出了一种基于量子粒子群轻量级梯度升降算法(QPSO-LightGBM:Quantum Particle Swarm Optimization-Light Gradient Boosting Machine)的多分类预测模型。该模型通... 为有效减少网络安全事件造成的损失,并对高风险网络资产进行漏洞评估,提出了一种基于量子粒子群轻量级梯度升降算法(QPSO-LightGBM:Quantum Particle Swarm Optimization-Light Gradient Boosting Machine)的多分类预测模型。该模型通过对少量过采样技术(MOTE:Minority Oversampling)进行合成从而达到数据平衡,采用量子粒子群算法(QPSO:Quantum Particle Swarm Optimization)实现参数的自动最优化,并使用LightGBM进行建模,进而实现网络资产的多分类预测。为验证模型的有效性,将所提模型与其他算法模型进行了比对,实验结果表明,该模型在各类预测性能指标上都取得了较好的效果。 展开更多
关键词 脆弱性评估 轻量的梯度提升机(lightgbm) 评估模型 量子粒子群算法(QPSO) 网络资产
下载PDF
基于深度LightGBM集成学习模型的谷歌商店顾客购买力预测 被引量:14
12
作者 叶志宇 冯爱民 高航 《计算机应用》 CSCD 北大核心 2019年第12期3434-3439,共6页
针对轻量化梯度促进机(LightGBM)等集成学习模型只对数据信息进行一次挖掘,无法自动地细化数据挖掘粒度或通过深入挖掘得到更多的数据中潜在内部关联信息的问题,提出了深度LightGBM集成学习模型,该模型由滑动窗口和加深两部分组成。首先... 针对轻量化梯度促进机(LightGBM)等集成学习模型只对数据信息进行一次挖掘,无法自动地细化数据挖掘粒度或通过深入挖掘得到更多的数据中潜在内部关联信息的问题,提出了深度LightGBM集成学习模型,该模型由滑动窗口和加深两部分组成。首先,通过滑动窗口使得集成学习模型能够自动地细化数据挖掘粒度,从而更加深入地挖掘数据中潜在的内部关联信息,同时赋予模型一定的表示学习能力。然后,基于滑动窗口,用加深步骤进一步地提升模型的表示学习能力。最后,结合特征工程对数据集进行处理。在谷歌商店数据集上进行的实验结果表明,所提深度集成学习模型相较原始集成学习模型的预测精度高出6.16个百分点。所提方法能够自动地细化数据挖掘粒度,从而获取更多数据集中的潜在信息,并且深度LightGBM集成学习模型与传统深度神经网络相比是非神经网络的深度模型,参数更少,可解释性更强。 展开更多
关键词 机器学习 轻量化梯度促进机 数据挖掘 深度模型 集成学习 特征工程
下载PDF
基于LightGBM的南太平洋长鳍金枪鱼渔场预报模型研究 被引量:5
13
作者 宫鹏 王德兴 +2 位作者 袁红春 陈冠奇 吴若有 《水产科学》 CAS CSCD 北大核心 2021年第5期762-767,共6页
长鳍金枪鱼以高经济效益、资源丰富等优点成为世界金枪鱼渔业主要捕捞目标之一,进行长鳍金枪鱼渔场预报研究,可以有效提高渔获产量,对渔业生产具有重要意义。传统的线性模型在面对复杂多变的海洋环境数据时无法准确分析其关键因子。本... 长鳍金枪鱼以高经济效益、资源丰富等优点成为世界金枪鱼渔业主要捕捞目标之一,进行长鳍金枪鱼渔场预报研究,可以有效提高渔获产量,对渔业生产具有重要意义。传统的线性模型在面对复杂多变的海洋环境数据时无法准确分析其关键因子。本研究选取2000—2015年南太平洋长鳍金枪鱼的延绳钓生产数据,结合海表温度、叶绿素a质量浓度和海面高度等海洋环境因子以及月份和经、纬度等时空数据,采用集成学习模型—轻度量化梯度促进机(LightGBM)模型进行长鳍金枪鱼渔场预报,并与朴素贝叶斯、XGBoost和BP神经网络模型进行对比。同时采用网格搜索算法获取LightGBM模型的最优参数,利用交叉验证法验证模型的稳定性。试验结果表明,利用LightGBM模型对南太平洋长鳍金枪鱼渔场的最佳预报准确率可达72.6%,对比其他模型,LightGBM模型的准确率有了显著提高。研究表明,海面高度和海面温度为南太平洋长鳍金枪鱼渔场形成的关键影响因子。 展开更多
关键词 长鳍金枪鱼 集成学习 轻度量化梯度促进机 渔场预报
下载PDF
计及物联网数据传输速率约束的LightGBM电能质量扰动高效识别 被引量:23
14
作者 黄南天 赵文广 +4 位作者 蔡国伟 戚佳金 陈淑琦 陈庆珠 张良 《中国电机工程学报》 EI CSCD 北大核心 2021年第15期5189-5200,共12页
配电网海量电能质量数据难以通过有限数据传输速率物联网信道传输至上位系统。为此,该文提出一种计及多物联通信方式数据传输速率约束与边缘设备成本的电能质量高效边缘特征提取与扰动识别方法。首先,在边缘侧对扰动信号进行基于时域分... 配电网海量电能质量数据难以通过有限数据传输速率物联网信道传输至上位系统。为此,该文提出一种计及多物联通信方式数据传输速率约束与边缘设备成本的电能质量高效边缘特征提取与扰动识别方法。首先,在边缘侧对扰动信号进行基于时域分割的扰动特征高效提取。然后,在以Split重要度确定高维特征排序基础上,以轻量级梯度提升机(light gradient boosting machine,Light GBM)分类准确率为决策变量,开展前向特征选择,确定最优分类特征子集。最后,根据最优特征子集,构建LightGBM分类器。实验证明,该方法边缘特征提取方式较时-频分析等方法时间复杂度显著降低,且上传最优特征子集方法较上传原始信号通信数据量显著降低;同时,基于LightGBM构建的分类器可高效、准确识别包括8种复合扰动在内的17种扰动信号。该方法能够在物联通信数据传输速率约束下,满足海量电能质量扰动事件识别精度与效率需求。 展开更多
关键词 电能质量 扰动识别 边缘计算 时域分割 轻量级梯度提升机
下载PDF
基于长短期记忆网络和LightGBM组合模型的短期负荷预测 被引量:78
15
作者 陈纬楠 胡志坚 +2 位作者 岳菁鹏 杜一星 齐祺 《电力系统自动化》 EI CSCD 北大核心 2021年第4期91-97,共7页
短期负荷预测是电网安全调度与平稳运行的基础,为进一步提升负荷预测的精度,提出了基于长短期记忆(LSTM)网络和轻梯度提升机(LightGBM)的组合预测模型。首先,根据LSTM网络和LightGBM模型的输入结构,将预处理后的负荷数据、温度数据、日... 短期负荷预测是电网安全调度与平稳运行的基础,为进一步提升负荷预测的精度,提出了基于长短期记忆(LSTM)网络和轻梯度提升机(LightGBM)的组合预测模型。首先,根据LSTM网络和LightGBM模型的输入结构,将预处理后的负荷数据、温度数据、日期数据以及节假日信息分别输入2个模型中,通过训练得出各自的预测结果。然后,采用最优加权组合法确定权重系数,并得出组合模型的预测值。最后,采用实际负荷数据进行算例分析,结果表明所提方法能够有效结合2种模型的优点,在保留对时序数据整体感知的同时兼顾非连续特征的有效信息,与其他模型相比具有更高的预测精度。 展开更多
关键词 短期负荷预测 长短期记忆网络 轻梯度提升机 最优加权组合法 组合模型
下载PDF
基于CNN-LSTM-lightGBM组合的超短期风电功率预测方法 被引量:14
16
作者 王愈轩 刘尔佳 黄永章 《科学技术与工程》 北大核心 2022年第36期16067-16074,共8页
近年来,风电装机规模逐年增加,风电数据采集量呈现规模化增长,面对海量多维、强波动的风电数据,风电功率预测精度仍面临一定的挑战。为提高风电功率预测精度,提出了基于卷积神经网络(convolutional neural networks,CNN)-长短期记忆网络... 近年来,风电装机规模逐年增加,风电数据采集量呈现规模化增长,面对海量多维、强波动的风电数据,风电功率预测精度仍面临一定的挑战。为提高风电功率预测精度,提出了基于卷积神经网络(convolutional neural networks,CNN)-长短期记忆网络(long short-term memory,LSTM)和梯度提升学习(light gradient boosting machine,lightGBM)组合的超短期风电功率预测方法。首先,分别建立CNN-LSTM和lightGBM的风电功率超短期预测模型。其中,CNN-LSTM模型采用CNN对风电数据集进行特征处理,并将其作为LSTM模型的数据输入,从而建立CNN-LSTM融合的预测模型;然后,采用误差倒数法对CNN-LSTM和lightGBM的预测数据进行加权组合,建立CNN-LSTM-lightGBM组合的预测模型;最后,采用张北曹碾沟风电场的风电数据集,以未来4 h风电功率为预测目标,验证了组合模型的有效性。预测结果表明:相较于其他3种单一模型,组合模型具有更高的预测精度。 展开更多
关键词 卷积神经网络(CNN) 长短期记忆网络(LSTM) 梯度提升学习(lightgbm) 组合模型 风电功率预测
下载PDF
基于LightGBM算法的边坡稳定性预测研究 被引量:15
17
作者 张凯 张科 《中国安全科学学报》 CAS CSCD 北大核心 2022年第7期113-120,共8页
为减少边坡失稳造成的灾害和事故,提出基于轻量级梯度提升机(LightGBM)算法的边坡稳定性预测模型;将容重、黏聚力、内摩擦角、边坡角、边坡高度和孔隙压力比6个主要影响因素作为模型的输入,将边坡稳定性作为模型的输出;引入基于混淆矩... 为减少边坡失稳造成的灾害和事故,提出基于轻量级梯度提升机(LightGBM)算法的边坡稳定性预测模型;将容重、黏聚力、内摩擦角、边坡角、边坡高度和孔隙压力比6个主要影响因素作为模型的输入,将边坡稳定性作为模型的输出;引入基于混淆矩阵的分类性能度量指标和被试工作特性曲线线下面积(AUC),评估模型的泛化性能。结果表明:提出的边坡稳定性预测模型能很好地描述影响因素与边坡稳定性之间复杂的非线性关系;与其他算法相比,LightGBM算法的F_(1)-Score和AUC分别为0.92和0.91,分别提高1.10%~61.40%和1.11%~28.17%;相较于0-均值归一化和反正切归一化,考虑正负相关性的最大值和最小值归一化更适合作为LightGBM模型的前处理方法;通过改变训练数据集长度,进行单因素分析,发现模型的泛化性能与训练数据集长度呈正相关关系。 展开更多
关键词 轻量级梯度提升机(lightgbm) 边坡稳定性 机器学习算法 混淆矩阵 归一化
下载PDF
基于集成LightGBM和贝叶斯优化策略的房价智能评估模型 被引量:24
18
作者 顾桐 许国良 +3 位作者 李万林 李家浩 王志愿 雒江涛 《计算机应用》 CSCD 北大核心 2020年第9期2762-2767,共6页
针对传统房价评估方法中存在的数据源单一、过分依赖主观经验、考虑因素理想化等问题,提出一种基于多源数据和集成学习的智能评估方法。首先,从多源数据中构造特征集,并利用Pearson相关系数与序列前向选择法提取最优特征子集;然后,基于... 针对传统房价评估方法中存在的数据源单一、过分依赖主观经验、考虑因素理想化等问题,提出一种基于多源数据和集成学习的智能评估方法。首先,从多源数据中构造特征集,并利用Pearson相关系数与序列前向选择法提取最优特征子集;然后,基于构造的特征,以Bagging集成策略作为结合方法集成多个轻量级梯度提升机(LightGBM),并利用贝叶斯优化算法对模型进行优化;最后,将该方法应用于房价评估问题,实现房价的智能评估。在真实的房价数据集上进行的实验表明,相较于支持向量机(SVM)、随机森林等传统模型,引入集成学习和贝叶斯优化的新模型的评估精度提升了3.15%,并且百分误差在10%以内的评估结果占比84.09%。说明所提模型能够很好地应用于房价评估领域,得到的评估结果更准确。 展开更多
关键词 多源数据 特征选择 轻量级梯度提升机 集成学习 贝叶斯优化 房价智能评估
下载PDF
基于LightGBM的气象目标分类技术
19
作者 欧阳彤 汪玲 +1 位作者 朱岱寅 李勇 《雷达科学与技术》 北大核心 2023年第6期621-629,共9页
为克服传统气象目标分类算法对人为设置经验参数的依赖性,本文提出一种基于轻量级梯度提升机(Light Gradient Boosting Machine,LightGBM)的气象目标分类技术。将KVNX气象雷达获取的4个极化参量(水平反射率因子、差分反射率、相关系数... 为克服传统气象目标分类算法对人为设置经验参数的依赖性,本文提出一种基于轻量级梯度提升机(Light Gradient Boosting Machine,LightGBM)的气象目标分类技术。将KVNX气象雷达获取的4个极化参量(水平反射率因子、差分反射率、相关系数和差分相移率)作为气象目标的特征参数,结合参考分类标签,制作向量数据集,再进行预处理,生成满足模型需求的数据集。以此数据集为驱动,建立一种LightGBM算法的气象目标四分类模型,该模型可有效识别3种气象目标(中小雨、冰雹和湿雪)及杂波(生物杂波与地杂波)。最后,根据气象雷达观测测试数据集进行测试,结果表明该模型在有高效率识别速率条件下,识别准确率可达95%以上。再用KTLX雷达两次实际观测数据来验证模型通用性,结果表明LightGBM分类模型可有效完成4种气象目标识别,具有优越的鲁棒性。 展开更多
关键词 气象雷达 气象目标分类 轻量级梯度提升机 机器学习
下载PDF
基于VMD-LSTM-LightGBM的多特征短期电力负荷预测 被引量:23
20
作者 张未 余成波 +3 位作者 王士彬 李涛 何鑫 陈佳 《南方电网技术》 CSCD 北大核心 2023年第2期74-81,共8页
针对目前多特征电力负荷预测精度不准的问题,为充分挖掘电力负荷数据中的时序信息、天气信息等特征信息,提出了一种基于变分模态分解(variational mode decomposition,VMD)的长短期记忆(long short-term memory,LSTM)神经网络与轻量级... 针对目前多特征电力负荷预测精度不准的问题,为充分挖掘电力负荷数据中的时序信息、天气信息等特征信息,提出了一种基于变分模态分解(variational mode decomposition,VMD)的长短期记忆(long short-term memory,LSTM)神经网络与轻量级梯度提升机(light gradient boosting machine,LightGBM)预测模型,优化负荷数据非线性、非平稳、长记忆等问题,解决了多特征预测提取特征信息差的问题。该方法首先用VMD分解代表不同尺度的特征模态分量,降低了原始序列的不平稳度,同时分解的残差量代表负荷数据强非线性部分,通过特征性强的算法进行预测,将各模态分量通过LSTM的单特征预测,再将各个分量加入多特征利用LightGBM进行负荷预测。通过与目前多特征电力负荷预测模型进行对比实验,平均绝对误差(mean absolute error,MAE)值仅为其23%~73%,平均绝对百分比误差(mean absolute percentage error,MAPE)值能达到0.37%,具有更好的预测精度。 展开更多
关键词 多特征 变分模态分解(VMD) 长短期记忆(LSTM) 轻量级梯度提升机(lightgbm) 短期负荷预测 残差量
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部