There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured roa...There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured road extraction models.Unstructured road extraction algorithms based on deep learning have problems such as high model complexity,high computational cost,and the inability to adapt to current edge computing devices.Therefore,it is best to use lightweight network models.Considering the need for lightweight models and the characteristics of unstructured roads with different pattern shapes,such as blocks and strips,a TMB(Triple Multi-Block)feature extraction module is proposed,and the overall structure of the TMBNet network is described.The TMB module was compared with SS-nbt,Non-bottleneck-1D,and other modules via experiments.The feasibility and effectiveness of the TMB module design were proven through experiments and visualizations.The comparison experiment,using multiple convolution kernel categories,proved that the TMB module can improve the segmentation accuracy of the network.The comparison with different semantic segmentation networks demonstrates that the TMBNet network has advantages in terms of unstructured road extraction.展开更多
In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of th...In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of the space target inverse synthetic aperture radar(ISAR)image recognition model with ultra-lightweight and high accuracy.This method introduces the NAS method into the radar image recognition for the first time,which solves the time-consuming and labor-consuming problems in the artificial design of the space target ISAR image automatic recognition model(STIIARM).On this basis,the NAS model’s knowledge is transferred to the student model with lower computational complexity by the flow of the solution procedure(FSP)distillation method.Thus,the decline of recognition accuracy caused by the direct compression of model structural parameters can be effectively avoided,and the ultralightweight STIIARM can be obtained.In the method,the Inverted Linear Bottleneck(ILB)and Inverted Residual Block(IRB)are firstly taken as each block’s basic structure in CNN.And the expansion ratio,output filter size,number of IRBs,and convolution kernel size are set as the search parameters to construct a hierarchical decomposition search space.Then,the recognition accuracy and computational complexity are taken as the objective function and constraint conditions,respectively,and the global optimization model of the CNN architecture search is established.Next,the simulated annealing(SA)algorithm is used as the search strategy to search out the lightweight and high accuracy STIIARM directly.After that,based on the three principles of similar block structure,the same corresponding channel number,and the minimum computational complexity,the more lightweight student model is designed,and the FSP matrix pairing between the NAS model and student model is completed.Finally,by minimizing the loss between the FSP matrix pairs of the NAS model and student model,the student model’s weight adjustment is completed.Thus the ultra-lightweight and high accuracy STIIARM is obtained.The proposed method’s effectiveness is verified by the simulation experiments on the ISAR image dataset of five types of space targets.展开更多
Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of expe...Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of experts.A system is proposed to alleviate this challenge that uses transfer learning techni-ques to classify the cephalopods automatically.In the proposed method,only the Lightweight pre-trained networks are chosen to enable IoT in the task of cephalopod recognition.First,the efficiency of the chosen models is determined by evaluating their performance and comparing thefindings.Second,the models arefine-tuned by adding dense layers and tweaking hyperparameters to improve the classification of accuracy.The models also employ a well-tuned Rectified Adam optimizer to increase the accuracy rates.Third,Adam with Gradient Cen-tralisation(RAdamGC)is proposed and used infine-tuned models to reduce the training time.The framework enables an Internet of Things(IoT)or embedded device to perform the classification tasks by embedding a suitable lightweight pre-trained network.Thefine-tuned models,MobileNetV2,InceptionV3,and NASNet Mobile have achieved a classification accuracy of 89.74%,87.12%,and 89.74%,respectively.Thefindings have indicated that thefine-tuned models can classify different kinds of cephalopods.The results have also demonstrated that there is a significant reduction in the training time with RAdamGC.展开更多
The brittleness generation mechanism of high strength lightweight aggregate con-crete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot, initiating brittleness. Based on th...The brittleness generation mechanism of high strength lightweight aggregate con-crete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot, initiating brittleness. Based on the analysis of the brittleness failure by the load-deflection curve, the brittleness presented by HSLWAC was more prominent compared with ordinary lightweight aggregate concrete of the same strength grade. The model of brittleness failure was also established.展开更多
针对实时行人检测场景存在遮挡、形态姿势不同的行人目标,YOLOv5模型对于这些目标检测有明显的漏检问题,提出一种像素差异度注意力机制(pixel difference attention,PDA),不同于传统的通道注意力机制用全局均值池化(global average pool...针对实时行人检测场景存在遮挡、形态姿势不同的行人目标,YOLOv5模型对于这些目标检测有明显的漏检问题,提出一种像素差异度注意力机制(pixel difference attention,PDA),不同于传统的通道注意力机制用全局均值池化(global average pooling,GAP)、全局最大值池化(global max pooling,GMP)来概括整张特征图的信息,全局池化将空间压缩成一个值来表征整个通道,造成了空间信息的流失,PDA将空间信息沿高和宽分别压缩,并将其分别与通道信息联系起来做注意力加权操作,同时提出一种新的通道描述指标表征通道信息,增强空间信息与通道信息的交互,使模型更容易关注到综合了空间和通道维度上的特征图的重要信息,在主干网络末端插入PDA后使模型平均精度(mean average precision,mAP)0.5提升了2.4个百分点,mAP0.5:0.95提升了4.4个百分点;针对实时检测场景的部署和检测速度要求模型拥有较少的参数量和计算量,因此提出了新的轻量化特征提取模块AC3代替原YOLOv5模型中的C3模块,该模块使插入PDA后的改进模型在精度仅仅损失0.2个百分点的情况下,参数量(parameters,Param.)减少了20%左右,浮点运算量(giga floating-point operations,GFLOPs)减少了30%左右。实验结果表明,最终的改进模型比YOLOv5s原模型在VOC行人数据集上mAP0.5提升了2.2个百分点,mAP0.5:0.95提升了3.1个百分点,且参数量减少了20%左右,浮点运算量减少了30%左右,在GTX1050上的检测速度(frames per second,FPS)提升了4。展开更多
Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and...Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and maintaining the devices,it is difficult to apply them to intensive weather phenomenon recognition.Moreover,advanced machine learning models such as Convolutional Neural Networks(CNNs)have shown a lot of promise in meteorology,but these models also require intensive computation and large memory,which make it difficult to use them in reality.In practice,lightweight models are often used to solve such problems.However,lightweight models often result in significant performance losses.To this end,after taking a deep dive into a large number of lightweight models and summarizing their shortcomings,we propose a novel lightweight CNNs model which is constructed based on new building blocks.The experimental results show that the model proposed in this paper has comparable performance with the mainstream non-lightweight model while also saving 25 times of memory consumption.Such memory reduction is even better than that of existing lightweight models.展开更多
Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for...Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for these algorithms to ensure the detection accuracy of human body in the airport terminal. A novel thermal infrared salient human detection model combined with thermal features called TFSHD is proposed. The TFSHD model is still based on U-Net,but the decoder module structure and model lightweight have been redesigned. In order to improve the detection accuracy of the algorithm in complex scenes,a fusion module composed of thermal branch and saliency branch is added to the decoder of the TFSHD model. Furthermore,a predictive loss function that is more sensitive to high temperature regions of the image is designed. Additionally,for the sake of reducing the computing resource requirements of the algorithm,a model lightweight scheme that includes simplifying the encoder network structure and controlling the number of decoder channels is adopted. The experimental results on four data sets show that the proposed method can not only ensure high detection accuracy and robustness of the algorithm,but also meet the needs of real-time detection of patrol robots with detection speed above 40 f/s.展开更多
For the purpose of monitoring apple fruits effectively throughout the entire growth period in smart orchards.A lightweight model named YOLOv8n-ShuffleNetv2-Ghost-SE was proposed.The ShuffleNetv2 basic modules and down...For the purpose of monitoring apple fruits effectively throughout the entire growth period in smart orchards.A lightweight model named YOLOv8n-ShuffleNetv2-Ghost-SE was proposed.The ShuffleNetv2 basic modules and down-sampling modules were alternately connected,replacing the Backbone of YOLOv8n model.The Ghost modules replaced the Conv modules and the C2fGhost modules replaced the C2f modules in the Neck part of the YOLOv8n.ShuffleNetv2 reduced the memory access cost through channel splitting operations.The Ghost module combined linear and non-linear convolutions to reduce the network computation cost.The Wise-IoU(WIoU)replaced the CIoU for calculating the bounding box regression loss,which dynamically adjusted the anchor box quality threshold and gradient gain allocation strategy,optimizing the size and position of predicted bounding boxes.The Squeeze-and-Excitation(SE)was embedded in the Backbone and Neck part of YOLOv8n to enhance the representation ability of feature maps.The algorithm ensured high precision while having small model size and fast detection speed,which facilitated model migration and deployment.Using 9652 images validated the effectiveness of the model.The YOLOv8n-ShuffleNetv2-Ghost-SE model achieved Precision of 94.1%,Recall of 82.6%,mean Average Precision of 91.4%,model size of 2.6 MB,parameters of 1.18 M,FLOPs of 3.9 G,and detection speed of 39.37 fps.The detection speeds on the Jetson Xavier NX development board were 3.17 fps.Comparisons with advanced models including Faster R-CNN,SSD,YOLOv5s,YOLOv7‑tiny,YOLOv8s,YOLOv8n,MobileNetv3_small-Faster,MobileNetv3_small-Ghost,ShuflleNetv2-Faster,ShuflleNetv2-Ghost,ShuflleNetv2-Ghost-CBAM,ShuflleNetv2-Ghost-ECA,and ShuflleNetv2-Ghost-CA demonstrated that the method achieved smaller model and faster detection speed.The research can provide reference for the development of smart devices in apple orchards.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.62261160575,61991414,61973036)Technical Field Foundation of the National Defense Science and Technology 173 Program of China(Grant Nos.20220601053,20220601030)。
文摘There is no unified planning standard for unstructured roads,and the morphological structures of these roads are complex and varied.It is important to maintain a balance between accuracy and speed for unstructured road extraction models.Unstructured road extraction algorithms based on deep learning have problems such as high model complexity,high computational cost,and the inability to adapt to current edge computing devices.Therefore,it is best to use lightweight network models.Considering the need for lightweight models and the characteristics of unstructured roads with different pattern shapes,such as blocks and strips,a TMB(Triple Multi-Block)feature extraction module is proposed,and the overall structure of the TMBNet network is described.The TMB module was compared with SS-nbt,Non-bottleneck-1D,and other modules via experiments.The feasibility and effectiveness of the TMB module design were proven through experiments and visualizations.The comparison experiment,using multiple convolution kernel categories,proved that the TMB module can improve the segmentation accuracy of the network.The comparison with different semantic segmentation networks demonstrates that the TMBNet network has advantages in terms of unstructured road extraction.
文摘In this paper,a novel method of ultra-lightweight convolution neural network(CNN)design based on neural architecture search(NAS)and knowledge distillation(KD)is proposed.It can realize the automatic construction of the space target inverse synthetic aperture radar(ISAR)image recognition model with ultra-lightweight and high accuracy.This method introduces the NAS method into the radar image recognition for the first time,which solves the time-consuming and labor-consuming problems in the artificial design of the space target ISAR image automatic recognition model(STIIARM).On this basis,the NAS model’s knowledge is transferred to the student model with lower computational complexity by the flow of the solution procedure(FSP)distillation method.Thus,the decline of recognition accuracy caused by the direct compression of model structural parameters can be effectively avoided,and the ultralightweight STIIARM can be obtained.In the method,the Inverted Linear Bottleneck(ILB)and Inverted Residual Block(IRB)are firstly taken as each block’s basic structure in CNN.And the expansion ratio,output filter size,number of IRBs,and convolution kernel size are set as the search parameters to construct a hierarchical decomposition search space.Then,the recognition accuracy and computational complexity are taken as the objective function and constraint conditions,respectively,and the global optimization model of the CNN architecture search is established.Next,the simulated annealing(SA)algorithm is used as the search strategy to search out the lightweight and high accuracy STIIARM directly.After that,based on the three principles of similar block structure,the same corresponding channel number,and the minimum computational complexity,the more lightweight student model is designed,and the FSP matrix pairing between the NAS model and student model is completed.Finally,by minimizing the loss between the FSP matrix pairs of the NAS model and student model,the student model’s weight adjustment is completed.Thus the ultra-lightweight and high accuracy STIIARM is obtained.The proposed method’s effectiveness is verified by the simulation experiments on the ISAR image dataset of five types of space targets.
文摘Cephalopods identification is a formidable task that involves hand inspection and close observation by a malacologist.Manual observation and iden-tification take time and are always contingent on the involvement of experts.A system is proposed to alleviate this challenge that uses transfer learning techni-ques to classify the cephalopods automatically.In the proposed method,only the Lightweight pre-trained networks are chosen to enable IoT in the task of cephalopod recognition.First,the efficiency of the chosen models is determined by evaluating their performance and comparing thefindings.Second,the models arefine-tuned by adding dense layers and tweaking hyperparameters to improve the classification of accuracy.The models also employ a well-tuned Rectified Adam optimizer to increase the accuracy rates.Third,Adam with Gradient Cen-tralisation(RAdamGC)is proposed and used infine-tuned models to reduce the training time.The framework enables an Internet of Things(IoT)or embedded device to perform the classification tasks by embedding a suitable lightweight pre-trained network.Thefine-tuned models,MobileNetV2,InceptionV3,and NASNet Mobile have achieved a classification accuracy of 89.74%,87.12%,and 89.74%,respectively.Thefindings have indicated that thefine-tuned models can classify different kinds of cephalopods.The results have also demonstrated that there is a significant reduction in the training time with RAdamGC.
文摘The brittleness generation mechanism of high strength lightweight aggregate con-crete(HSLWAC) was presented, and it was indicated that lightweight aggregate was the vulnerable spot, initiating brittleness. Based on the analysis of the brittleness failure by the load-deflection curve, the brittleness presented by HSLWAC was more prominent compared with ordinary lightweight aggregate concrete of the same strength grade. The model of brittleness failure was also established.
文摘针对实时行人检测场景存在遮挡、形态姿势不同的行人目标,YOLOv5模型对于这些目标检测有明显的漏检问题,提出一种像素差异度注意力机制(pixel difference attention,PDA),不同于传统的通道注意力机制用全局均值池化(global average pooling,GAP)、全局最大值池化(global max pooling,GMP)来概括整张特征图的信息,全局池化将空间压缩成一个值来表征整个通道,造成了空间信息的流失,PDA将空间信息沿高和宽分别压缩,并将其分别与通道信息联系起来做注意力加权操作,同时提出一种新的通道描述指标表征通道信息,增强空间信息与通道信息的交互,使模型更容易关注到综合了空间和通道维度上的特征图的重要信息,在主干网络末端插入PDA后使模型平均精度(mean average precision,mAP)0.5提升了2.4个百分点,mAP0.5:0.95提升了4.4个百分点;针对实时检测场景的部署和检测速度要求模型拥有较少的参数量和计算量,因此提出了新的轻量化特征提取模块AC3代替原YOLOv5模型中的C3模块,该模块使插入PDA后的改进模型在精度仅仅损失0.2个百分点的情况下,参数量(parameters,Param.)减少了20%左右,浮点运算量(giga floating-point operations,GFLOPs)减少了30%左右。实验结果表明,最终的改进模型比YOLOv5s原模型在VOC行人数据集上mAP0.5提升了2.2个百分点,mAP0.5:0.95提升了3.1个百分点,且参数量减少了20%左右,浮点运算量减少了30%左右,在GTX1050上的检测速度(frames per second,FPS)提升了4。
基金This paper is supported by the following funds:National Key R&D Program of China(2018YFF01010100)National natural science foundation of China(61672064)+1 种基金Basic Research Program of Qinghai Province under Grants No.2020-ZJ-709Advanced information network Beijing laboratory(PXM2019_014204_500029).
文摘Weather phenomenon recognition plays an important role in the field of meteorology.Nowadays,weather radars and weathers sensor have been widely used for weather recognition.However,given the high cost in deploying and maintaining the devices,it is difficult to apply them to intensive weather phenomenon recognition.Moreover,advanced machine learning models such as Convolutional Neural Networks(CNNs)have shown a lot of promise in meteorology,but these models also require intensive computation and large memory,which make it difficult to use them in reality.In practice,lightweight models are often used to solve such problems.However,lightweight models often result in significant performance losses.To this end,after taking a deep dive into a large number of lightweight models and summarizing their shortcomings,we propose a novel lightweight CNNs model which is constructed based on new building blocks.The experimental results show that the model proposed in this paper has comparable performance with the mainstream non-lightweight model while also saving 25 times of memory consumption.Such memory reduction is even better than that of existing lightweight models.
基金supported in part by the National Key Research and Development Program of China(No. 2018YFC0309104)the Construction System Science and Technology Project of Jiangsu Province (No.2021JH03)。
文摘Target detection in low light background is one of the main tasks of night patrol robots for airport terminal.However,if some algorithms can run on a robot platform with limited computing resources,it is difficult for these algorithms to ensure the detection accuracy of human body in the airport terminal. A novel thermal infrared salient human detection model combined with thermal features called TFSHD is proposed. The TFSHD model is still based on U-Net,but the decoder module structure and model lightweight have been redesigned. In order to improve the detection accuracy of the algorithm in complex scenes,a fusion module composed of thermal branch and saliency branch is added to the decoder of the TFSHD model. Furthermore,a predictive loss function that is more sensitive to high temperature regions of the image is designed. Additionally,for the sake of reducing the computing resource requirements of the algorithm,a model lightweight scheme that includes simplifying the encoder network structure and controlling the number of decoder channels is adopted. The experimental results on four data sets show that the proposed method can not only ensure high detection accuracy and robustness of the algorithm,but also meet the needs of real-time detection of patrol robots with detection speed above 40 f/s.
基金supported by the National Key Research and Development Program of China(2019YFD1002401)the National Natural Science Foundation of China(31701326).
文摘For the purpose of monitoring apple fruits effectively throughout the entire growth period in smart orchards.A lightweight model named YOLOv8n-ShuffleNetv2-Ghost-SE was proposed.The ShuffleNetv2 basic modules and down-sampling modules were alternately connected,replacing the Backbone of YOLOv8n model.The Ghost modules replaced the Conv modules and the C2fGhost modules replaced the C2f modules in the Neck part of the YOLOv8n.ShuffleNetv2 reduced the memory access cost through channel splitting operations.The Ghost module combined linear and non-linear convolutions to reduce the network computation cost.The Wise-IoU(WIoU)replaced the CIoU for calculating the bounding box regression loss,which dynamically adjusted the anchor box quality threshold and gradient gain allocation strategy,optimizing the size and position of predicted bounding boxes.The Squeeze-and-Excitation(SE)was embedded in the Backbone and Neck part of YOLOv8n to enhance the representation ability of feature maps.The algorithm ensured high precision while having small model size and fast detection speed,which facilitated model migration and deployment.Using 9652 images validated the effectiveness of the model.The YOLOv8n-ShuffleNetv2-Ghost-SE model achieved Precision of 94.1%,Recall of 82.6%,mean Average Precision of 91.4%,model size of 2.6 MB,parameters of 1.18 M,FLOPs of 3.9 G,and detection speed of 39.37 fps.The detection speeds on the Jetson Xavier NX development board were 3.17 fps.Comparisons with advanced models including Faster R-CNN,SSD,YOLOv5s,YOLOv7‑tiny,YOLOv8s,YOLOv8n,MobileNetv3_small-Faster,MobileNetv3_small-Ghost,ShuflleNetv2-Faster,ShuflleNetv2-Ghost,ShuflleNetv2-Ghost-CBAM,ShuflleNetv2-Ghost-ECA,and ShuflleNetv2-Ghost-CA demonstrated that the method achieved smaller model and faster detection speed.The research can provide reference for the development of smart devices in apple orchards.