A mesoscopic pore-scale model of multi-disciplinary processes coupled with electrochemical reactions in lithium-ion batteries is established via a relatively novel numerical method—smoothed particle hydrodynamics(SPH...A mesoscopic pore-scale model of multi-disciplinary processes coupled with electrochemical reactions in lithium-ion batteries is established via a relatively novel numerical method—smoothed particle hydrodynamics(SPH)method.This model is based on mesoscopic treatment to the electrode(including separator)micro-pore structures and solves a group of inter-coupled SPH equations,including charge(ion in electrolyte phase and electron in solid phase),species(Li?in electrolyte phase and lithium in solid active materials),and energy conservation equations.Model parameters,e.g.the physicochemical properties are location-dependent,directly associated with the local component of the medium.The electrochemical reactions are prescribed to occur exactly at the interface of solid active materials and electrolyte.Simulations to isothermal discharge processes of a battery of 2-dimensional idealized micro-pore structure in electrodes and separator preliminarily corroborate the reasonability and capability of the developed SPH model.展开更多
High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS...High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS_(2)lead to unacceptable ion transport capability.Here,we propose in-situ construction of interlayer electrostatic repulsion caused by Co^(2+)substituting Mo^(4+)between MoS_(2)layers,which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS_(2),thus establishing isotropic ion transport paths.Simultaneously,the doped Co atoms change the electronic structure of monolayer MoS_(2),thus improving its intrinsic conductivity.Importantly,the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport.Hence,the Co-doped monolayer MoS_(2)shows ultrafast lithium ion transport capability in half/full cells.This work presents a novel route for the preparation of monolayer MoS_(2)and demonstrates its potential for application in fast-charging lithium-ion batteries.展开更多
基金supported by the National Natural Science Foundation of China (51206171)the Director Innovation Foundation of Guangzhou Institute of Energy Conversion (y207r31001)+1 种基金the Amperex Technology Limited (ATL-Dongguan)the CAS ‘‘100 talents’’ Plan (FJ)
文摘A mesoscopic pore-scale model of multi-disciplinary processes coupled with electrochemical reactions in lithium-ion batteries is established via a relatively novel numerical method—smoothed particle hydrodynamics(SPH)method.This model is based on mesoscopic treatment to the electrode(including separator)micro-pore structures and solves a group of inter-coupled SPH equations,including charge(ion in electrolyte phase and electron in solid phase),species(Li?in electrolyte phase and lithium in solid active materials),and energy conservation equations.Model parameters,e.g.the physicochemical properties are location-dependent,directly associated with the local component of the medium.The electrochemical reactions are prescribed to occur exactly at the interface of solid active materials and electrolyte.Simulations to isothermal discharge processes of a battery of 2-dimensional idealized micro-pore structure in electrodes and separator preliminarily corroborate the reasonability and capability of the developed SPH model.
基金financially supported by Shenzhen Key Laboratory of Advanced Energy Storage(No.ZDSYS20220401141000001)the Research Grants Council of the Hong Kong Special Administrative Region,China(Project No.R6005-20)。
文摘High theoretical capacity and unique layered structures make MoS_(2)a promising lithium-ion battery anode material.However,the anisotropic ion transport in layered structures and the poor intrinsic conductivity of MoS_(2)lead to unacceptable ion transport capability.Here,we propose in-situ construction of interlayer electrostatic repulsion caused by Co^(2+)substituting Mo^(4+)between MoS_(2)layers,which can break the limitation of interlayer van der Waals forces to fabricate monolayer MoS_(2),thus establishing isotropic ion transport paths.Simultaneously,the doped Co atoms change the electronic structure of monolayer MoS_(2),thus improving its intrinsic conductivity.Importantly,the doped Co atoms can be converted into Co nanoparticles to create a space charge region to accelerate ion transport.Hence,the Co-doped monolayer MoS_(2)shows ultrafast lithium ion transport capability in half/full cells.This work presents a novel route for the preparation of monolayer MoS_(2)and demonstrates its potential for application in fast-charging lithium-ion batteries.