期刊文献+
共找到245,482篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanical behavior and failure mechanisms of rock bolts subjected to static-dynamic loads 被引量:1
1
作者 Hongpu Kang Guiyang Yuan +4 位作者 Linpo Si Fuqiang Gao Jinfu Lou Jinghe Yang Shuangyong Dong 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期281-288,共8页
This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load fram... This study explores the effects of dynamic and static loading on rock bolt performance a key factor in maintaining the structural safety of coal mine roadways susceptible to coal bursts.Employing a housemade load frame to simulate various failure scenarios,pretension-impact-pull tests on rock bolts were conducted to scrutinize their dynamic responses under varied static load conditions and their failure traits under combined loads.The experimental results denote that with increased impact energy,maximum and average impact loads on rock bolts escalate significantly under pretension,initiating plastic deformation beyond a certain threshold.Despite minor reductions in the yield load due to impactinduced damage,pretension aids in constraining post-impact deformation rate and fluctuation degree of rock bolts.Moreover,impact-induced plastic deformation causes internal microstructure dislocation,fortifying the stiffness of the rock bolt support system.The magnitude of this fortification is directly related to the plastic deformation induced by the impact.These findings provide crucial guidance for designing rock bolt support in coal mine roadway excavation,emphasizing the necessity to consider both static and dynamic loads for improved safety and efficiency. 展开更多
关键词 Rock bolt PRETENSION Static and dynamic load IMPACT
下载PDF
Energy mechanism of bolt supporting effect to fissured rock under static and dynamic loads in deep coal mines 被引量:1
2
作者 Deyuan Fan Xuesheng Liu +2 位作者 Yunliang Tan Xuebin Li Shenglong Yang 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期371-384,共14页
The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured... The stability control of fissured rock is difficult,especially under static and dynamic loads in deep coal mines.In this paper,the dynamic mechanical properties,strain rate evolution and energy dissipation of fissured and anchored rocks were respectively obtained by SHPB tests.It was found that bolt can provide supporting efficiency-improving effect for fissured rock against dynamic disturbance,and this effect increased quadratically with decrease in anchoring angles.Then,the energy dissipation mechanism of anchored rock was obtained by slipping model.Furthermore,bolt energy-absorbing mechanism by instantaneous tensile-shear deformation was expressed based on material mechanics,which was the larger the anchoring angle,the smaller the energy absorption,and the less the contribution to supporting efficiency improvement.On this basis,the functional relationship between energy dissipation of anchored rock and energy absorption of bolt was established.Taking the coal-gangue separation system of Longgu coal mine as an example,the optimal anchoring angle can be determined as 57.5°–67.5°.Field monitoring showed fissured rock with the optimal anchoring angle,can not only effectively control the deformation,but also fully exert the energy-absorbing and efficiency-improving effect of bolt itself.This study provides guidance to the stability control and supporting design for deep engineering under the same or similar conditions. 展开更多
关键词 Static and dynamic loads Anchored rock Energy absorption Anchoring angle Engineering verification
下载PDF
Comparisons of Wave Force Model Effects on the Structural Responses and Fatigue Loads of a Semi-Submersible Floating Wind Turbine
3
作者 HAN Yanqing LE Conghuan +1 位作者 ZHANG Puyang XU Shengnan 《Journal of Ocean University of China》 CAS CSCD 2024年第1期69-79,共11页
The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a ... The selection of wave force models will significantly impact the structural responses of floating wind turbines.In this study,comparisons of wave force model effects on the structural responses and fatigue loads of a semi-submersible floating wind turbine(SFWT)were conducted.Simulations were performed by employing the Morison equation(ME)with linear or second-order wave kinematics and potential flow theory(PFT)with first-or second-order wave forces.A comparison of regular waves,irregular waves,and coupled wind/waves analyses with the experimental data showed that many of the simulation results and experimental data are relatively consistent.However,notable discrepancies are found in the response amplitude operators for platform heave,tower base bending moment,and tension in mooring lines.PFT models give more satisfactory results of heave but more significant discrepan-cies in tower base bending moment than the ME models.In irregular wave analyses,low-frequency resonances were captured by PFT models with second-order difference-frequency terms,and high-frequency resonances were captured by the ME models or PFT models with second-order sum-frequency terms.These force models capture the response frequencies but do not reasonably predict the response amplitudes.The coupled wind/waves analyses showed more satisfactory results than the wave-only analyses.However,an important detail to note is that this satisfactory result is based on the overprediction of wind-induced responses. 展开更多
关键词 floating wind turbine wave force model potential flow theory Morison equation second-order wave forces
下载PDF
A novel approach to the dynamic response analysis of Euler-Bernoulli beams resting on a Winkler soil model and subjected to impact loads
4
作者 Adolfo Foriero Filippo Santucci de Magistris Giovanni Fabbrocino 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期389-401,共13页
This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less impor... This work presents a novel approach to the dynamic response analysis of a Euler-Bernoulli beam resting on a Winkler soil model and subjected to an impact loading.The approach considers that damping has much less importance in controlling the maximum response to impulsive loadings because the maximum response is reached in a very short time,before the damping forces can dissipate a significant portion of the energy input into the system.The development of two sine series solutions,relating to different types of impulsive loadings,one involving a single concentrated force and the other a distributed line load,are presented.This study revealed that when a simply supported Euler-Bernoulli beam,resting on a Winkler soil model,is subject to an impact load,the resulting vertical displacements,bending moments and shear forces produced along the span of the beam are considerably affected.In particular,the quantification of this effect is best observed,relative to the corresponding static solution,via an amplification factor.The computed impact amplification factors,for the sub-grade moduli used in this study,were in magnitude greater than 2,thus confirming the multiple-degree-of-freedom nature of the problem. 展开更多
关键词 beam-Winkler-soil model sub-grade moduli impact load impact distributed line load dynamic solution impact amplification factor
下载PDF
Culturally competent care across borders: Implementing culturally responsive teaching for nurses in diverse workforces
5
作者 Abdulqadir J.Nashwan 《International Journal of Nursing Sciences》 CSCD 2024年第1期155-157,共3页
The migration of healthcare professionals,including nurses,is a global phenomenon.It is driven by various factors,including the pursuit of better opportunities,living conditions,and professional development,as well as... The migration of healthcare professionals,including nurses,is a global phenomenon.It is driven by various factors,including the pursuit of better opportunities,living conditions,and professional development,as well as political instability or conflict in their home countries.The World Health Organization(WHO)has noted that high-income countries often rely on foreign-trained nurses to fill gaps in their healthcare systems[1].For instance,as of 2021,over 40%(52 million)of all nurses in the United States(US)were expatriates[2].In the United Kingdom(UK),the percentage of expatriate nurses was even higher,reaching approximately 18%in 2021[3].Owing to globalization and migration,healthcare providers must possess cultural competence to deliver improved care[4,5].Culturally responsive teaching(CRT)is rooted in the idea that culture plays a vital role in shaping people’s behaviors,beliefs,values,and communication styles[6].Furthermore,these cultural factors influence patients’perspectives on health,illness,healing,and their preferences for care and communication[7].By recognizing and embracing these cultural differences,nurses can provide more effective and compassionate care to their diverse patient population[8]. 展开更多
关键词 TEACHING NURSE forces
下载PDF
Self-assembly of perovskite nanocrystals:From driving forces to applications
6
作者 Yi Li Fei Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期561-578,I0013,共19页
Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review ... Self-assembly of metal halide perovskite nanocrystals(NCs)into superlattices can exhibit unique collective properties,which have significant application values in the display,detector,and solar cell field.This review discusses the driving forces behind the self-assembly process of perovskite NCs,and the commonly used self-assembly methods and different self-assembly structures are detailed.Subsequently,we summarize the collective optoelectronic properties and application areas of perovskite superlattice structures.Finally,we conclude with an outlook on the potential issues and future challenges in developing perovskite NCs. 展开更多
关键词 SELF-ASSEMBLY Metal halide perovskite NANOCRYSTALS Driving forces
下载PDF
Numerical analysis of geosynthetic-reinforced embankment performance under moving loads
7
作者 Xuanming Ding Jinqiao Zhao +1 位作者 Qiang Ou Jianfei Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期682-696,共15页
The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without ... The performance of geosynthetic-reinforced embankments under traffic moving loads is always a hotspot in the geotechnical engineering field.A three-dimensional(3D)model of a geosynthetic-reinforced embankment without drainage consolidation was established using the finite element software ABAQUS.In this model,the traffic loads were simulated by two moving loads of rectangular pattern,and their amplitude,range,and moving speed were realized by a Fortran subroutine.The embankment fill was simulated by an equivalent linear viscoelastic model,which can reflect its viscoelasticity.The geogrid was simulated by the truss element,and the geocell was simulated by the membrane element.Infinite elements were utilized to weaken the boundary effect caused by the model geometry at the boundaries.Validation of the established numerical model was conducted by comparing the predicted deformations in the cross-section of the geosynthetic-reinforced embankment with those from the existing literature.On this basis,the dynamic stress and strain distribution in the pavement structure layer of the geosynthetic-reinforced embankment under a moving load was also analyzed.Finally,a parametric study was conducted to examine the influences of the different types of reinforcement,overload,and the moving load velocity on the geosynthetic-reinforced embankment. 展开更多
关键词 Geosynthetic-reinforced layer Numerical model Moving load EMBANKMENT DEFORMATION Stress
下载PDF
Post-Traumatic Stress Disorder among Defence and Security Forces in Northern Benin (2023)
8
作者 Ireti Nethania Elie Ataigba Guy Gérard Aza Gnandji +6 位作者 David Sinet Koivogui Dalmace Fauste Adjaho Eurydice Elvire Djossou Anselme Djidonou Francis Tognon Tchegnonsi Prosper Gandaho Josiane Ezin Houngbe 《Open Journal of Psychiatry》 2024年第2期142-161,共20页
Introduction: Post-traumatic stress disorder (PTSD) is defined as “actual exposure to death or the threat of death, serious injury or sexual violence”, either directly or indirectly, resulting in a symptomatic proce... Introduction: Post-traumatic stress disorder (PTSD) is defined as “actual exposure to death or the threat of death, serious injury or sexual violence”, either directly or indirectly, resulting in a symptomatic procession of repetition, avoidance, neurovegetative hyperactivity and individualized symptoms, with or without negative cognitive and mood changes. It therefore goes without saying that the defence and security forces constitute a high-risk population in need of attention. Objective: To study post-traumatic stress disorder in defence and security forces in the city of Parakou in 2023. Methods: Descriptive cross-sectional study conducted from December 2022 to July 2023. The study population consisted of active military, republican police and firefighters in the city of Parakou in 2023. Non-proportional stratified sampling was used, given the inaccessibility of the source population size for national security reasons. Post-traumatic stress disorder was assessed using the “post-traumatic stress disorder checklist-5 (PCLS-5) scale. Results: A total of 305 subjects participated in the survey. Males dominated 90.2%. The most represented corps was the Republican Police (41.6%), most of whom were non-commissioned officers (46.6%). The majority count between 11 and 20 years of service (48.9%), with 2 to 5 missions completed (67.5%). The calculated prevalence of post-traumatic stress disorder was 11.8%, based on the post-traumatic stress disorder checklist-5 (PCL-5). Of the 36 respondents with post-traumatic stress disorder, 20 (55.6%) had experienced an armed attack, 25 (69.4%) had witnessed a violent death, 18 (50.0%) had witnessed the agony of a colleague, 15 (41.7%) had been exposed to a fire or explosion, while 26 (72.2%) had been traumatized by physical and/or verbal aggression. 5 (13.9%) had consulted a specialist psychiatrist, while 6 (16.7%) were on medication and 26 (72.2%) used sport as a means of maintaining physical and mental health. Respectively 22 (61.1%) and 21 (58.3%) had definite symptoms of anxiety and depression. Multivariate analysis revealed a significant association between post-traumatic stress disorder and the following variables: total number of children ≤ 2 (p = 0.015), comorbidities such as arterial hypertension (p = 0.007), history of hepatitis (p = 0.017), work accidents (p = 0.016), alcohol dependence (p = 0.004), domestic violence (p = 0.004), psychological violence (p = 0.017) and anxiety disorders (p Conclusion: Defence and security personnel can also be prey to post-traumatic stress disorder (PTSD), which needs to be systematically taken into account when they are subjected to trauma in the course of their duties. Mental health should be an integral part of the periodic medical check-up objectives for defence and security forces throughout the country. 展开更多
关键词 Post-Traumatic Stress Disorder forces DEFENCE SECURITY BENIN 2023
下载PDF
Experimental Study on the Electrochemical Performance of PEMFC under Different Assembly Forces
9
作者 Tongze Su Jiaran Liu +3 位作者 Yanqiang Wei Yihuizi Li Weichao Luo Jinzhu Tan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第3期265-274,共10页
Proton exchange membrane fuel cell(PEMFC)is of paramount significance to the development of clean energy.The components of PEMFC are assembled using many pairs of nuts and bolts.The assembly champing bolt torque is cr... Proton exchange membrane fuel cell(PEMFC)is of paramount significance to the development of clean energy.The components of PEMFC are assembled using many pairs of nuts and bolts.The assembly champing bolt torque is critical to the electrochemical performance and mechanical stability of PEMFC.In this paper,a PEMFC with the threechannel serpentine flow field was used and studied.The different assembly clamping bolt torques were applied to the PEMFC in three uniform assembly bolt torque and six non-uniform assembly bolt torque conditions,respectively.And then,the electrochemical performance experiments were performed to study the effect of the assembly bolt torque on the electrochemical performance.The test results show that the assembly bolt torque significantly affected the electrochemical performance of the PEMFC.In uniform assembly bolt torque conditions,the maximal power density increased initially as the assembly bolt torque increased,and then decreased on further increasing the assembly torque.It existed the optimum assembly torque which was found to be 3.0 N·m in this work.In non-uniform assembly clamping bolt torque conditions,the optimum electrochemical performance appeared in the condition where the assembly torque of each bolt was closer to be 3.0 N·m.This could be due to the change of the contact resistance between the gas diffusion layer and bipolar plate and mass transport resistance for the hydrogen and oxygen towards the catalyst layers.This work could optimize the assembly force conditions and provide useful information for the practical PEMFC stack assembly. 展开更多
关键词 Proton exchange membrane fuel cell Assembly force EXPERIMENT Electrochemical performance
下载PDF
Effect of preload forces on multidimensional signal dynamic behaviours for battery early safety warning
10
作者 Kuijie Li Jiahua Li +10 位作者 Xinlei Gao Yao Lu Depeng Wang Weixin Zhang Weixiong Wu Xuebing Han Yuan-cheng Cao Languang Lu Jinyu Wen Shijie Cheng Minggao Ouyang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期484-498,共15页
Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery fa... Providing early safety warning for batteries in real-world applications is challenging.In this study,comprehensive thermal abuse experiments are conducted to clarify the multidimensional signal evolution of battery failure under various preload forces.The time-sequence relationship among expansion force,voltage,and temperature during thermal abuse under five categorised stages is revealed.Three characteristic peaks are identified for the expansion force,which correspond to venting,internal short-circuiting,and thermal runaway.In particular,an abnormal expansion force signal can be detected at temperatures as low as 42.4°C,followed by battery thermal runaway in approximately 6.5 min.Moreover,reducing the preload force can improve the effectiveness of the early-warning method via the expansion force.Specifically,reducing the preload force from 6000 to 1000 N prolongs the warning time(i.e.,227 to 398 s)before thermal runaway is triggered.Based on the results,a notable expansion force early-warning method is proposed that can successfully enable early safety warning approximately 375 s ahead of battery thermal runaway and effectively prevent failure propagation with module validation.This study provides a practical reference for the development of timely and accurate early-warning strategies as well as guidance for the design of safer battery systems. 展开更多
关键词 Lithium-ion battery Thermal runaway Preload force Expansionforce Early warning Multidimensional signal
下载PDF
Loads and Dynamic Response Characteristic on FPSO Under Internal Solitary Waves
11
作者 ZHANG Rui-rui LI Cui +2 位作者 PU Chun-rong LIU Qian YOU Yun-xiang 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期785-796,共12页
According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response mo... According to the established prediction model of internal solitary wave loads on FPSO in the previous work,the lumped mass model and the movement equations of finite displacement in time domain,the dynamic response model of interaction between internal solitary waves and FPSO with mooring lines were established.Through calculations and analysis,time histories of dynamic loads of FPSO exerted by internal solitary waves,FPSO’s motion and dynamic tension of mooring line were obtained.The effects of the horizontal pretension of mooring line,the amplitude of internal solitary wave and layer fluid depth on dynamic response behavior of FPSO were mastered.It was shown that the internal solitary waves had significant influence on FPSO,such as the large magnitude horizontal drift and a sudden tension increment.With internal solitary wave of −170 m amplitude in the ocean with upper and lower layer fluid depth ratio being 60:550,the dynamic loads reached 991.132 kN(horizontal force),18067.3 kN(vertical force)and−5042.92 kN·m(pitching moment).Maximum of FPSO’s horizontal drift was 117.56 m.Tension increment of upstream mooring line approached 401.48 kN and that of backflow mooring line was−140 kN.Moreover,the loads remained nearly constant with different pretension but increased obviously with the changing amplitude and layer fluid depth ratio.Tension increments of mooring lines also changed little with the pretension but increased rapidly when amplitude and layer fluid depth ratio increased.However,FPSO’s motion increased quickly with not only the horizontal pretension but also the amplitude of internal solitary wave and layer fluid depth ratio. 展开更多
关键词 internal solitary wave(ISW) dynamic response FPSO dynamic loads tension increment
下载PDF
Experimental Investigation of Wave-Current Loads on a Bridge Shuttle-Shaped Cap–Pile Foundation
12
作者 Chenkai Hong Zhongda Lyu +2 位作者 Fei Wang Zhuo Zhao Lei Wang 《Fluid Dynamics & Materials Processing》 EI 2024年第7期1565-1592,共28页
To scrutinize the characteristics of wave-current loads on a bridge shuttle-shaped cap–pile foundation,a 1:125 test model was considered in a laboratory flume.The inline,transverse and vertical wave–current forces a... To scrutinize the characteristics of wave-current loads on a bridge shuttle-shaped cap–pile foundation,a 1:125 test model was considered in a laboratory flume.The inline,transverse and vertical wave–current forces acting on the shuttle-shaped cap-pile group model were measured considering both random waves and a combination of random waves with a current.The experimental results have shown that the wave-current forces can be well correlated with the wave height,the wavelength,the current velocity,the incident direction and the water level in the marine environment.An increase in the current velocity can lead to a sharp increase in the inline and transverse wave-current forces,while the vertical wave-current force decreases.Moreover,the wave-current forces are particularly strong when a combination of high tide,strong wave and strong current is considered. 展开更多
关键词 Shuttle-shaped cap-pile foundation wave-current force wave flume experiment sea-crossing bridge
下载PDF
Modelling dynamic pantograph loads with combined numerical analysis
13
作者 F.F.Jackson R.Mishra +6 位作者 J.M.Rebelo J.Santos P.Antunes J.Pombo H.Magalhaes L.Wills M.Askill 《Railway Engineering Science》 EI 2024年第1期81-94,共14页
Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant ... Appropriate interaction between pantograph and catenary is imperative for smooth operation of electric trains.Changing heights of overhead lines to accommodate level crossings,overbridges,and tunnels pose significant challenges in maintaining consistent current collection performance as the pantograph aerodynamic profile,and thus aerodynamic load changes significantly with operational height.This research aims to analyse the global flow characteristics and aerodynamic forces acting on individual components of an HSX pantograph operating in different configurations and orientations,such that the results can be combined with multibody simulations to obtain accurate dynamic insight into contact forces.Specifically,computational fluid dynamics simulations are used to investigate the pantograph component loads in a representative setting,such as that of the recessed cavity on a Class 800 train.From an aerodynamic perspective,this study indicates that the total drag force acting on non-fixed components of the pantograph is larger for the knuckle-leading orientation rather than the knuckle-trailing,although the difference between the two is found to reduce with increasing pantograph extension.Combining the aerodynamic loads acting on individual components with multibody tools allows for realistic dynamic insight into the pantograph behaviour.The results obtained show how considering aerodynamic forces enhance the realism of the models,leading to behaviour of the pantograph-catenary contact forces closely matching that seen in experimental tests. 展开更多
关键词 Pantograph-catenary interaction Pantograph aerodynamics Computational fluid dynamics Pantograph loads Current collection performance
下载PDF
Numerical Simulations of Wave Impact Forces on the Open-Type Sea Access Road Using A Two-Phase SPH Model
14
作者 CHEN Yong-kun Domenico D.MERINGOLO LIU Yong 《China Ocean Engineering》 SCIE EI CSCD 2024年第5期755-770,共16页
A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analy... A numerical study based on a two-dimensional two-phase SPH(Smoothed Particle Hydrodynamics)model to analyze the action of water waves on open-type sea access roads is presented.The study is a continuation of the analyses presented by Chen et al.(2022),in which the sea access roads are semi-immersed.In this new configuration,the sea access roads are placed above the still water level,therefore the presence of the air phase becomes a relevant issue in the determination of the wave forces acting on the structures.Indeed,the comparison of wave forces on the open-type sea access roads obtained from the single and two-phase SPH models with the experimental results shows that the latter are in much better agreement.So in the numerical simulations,a two-phaseδ-SPH model is adopted to investigate the dynamical problems.Based on the numerical results,the maximum horizontal and uplifting wave forces acting on the sea access roads are analyzed by considering different wave conditions and geometries of the structures.In particular,the presence of the girder is analyzed and the differences in the wave forces due to the air cushion effects which are created below the structure are highlighted. 展开更多
关键词 Smoothed Particle Hydrodynamics two-phase SPH wave impact forces experimental test sea access road
下载PDF
Sensitivity impacts owing to the variations in the type of zero-range pairing forces on the fission properties using the density functional theory
15
作者 Yang Su Ze-Yu Li +3 位作者 Li-Le Liu Guo-Xiang Dong Xiao-Bao Wang Yong-Jing Chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第3期198-207,共10页
Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pair... Using the Skyrme density functional theory,potential energy surfaces of^(240)Pu with constraints on the axial quadrupole and octupole deformations(q_(20)and q_(30))were calculated.The volume-like and surface-like pairing forces,as well as a combination of these two forces,were used for the Hartree–Fock–Bogoliubov approximation.Variations in the least-energy fission path,fission barrier,pairing energy,total kinetic energy,scission line,and mass distribution of the fission fragments based on the different forms of the pairing forces were analyzed and discussed.The fission dynamics were studied based on the timedependent generator coordinate method plus the Gaussian overlap approximation.The results demonstrated a sensitivity of the mass and charge distributions of the fission fragments on the form of the pairing force.Based on the investigation of the neutron-induced fission of^(239)Pu,among the volume,mixed,and surface pairing forces,the mixed pairing force presented a good reproduction of the experimental data. 展开更多
关键词 Nuclear fission Density functional theory Pairing force Potential energy surfaces Fission fragment distribution
下载PDF
Influence of different magnetic forces on the effect of colonic anastomosis in rats
16
作者 Bo-Yan Tian Miao-Miao Zhang +2 位作者 Jia Ma Yi Lyu Xiao-Peng Yan 《World Journal of Gastrointestinal Surgery》 SCIE 2024年第3期860-870,共11页
BACKGROUND Despite much work having been conducted on magnetic compression anastomo-sis(MCA)in the digestive tract,there are no reports on the influence of magnetic force on the anastomosis.AIM To investigate the effe... BACKGROUND Despite much work having been conducted on magnetic compression anastomo-sis(MCA)in the digestive tract,there are no reports on the influence of magnetic force on the anastomosis.AIM To investigate the effect of different magnetic force magnets on the MCA of the digestive tract.METHODS Two groups of magnets of the same sizes but different magnetic forces were designed and produced.A total of 24 Sprague-Dawley rats were randomly assigned into two groups(powerful magnet group and common magnet group),with 12 rats in each group.Two types of magnets were used to complete the colonic side-to-side anastomosis of the rats.The operation time and magnet discharge time were recorded.The anastomotic specimens were obtained 4 wk after the operation and then the burst pressure and diameter of the anastomosis were measured,and the anastomosis was observed via the naked eye and subjected to histological examination.RESULTS The magnetic forces of the powerful and common magnet groups at zero distance were 8.26 N and 4.10 N,respectively.The colonic side-to-side anastomosis was completed in all 24 rats,and the operation success rate and postoperative survival rate were 100%.No significant difference was noted in the operation time between the two groups.The magnet discharge time of the powerful magnet group was slightly longer than that of the common magnet group,but the difference was not statistically significant(P=0.513).Furthermore,there was no statistical difference in the burst pressure(P=0.266)or diameter of magnetic anastomosis(P=0.095)between the two groups.The gross specimens of the two groups showed good anastomotic healing,and histological observation indicated good mucosal continuity without differences on healing.CONCLUSION In the rat colonic side-to-side MCA model,both the powerful magnet with 8.26 N and the common magnet with 4.10 N showed no significant impact on the anastomosis establishment process or its effect. 展开更多
关键词 Magnetosurgery Magnetic compression anastomosis Colonic anastomosis Magnetic force RATS
下载PDF
Predicting impact forces on pipelines from deep-sea fluidized slides:A comprehensive review of key factors
17
作者 Xingsen Guo Ning Fan +5 位作者 Defeng Zheng Cuiwei Fu Hao Wu Yanjun Zhang Xiaolong Song Tingkai Nian 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第2期211-225,共15页
Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on ... Deep-sea pipelines play a pivotal role in seabed mineral resource development,global energy and resource supply provision,network communication,and environmental protection.However,the placement of these pipelines on the seabed surface exposes them to potential risks arising from the complex deep-sea hydrodynamic and geological environment,particularly submarine slides.Historical incidents have highlighted the substantial damage to pipelines due to slides.Specifically,deep-sea fluidized slides(in a debris/mud flow or turbidity current physical state),characterized by high speed,pose a significant threat.Accurately assessing the impact forces exerted on pipelines by fluidized submarine slides is crucial for ensuring pipeline safety.This study aimed to provide a comprehensive overview of recent advancements in understanding pipeline impact forces caused by fluidized deep-sea slides,thereby identifying key factors and corresponding mechanisms that influence pipeline impact forces.These factors include the velocity,density,and shear behavior of deep-sea fluidized slides,as well as the geometry,stiffness,self-weight,and mechanical model of pipelines.Additionally,the interface contact conditions and spatial relations were examined within the context of deep-sea slides and their interactions with pipelines.Building upon a thorough review of these achievements,future directions were proposed for assessing and characterizing the key factors affecting slide impact loading on pipelines.A comprehensive understanding of these results is essential for the sustainable development of deep-sea pipeline projects associated with seabed resource development and the implementation of disaster prevention measures. 展开更多
关键词 Deep-sea fluidized slides Pipes Impact forces Shear behavior of slides Interface contact conditions Spatial relation
下载PDF
New Quality Productive Forces:New Hope for Economic Growth
18
作者 Li Chunhui Wang Chenxi 《China Report ASEAN》 2024年第2期18-21,共4页
On January 17,China announced a GDP growth rate of 5.2 percent for 2023,successfully reaching the major projected targets.In 2024,the Chinese economy will continue to seek progress while maintaining stability and prov... On January 17,China announced a GDP growth rate of 5.2 percent for 2023,successfully reaching the major projected targets.In 2024,the Chinese economy will continue to seek progress while maintaining stability and provide great dynamism for the stability and recovery of the world economy.New quality productive forces will become a new driver for economic growth in China. 展开更多
关键词 CONTINUE QUALITY forces
下载PDF
Factories of the Future--China and Thailand are embracing new productive forces through NEV cooperation
19
作者 Chang Xiang 《China Report ASEAN》 2024年第8期58-59,共2页
Chinese modernization has been benefiting its neighboring countries,with the Belt and Road Initiative(BRI)aligning with multiple development strategies of Thailand,including the economic development plan Thailand 4.0 ... Chinese modernization has been benefiting its neighboring countries,with the Belt and Road Initiative(BRI)aligning with multiple development strategies of Thailand,including the economic development plan Thailand 4.0 as well as the Eastern Economic Corridor(EEC)which could serve as a complementary to the Guangdong-Hong Kong-Macao Greater Bay Area(the Greater Bay Area). 展开更多
关键词 Thailand EASTERN forces
下载PDF
NEW QUALITY PRODUCTIVE FORCES SPUR GLOBAL DEVELOPMENT
20
作者 Yu Yunquan 《China Report ASEAN》 2024年第8期78-80,共3页
The third plenary session of the 20th Central Committee of the Communist Party of China(CPC)in July was in the global spotlight for the reform measures it proposed to advance Chinese modernization.The plenum decided t... The third plenary session of the 20th Central Committee of the Communist Party of China(CPC)in July was in the global spotlight for the reform measures it proposed to advance Chinese modernization.The plenum decided to improve the institutions and mechanisms for fostering new quality productive forces in line with local conditions and pinpointed the key areas. 展开更多
关键词 measures forces productive
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部