Following the 2008 Wenchuan M8 earthquake,the seismic risk of the northeastern section of the Longmenshan fault zone and the adjacent Hanzhong basin has become an issue that receives much concern.It is facing,however,...Following the 2008 Wenchuan M8 earthquake,the seismic risk of the northeastern section of the Longmenshan fault zone and the adjacent Hanzhong basin has become an issue that receives much concern.It is facing,however,the problem of a lack of sufficient data because of little previous work in these regions.The northeastern section of the Longmenshan fault zone includes three major faults:the Qingchuan fault,Chaba-Lin'ansi fault,and Liangshan south margin fault,with the Hanzhong basin at the northern end.This paper presents investigations of the geometry,motion nature,and activity ages of these three faults,and reveals that they are strike slip with normal faulting,with latest activity in the Late Pleistocene.It implies that this section of the Longmenshan fault zone has been in an extensional setting,probably associated with the influence of the Hanzhong basin.Through analysis of the tectonic relationship between the Longmenshan fault zone and the Hanzhong basin,this work verifies that the Qingchuan fault played an important role in the evolution of the Hanzhong basin,and further studies the evolution model of this basin.Finally,with consideration of the tectonic setting of the Longmenshan fault zone and the Hanzhong basin as well as seismicity of surrounding areas,this work suggests that this region has no tectonic conditions for great earthquakes and only potential strong events in the future.展开更多
The 2,026 earthquake events registered by the Sichuan regional digital seismic network and mobile seismic array after the April 20th, 2013 Lushan earthquake and 28,188 pieces of data were selected to determine direct ...The 2,026 earthquake events registered by the Sichuan regional digital seismic network and mobile seismic array after the April 20th, 2013 Lushan earthquake and 28,188 pieces of data were selected to determine direct P waves arrival times. We applied the tomographic method to inverse the characteristics of the velocity structure for the three-dimensional (3D) P wave in the mid-upper crust of the seismic source region of the Lushan earthquake. The imaging results were combined with the apparent magnetization inversion and magnetotelluric (MT) sounding retest data to comprehensively study the causes of the deep seismogenic environment in the southern section of the Longmenshan fault zone and explore the formation of the Lushan earthquake. Research has shown that there are obvious differences in velocity structure and magnetic distribution between the southern and northern sections of the Longmenshan fault zone. The epicenter of the Lushan earthquake is located near the boundary of the high and low-velocity anomalies and favorable for a high-velocity section. Moreover, at the epicenter of the Lushan earthquake located on the magnetic dome boundary of Ya'an, the development of high velocity and magnetic solid medium favors the accumulation and release of strain energy. Low- velocity anomalies are distributed underneath the are of seismogenic origin, The inversion results of the MT retest data after the April 20th Lushan earthquake also indicate that there a high-conductor anomaly occurs under the area of seismogenic origin of the Lushan earthquake, Therefore, we speculated that the presence of a high-conductivity anomaly and low-velocity anomaly underneath the seismogenic body of the Lushan earthquake could be related to the existence of fluids. The role of fluids caused the weakening of the seismogenic layer inside the mid-upper crust and resulted in a seismogenic fault that was prone to rupture and pIayed a triggering role in the Lushan earthquake.展开更多
The seismicity of Longrnenshan fault zone and its vicinities before the 12 May 2008 Wenchuan Ms8.0 earthquake is studied. Based on the digital seismic waveform data observed from regional seismic networks and mobile s...The seismicity of Longrnenshan fault zone and its vicinities before the 12 May 2008 Wenchuan Ms8.0 earthquake is studied. Based on the digital seismic waveform data observed from regional seismic networks and mobile stations, the focal mechanism solutions are determined. Our analysis results show that the seismicities of Longmenshan fault zone before the 12 May 2008 Wenchuan earthquake were in stable state. No obvious phenomena of seismic activity intensifying appeared. According to focal mechanism solutions of some small earthquakes before the 12 May 2008 Wenchuan earthquake, the direction of principal compressive stress P-axis is WNW-ESE. The two hypocenter fault planes are NE-striking and NW-striking. The plane of NE direction is among N50°-70°E, the dip angles of fault planes are 60°-70° and it is very steep. The faultings of most earthquakes are dominantly characterized by dip-slip reverse and small part of faultings present strike-slip. The azimuths of principal compressive stress, the strikes of source fault planes and the dislocation types calculated from some small earthquakes before the 12 May 2008 Wenchuan earthquake are in accordance with that of the main shock. The average stress field of micro-rupture along the Longmenshan fault zone before the great earthquake is also consistent with that calculated from main shock. Zipingpu dam is located in the east side 20 km from the initial rupture area of the 12 May 2008 Wenchuan earthquake. The activity increment of small earthquakes in the Zipingpu dam is in the period of water discharging. The source parameter results of the small earthquakes which occurred near the initial rupture area of the 12 May 2008 Wenchuan earthquake indicate that the focal depths are 5 to 14 km and the source parameters are identical with that of earthquake.展开更多
The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and...The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and Ms 7 Lushan earthquakes. This study determines characteristics of the structural geology of the Longmenshan fault to evaluate how it influenced the two aforementioned earthquakes. This research was done within a Geo- information Technologies (GiT) environment based on multi-source remote sensing and crustal movement data extracted from the Global Positioning System (GPS). The spatial distribution of the southern segment of the Longmenshan fault zone was comprehensively analyzed to study both earthquakes. The study revealed that the Wenehuan and Lushan earthquakes occurred on two relatively independent faults. In addition, there was a nearly constant-velocity crustal movement zone between the two epicenters that probably had a compressive stress with slow motion. Furthermore, the central fault and a mountain back fault gradually merged from north to south. The Lushan earthquake of the Wenchuan earthquake. was not an affershock The research showed that fault zones within 30-50 km of State Highway 318 are intensive and complex. In addition, crustal movement velocity decreased rapidly, with a strong multi-directional shear zone. Thus, activity in that zone was likely stronger than in the northern part over the medium to long term.展开更多
During the process of preparation and occurrence of a large earthquake, the stress-strain state along the fault zone has close relation with the weak seismicity around the fault zone. The seismic energy release near t...During the process of preparation and occurrence of a large earthquake, the stress-strain state along the fault zone has close relation with the weak seismicity around the fault zone. The seismic energy release near the fault zone before an earthquake can better reflect the dynamic process of earthquake preparation. Thus, in this paper, the method of natural orthogonal function expansion has been adopted to discuss the time variation about the energy field of the seismic activity along the Longmenshan fault zone before the Wenchuan MsS. 0 earthquake, 2008. The results show that evident short-term rise changes appeared in the time factors of the typical field corresponding to several key eigenvalues of the energy field along the Longmenshan fault zone before the Wenchuan earthquake, probably being the short-term anomaly message for this earthquake. Through contrastive analysis of earthquake examples such as the 1976 Tangshan earthquake, the authors think that the study of time variation of energy field of seismicity along active fault zone will be helpful for conducting intentional and intensive earthquake monitoring and forecast in active fault regions with high seismic risk based on medium- and long-term earthquake trend judgment.展开更多
In order to obtain deformation parameters in the south segment of Longmenshan fault zone,Euler datum transformation and the least square collocation for data interpolation and smoothing are used to process GPS displac...In order to obtain deformation parameters in the south segment of Longmenshan fault zone,Euler datum transformation and the least square collocation for data interpolation and smoothing are used to process GPS displacement time series data in the south segment of Longmenshan fault zone,and the rigid and elastic-plastic block motion model is used to calculate the strain parameters in each subarea. Conjoint analysis of displacement,velocity of each station and strain parameters of each subarea reveals that the influence of the Wenchuan earthquake on the south segment of Longmenshan fault zone increases from southeast to northwest,causing a highest deformation rate 6 times the background value and heightening the influence of the hidden faults on the difference of the earth surface along its two sides,which leads to the seismic risk of the southern segment increasing from north to south. The comparison of seismic risk among subareas based on the tectonic and seismicity background indicates that the most dangerous area is on the southeast of Longmenshan faults,and the background strain accumulation and the promoting effect of the Wenchuan earthquake advanced the occurrence of Lushan earthquake and the sinistral strike-slip on the rupture plane. The Wenchuan earthquake also caused a slight two-year long continuous strain release in the south segment of Xianshuihe fault,but the influence is far less than the effect of the compressive strain caused by the Sichuan-Yunnan block.展开更多
This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2...This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake.Vertical offset and horizontal displacement at the trench site were 2.8 m(NW side up)and 4.8 m(right-lateral),respectively.The fault zone formed in Triassic sandstone,siltstone,and shale about 500 m away from the Yingxiu-Beichuan fault,a major fault in the Longmenshan fault system.A trench survey across the coseismic fault,and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about0.5 and 250-300 m in widths,respectively,and that the fault strikes N62°E and dips 68° to NW.Quaternary conglomerates were recovered beneath the fault in the drilling,so that the fault moved at least 55 m along the coseismic slip zone,experiencing about 18 events of similar sizes.The fault core is composed of grayish gouge(GG) and blackish gouge(BG) with very complex slip-zone structures.BG contains low-crystalline graphite of about 30 %.High-velocity friction experiments were conducted at normal stresses of 0.6-2.1 MPa and slip rates of 0.1-2.1 m/s.Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient lpto steadystate friction coefficient lssover a slip-weakening distance Dc.Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces,respectively.Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.展开更多
This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of ...This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of comprehensive project of Institute of Geology, China Earthquake Administration, trying to understand deformation processes in Longmenshan fault zones and eventually to reproduce Wenchuan earthquake by modeling based on measured mechanical and transport properties. Outcrop studies could be integrated with those performed on samples recovered from fault zone drilling, during the Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, to understand along-fault and depth variation of fault zone properties. The hanging wall side of the fault zone consists of weakly-foliated, clayey fault gouge of about 1 m in width and of several fault breccia zones of 30-40 m in total width. We could not find any pseudotachylite at this outcrop. Displacement during the Wenchuan earthquake is highly localized within the fault gouge layer along narrower slipping-zones of about 10 to 20 mm in width. This is an important constraint for analyzing thermal pressurization, an important dynamic weakening mechanism of faults. Overlapping patterns of striations on slickenside surface suggest that seismic slip at a given time occurred in even narrower zone of a few to several millimeters, so that localization of deformation must have occurred within a slipping zone during coseismic fault motion. Fault breccia zones are bounded by thin black gouge layers containing amorphous carbon. Fault gouge contains illite and chlorite minerals, but not smectite. Clayey fault gouge next to coseismic slipping zone also contains amorphous carbon and small amounts of graphite. The structural observations and mineralogical data obtained from outcrop exposures of the fault zone of the Wenchuan earthquake can be compared with those obtained from the WFSD-1 and WFSD-2 boreholes, which have been drilled very close to the Hongkou outcrop. The presence of carbon and graphite, observed next to the slipping-zone, may affect the mechanical properties of the fault and also provide useful information about coseismic chemical changes.展开更多
A P and S wave velocity model is obtained for the crust in the region along the Longmenshan fault zone, Sichuan Province, China, by using data from a refraction profiling survey carried out in this region and those fr...A P and S wave velocity model is obtained for the crust in the region along the Longmenshan fault zone, Sichuan Province, China, by using data from a refraction profiling survey carried out in this region and those from local earthquakes. 202 local earthquakes along the fault zone are based on this velocity model, location errors being estimated to be about 1.5 km. The present relocations fairly improved the accuracy of hypocenter locations for earthquakes in this area, which is recognized from small scatter of data in the arrival time distance diagram compared with that for the original locations in the Earthquake Catalogue of Sichuan Seismic Network. The obtained hypocenter distribution shows that shallow earthquakes, confined to the upper crust in the depth range from 3 km to 22 km, are actively occurring along the main fault of the Longmenshan fault zone. The velocity model and the location method are presently used quite effective for precisely locating local earthquakes such as those in Sichuan Province. Installation of these with the real time processing system developed by Tohoku University in the Sichuan Telemetered Seismic Network would help to improve the location accuracy of events beneath the network.展开更多
The Longmenshan fault zone(LMSF),characterized by complex structures and strong seismicity,is located at the junction between the eastern margin of the Tibetan Plateau and the north-western Sichuan basin.Since the Wen...The Longmenshan fault zone(LMSF),characterized by complex structures and strong seismicity,is located at the junction between the eastern margin of the Tibetan Plateau and the north-western Sichuan basin.Since the Wenchuan earthquake on May 12,2008,abundant studies of the formation mechanism of earthquakes along the LMSF were performed.In this study,a short-period dense seismic array deployed across the LMSF was applied by ambient noise tomography.Fifty-two 3-D seismic instruments were used for data acquisition for 26 days.We calculated the empirical Green's functions(EGFs)between different station-pairs and extracted 776 Rayleigh-wave dispersion curves between 2 and 7 s.And then,we used the direct-inversion method to obtain the fine shallow crustal S-wave velocity structure within 6 km depth in the middle section of the Longmenshan fault zone and nearby areas.Our results show that the sedimentary layer(>5 km)exists in the northwest margin of Sichuan Basin with a low S-wave velocity(~1.5-2.5 km/s)which is much thicker than that beneath the Longmenshan fault zone and the Songpan-Garze block.The high-velocity structures with clear boundaries below the middle of Longmenshan fault zone(~2-4 km)and the Songpan-Garze block(~4.5-6 km)probably reveal the NW-SE distribution patterns of both the Pengguan complex and the high-density belt hidden in the northwest of the Pengguan complex.And the obviously high-velocity anomalies observed at the depth of^1-2 km in the southeastern margin of the Songpan-Garze block can be considered as the Laojungou granites.Our results provide a high-resolution shallow velocity structure for detailed studies of the Longmenshan fault zone.展开更多
Following the Lushan MS7.0 earthquake on 20 April 2013,a topic of much concern is whether events of MS7 or greater could occur again on the southern segment of the Longmenshan fault zone.In providing evidence to answe...Following the Lushan MS7.0 earthquake on 20 April 2013,a topic of much concern is whether events of MS7 or greater could occur again on the southern segment of the Longmenshan fault zone.In providing evidence to answer this question,this work analyzes the tectonic relationship between the Lushan event and the 2008 Wenchuan earthquake and the rupture history of the southern segment of the Longmenshan fault zone,through field investigations of active tectonics and paleoearthquake research,and our preliminary conclusions are as follows.The activity of the southern segment of the Longmenshan fault zone is much different to that of its central section,and the late Quaternary activity has propagated forward to the basin in the east.The seismogenic structure of the 2008 Wenchuan earthquake is the central-fore-range fault system,whereas that of the 2013 Lushan event is attributed to the fore-range-range-front fault system,rather than the central fault.The southern segment of the Longmenshan fault zone becomes wider towards the south with an increasing number of secondary faults,of which the individual faults exhibit much weaker surface activity.Therefore,this section is not as capable of generating a major earthquake as is the central segment.It is most likely that the 2013 earthquake fills the seismic gap around Lushan on the southern segment of the Longmenshan fault zone.展开更多
Trapped waves in different sections of Longmenshan fault belt were observed, and the results show the difference between the northern and southern portions of this fault belt. Guanzhuang and Leigu surveying lines are ...Trapped waves in different sections of Longmenshan fault belt were observed, and the results show the difference between the northern and southern portions of this fault belt. Guanzhuang and Leigu surveying lines are located at the northern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 160 - 180 m. The center position of rupture zone underground corresponds to the surface breaking trace, and is equally distributed at the edges of the two fault walls. However, Hongkou surveying line is located at the southern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 180 -200 m. The rupture zone underground is mainly distributed below fault scarp. The Wenchuan MsS. 0 earthquake and Lushan Ms7.0 earthquake both occurred at the Longmenshan fault belt. The results will provide information for the structure background of the two violent earthquakes.展开更多
The Longmenshan-Longriba region is located on the eastern edge of the Tibetan Plateau, and is an ideal place to study the eastward extrusion and uplift mechanism of the plateau. Previous studies on this area mainly fo...The Longmenshan-Longriba region is located on the eastern edge of the Tibetan Plateau, and is an ideal place to study the eastward extrusion and uplift mechanism of the plateau. Previous studies on this area mainly focused on tectonic activity and seismic hazard, with few studies giving its overall deformation characteristics and dynamic mechanism. This paper uses the latest dense GPS data, combined with precise Leveling data to analyze the kinematic characteristics and deformation mode of the Longmenshan fault zone (LMSF) and the Longriba fault zone (LRBF). The results show that both the Longmenshan fault zone and the Longriba fault zone have certain right-lateral strike-slip and thrusting, indicating that they play an important role in adjusting strain distribution and absorbing tectonic deformation;The strain-rate field on the Longriba fault zone is broadly distributed, suggesting that the deformation field is at least partially coupled;while the strain-rate field on the Longmenshan fault zone presents a non-uniform distribution, indicating different dynamic sources acting on segments. The high strain rate areas revealed in this study points us to the high-risk area for future earthquakes. The present-day vertical motion velocity field in the region obtained from Leveling and GPS data shows a mismatch between the regional deformation field and active tectonics, which can be explained by the incomplete coupling of deformation between the lower and upper crust.展开更多
Trapped waves in the Qingchuan fault zone were observed at Muyu near the northeastern end of the fractured zone of the Wenchuan Ms8. 0 earthquake. The results indicate a fault-zone width of about 200 m and a great dif...Trapped waves in the Qingchuan fault zone were observed at Muyu near the northeastern end of the fractured zone of the Wenchuan Ms8. 0 earthquake. The results indicate a fault-zone width of about 200 m and a great difference in physical property of the crust on different sides of the fault. The inferred location of crustal changes is consistent with land-form boundary on the surface展开更多
Pingtong Town is located on the fractured zone of the Wenchuan 8.0 earthquake, and is seriously damaged by the earthquake. Our observation line is centered at an earthquake exploration trench across the fractured zone...Pingtong Town is located on the fractured zone of the Wenchuan 8.0 earthquake, and is seriously damaged by the earthquake. Our observation line is centered at an earthquake exploration trench across the fractured zone in the NW-SE direction, and is about 400 m long. The results reveal trapped waves in the rup- tured fault zone of the earthquake, and indicate a great difference in physical property between the media inside and outside the fault zone. The predominant frequency of the fault-zone trapped waves is about 3 -4 Hz. The wave amplitudes are larger near the exploration trench. The width of the fault zone in the crust at this location is estimated to be 200 m. In some records, the waveforms and the arrival times of S waves are quite different between the two sides of the trench. The place of change coincides with the boundary of uplift at the surface.展开更多
This paper presents the 3D density structure of crust in the Longmenshan range and adjacent areas, with constraints from seismic and density data. The density structure of crust shows that the immense boundary plane o...This paper presents the 3D density structure of crust in the Longmenshan range and adjacent areas, with constraints from seismic and density data. The density structure of crust shows that the immense boundary plane of density distribution in relation to the Longmeshan fault belt is extended downward to -80 km deep. This density boundary plane dips towards the northwest and crosses the Moho. With the proximity to the Longmenshan fault belt, it has a larger magnitude of undulation in the upper and middle crust levels. Density changes abruptly across Longmeshan fault belt. Seismic data show that most of the earthquakes in the Longmenshan area after the 2008 Ms8.0 Wenchuan Earthquake occurred within the upper to middle crust. These earthquakes are clearly distributed in the uplifted region of the basement. A few of them occurs in the transitional zone between the uplifted and subsided areas. But most of the earthquakes distributes in transitional zone from subsided to uplifted areas in the upper and middle crust where relatively large density changes occurr The 3D density structure of crust in the Longmenshan and adjacent areas can thus help us to understand the pattern of overthrusting from the standpoint of deep crust and where the earthquakes occurred.展开更多
基金supported by the Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-year Plan Period (Grant No. 2012BAK15B01-03)the National Science & Technology Major Project (Grant No. 2011ZX06002-010-15)
文摘Following the 2008 Wenchuan M8 earthquake,the seismic risk of the northeastern section of the Longmenshan fault zone and the adjacent Hanzhong basin has become an issue that receives much concern.It is facing,however,the problem of a lack of sufficient data because of little previous work in these regions.The northeastern section of the Longmenshan fault zone includes three major faults:the Qingchuan fault,Chaba-Lin'ansi fault,and Liangshan south margin fault,with the Hanzhong basin at the northern end.This paper presents investigations of the geometry,motion nature,and activity ages of these three faults,and reveals that they are strike slip with normal faulting,with latest activity in the Late Pleistocene.It implies that this section of the Longmenshan fault zone has been in an extensional setting,probably associated with the influence of the Hanzhong basin.Through analysis of the tectonic relationship between the Longmenshan fault zone and the Hanzhong basin,this work verifies that the Qingchuan fault played an important role in the evolution of the Hanzhong basin,and further studies the evolution model of this basin.Finally,with consideration of the tectonic setting of the Longmenshan fault zone and the Hanzhong basin as well as seismicity of surrounding areas,this work suggests that this region has no tectonic conditions for great earthquakes and only potential strong events in the future.
基金supported by China earthquake scientific array exploration-northern section of North South seismic belt (20130811)National Natural Science Foundation of China (41474057)Science for earthquake Resllience of China Earthquake Administration (XH15040Y)
文摘The 2,026 earthquake events registered by the Sichuan regional digital seismic network and mobile seismic array after the April 20th, 2013 Lushan earthquake and 28,188 pieces of data were selected to determine direct P waves arrival times. We applied the tomographic method to inverse the characteristics of the velocity structure for the three-dimensional (3D) P wave in the mid-upper crust of the seismic source region of the Lushan earthquake. The imaging results were combined with the apparent magnetization inversion and magnetotelluric (MT) sounding retest data to comprehensively study the causes of the deep seismogenic environment in the southern section of the Longmenshan fault zone and explore the formation of the Lushan earthquake. Research has shown that there are obvious differences in velocity structure and magnetic distribution between the southern and northern sections of the Longmenshan fault zone. The epicenter of the Lushan earthquake is located near the boundary of the high and low-velocity anomalies and favorable for a high-velocity section. Moreover, at the epicenter of the Lushan earthquake located on the magnetic dome boundary of Ya'an, the development of high velocity and magnetic solid medium favors the accumulation and release of strain energy. Low- velocity anomalies are distributed underneath the are of seismogenic origin, The inversion results of the MT retest data after the April 20th Lushan earthquake also indicate that there a high-conductor anomaly occurs under the area of seismogenic origin of the Lushan earthquake, Therefore, we speculated that the presence of a high-conductivity anomaly and low-velocity anomaly underneath the seismogenic body of the Lushan earthquake could be related to the existence of fluids. The role of fluids caused the weakening of the seismogenic layer inside the mid-upper crust and resulted in a seismogenic fault that was prone to rupture and pIayed a triggering role in the Lushan earthquake.
基金supported by National Key Basic Research 973bNational Scientific technology support plan (2006BAC01B02-01-01).
文摘The seismicity of Longrnenshan fault zone and its vicinities before the 12 May 2008 Wenchuan Ms8.0 earthquake is studied. Based on the digital seismic waveform data observed from regional seismic networks and mobile stations, the focal mechanism solutions are determined. Our analysis results show that the seismicities of Longmenshan fault zone before the 12 May 2008 Wenchuan earthquake were in stable state. No obvious phenomena of seismic activity intensifying appeared. According to focal mechanism solutions of some small earthquakes before the 12 May 2008 Wenchuan earthquake, the direction of principal compressive stress P-axis is WNW-ESE. The two hypocenter fault planes are NE-striking and NW-striking. The plane of NE direction is among N50°-70°E, the dip angles of fault planes are 60°-70° and it is very steep. The faultings of most earthquakes are dominantly characterized by dip-slip reverse and small part of faultings present strike-slip. The azimuths of principal compressive stress, the strikes of source fault planes and the dislocation types calculated from some small earthquakes before the 12 May 2008 Wenchuan earthquake are in accordance with that of the main shock. The average stress field of micro-rupture along the Longmenshan fault zone before the great earthquake is also consistent with that calculated from main shock. Zipingpu dam is located in the east side 20 km from the initial rupture area of the 12 May 2008 Wenchuan earthquake. The activity increment of small earthquakes in the Zipingpu dam is in the period of water discharging. The source parameter results of the small earthquakes which occurred near the initial rupture area of the 12 May 2008 Wenchuan earthquake indicate that the focal depths are 5 to 14 km and the source parameters are identical with that of earthquake.
基金funded by the National Natural Science Foundation of China(Grant No.41001253)Chinese Postdoctoral Science Foundation(Grant No.2012M521717)National Science and Technology Major Project(Grant No.03-Y30B069001-13/15)
文摘The Longmenshan fault is a thrust fault which runs along the base of the Longmen Mountains in Siehuan province, southwestern China. The southern segment of the fault had two distinct responses to the Ms 8 Wenehuan and Ms 7 Lushan earthquakes. This study determines characteristics of the structural geology of the Longmenshan fault to evaluate how it influenced the two aforementioned earthquakes. This research was done within a Geo- information Technologies (GiT) environment based on multi-source remote sensing and crustal movement data extracted from the Global Positioning System (GPS). The spatial distribution of the southern segment of the Longmenshan fault zone was comprehensively analyzed to study both earthquakes. The study revealed that the Wenehuan and Lushan earthquakes occurred on two relatively independent faults. In addition, there was a nearly constant-velocity crustal movement zone between the two epicenters that probably had a compressive stress with slow motion. Furthermore, the central fault and a mountain back fault gradually merged from north to south. The Lushan earthquake of the Wenchuan earthquake. was not an affershock The research showed that fault zones within 30-50 km of State Highway 318 are intensive and complex. In addition, crustal movement velocity decreased rapidly, with a strong multi-directional shear zone. Thus, activity in that zone was likely stronger than in the northern part over the medium to long term.
文摘During the process of preparation and occurrence of a large earthquake, the stress-strain state along the fault zone has close relation with the weak seismicity around the fault zone. The seismic energy release near the fault zone before an earthquake can better reflect the dynamic process of earthquake preparation. Thus, in this paper, the method of natural orthogonal function expansion has been adopted to discuss the time variation about the energy field of the seismic activity along the Longmenshan fault zone before the Wenchuan MsS. 0 earthquake, 2008. The results show that evident short-term rise changes appeared in the time factors of the typical field corresponding to several key eigenvalues of the energy field along the Longmenshan fault zone before the Wenchuan earthquake, probably being the short-term anomaly message for this earthquake. Through contrastive analysis of earthquake examples such as the 1976 Tangshan earthquake, the authors think that the study of time variation of energy field of seismicity along active fault zone will be helpful for conducting intentional and intensive earthquake monitoring and forecast in active fault regions with high seismic risk based on medium- and long-term earthquake trend judgment.
基金sponsored by the Director Fund of Institute of Seismology,China Earthquake Administration(IS201526240)Data Sharing Special Project of the Ministry of Science and Technology,the People's Republic of China(IS20135065)
文摘In order to obtain deformation parameters in the south segment of Longmenshan fault zone,Euler datum transformation and the least square collocation for data interpolation and smoothing are used to process GPS displacement time series data in the south segment of Longmenshan fault zone,and the rigid and elastic-plastic block motion model is used to calculate the strain parameters in each subarea. Conjoint analysis of displacement,velocity of each station and strain parameters of each subarea reveals that the influence of the Wenchuan earthquake on the south segment of Longmenshan fault zone increases from southeast to northwest,causing a highest deformation rate 6 times the background value and heightening the influence of the hidden faults on the difference of the earth surface along its two sides,which leads to the seismic risk of the southern segment increasing from north to south. The comparison of seismic risk among subareas based on the tectonic and seismicity background indicates that the most dangerous area is on the southeast of Longmenshan faults,and the background strain accumulation and the promoting effect of the Wenchuan earthquake advanced the occurrence of Lushan earthquake and the sinistral strike-slip on the rupture plane. The Wenchuan earthquake also caused a slight two-year long continuous strain release in the south segment of Xianshuihe fault,but the influence is far less than the effect of the compressive strain caused by the Sichuan-Yunnan block.
基金supported by State Key Laboratory of Earthquake Dynamics (project No.LED2010A03)Wenchuan Earthquake Fault Scientific Drilling Project (WFSD-09)
文摘This paper reports internal structures of a wide fault zone at Shenxigou,Dujiangyan,Sichuan province,China,and high-velocity frictional properties of the fault gouge collected near the coseismic slip zone during the 2008 Wenchuan earthquake.Vertical offset and horizontal displacement at the trench site were 2.8 m(NW side up)and 4.8 m(right-lateral),respectively.The fault zone formed in Triassic sandstone,siltstone,and shale about 500 m away from the Yingxiu-Beichuan fault,a major fault in the Longmenshan fault system.A trench survey across the coseismic fault,and observations of outcrops and drill cores down to a depth of 57 m revealed that the fault zone consists of fault gouge and fault breccia of about0.5 and 250-300 m in widths,respectively,and that the fault strikes N62°E and dips 68° to NW.Quaternary conglomerates were recovered beneath the fault in the drilling,so that the fault moved at least 55 m along the coseismic slip zone,experiencing about 18 events of similar sizes.The fault core is composed of grayish gouge(GG) and blackish gouge(BG) with very complex slip-zone structures.BG contains low-crystalline graphite of about 30 %.High-velocity friction experiments were conducted at normal stresses of 0.6-2.1 MPa and slip rates of 0.1-2.1 m/s.Both GG and BG exhibit dramatic slip weakening at constant high slip rates that can be described as an exponential decay from peak friction coefficient lpto steadystate friction coefficient lssover a slip-weakening distance Dc.Deformation of GG and BG is characterized by overlapped slip-zone structures and development of sharp slickenside surfaces,respectively.Comparison of our data with those reported for other outcrops indicates that the high-velocity frictional properties of the Longmenshan fault zones are quite uniform and the high-velocity weakening must have promoted dynamic rupture propagation during the Wenchuan earthquake.
基金supported by State Key Laboratory of Earthquake Dynamics(project No. LED2008A03) Wenchuan Earthquake Fault Scientific Drilling Project(WFSD),by a Grant-in-Aid for JSPS Fellows(No.201007605) to the first author (T.Togo),and by a 2009 Grant-in-Aid of Fukada Geological Institute
文摘This paper reports the internal structures of the Beichuan fault zone of Longmenshan fault system that caused the 2008 Wenchuan earthquake, at an outcrop in Hongkou, Sichuan province, China. Present work is a part of comprehensive project of Institute of Geology, China Earthquake Administration, trying to understand deformation processes in Longmenshan fault zones and eventually to reproduce Wenchuan earthquake by modeling based on measured mechanical and transport properties. Outcrop studies could be integrated with those performed on samples recovered from fault zone drilling, during the Wenchuan Earthquake Fault Scientific Drilling (WFSD) Project, to understand along-fault and depth variation of fault zone properties. The hanging wall side of the fault zone consists of weakly-foliated, clayey fault gouge of about 1 m in width and of several fault breccia zones of 30-40 m in total width. We could not find any pseudotachylite at this outcrop. Displacement during the Wenchuan earthquake is highly localized within the fault gouge layer along narrower slipping-zones of about 10 to 20 mm in width. This is an important constraint for analyzing thermal pressurization, an important dynamic weakening mechanism of faults. Overlapping patterns of striations on slickenside surface suggest that seismic slip at a given time occurred in even narrower zone of a few to several millimeters, so that localization of deformation must have occurred within a slipping zone during coseismic fault motion. Fault breccia zones are bounded by thin black gouge layers containing amorphous carbon. Fault gouge contains illite and chlorite minerals, but not smectite. Clayey fault gouge next to coseismic slipping zone also contains amorphous carbon and small amounts of graphite. The structural observations and mineralogical data obtained from outcrop exposures of the fault zone of the Wenchuan earthquake can be compared with those obtained from the WFSD-1 and WFSD-2 boreholes, which have been drilled very close to the Hongkou outcrop. The presence of carbon and graphite, observed next to the slipping-zone, may affect the mechanical properties of the fault and also provide useful information about coseismic chemical changes.
文摘A P and S wave velocity model is obtained for the crust in the region along the Longmenshan fault zone, Sichuan Province, China, by using data from a refraction profiling survey carried out in this region and those from local earthquakes. 202 local earthquakes along the fault zone are based on this velocity model, location errors being estimated to be about 1.5 km. The present relocations fairly improved the accuracy of hypocenter locations for earthquakes in this area, which is recognized from small scatter of data in the arrival time distance diagram compared with that for the original locations in the Earthquake Catalogue of Sichuan Seismic Network. The obtained hypocenter distribution shows that shallow earthquakes, confined to the upper crust in the depth range from 3 km to 22 km, are actively occurring along the main fault of the Longmenshan fault zone. The velocity model and the location method are presently used quite effective for precisely locating local earthquakes such as those in Sichuan Province. Installation of these with the real time processing system developed by Tohoku University in the Sichuan Telemetered Seismic Network would help to improve the location accuracy of events beneath the network.
基金the National Key R&D Program of China(No.2016YFC0600301)the National Natural Science Foundation of China.(No.41974053).
文摘The Longmenshan fault zone(LMSF),characterized by complex structures and strong seismicity,is located at the junction between the eastern margin of the Tibetan Plateau and the north-western Sichuan basin.Since the Wenchuan earthquake on May 12,2008,abundant studies of the formation mechanism of earthquakes along the LMSF were performed.In this study,a short-period dense seismic array deployed across the LMSF was applied by ambient noise tomography.Fifty-two 3-D seismic instruments were used for data acquisition for 26 days.We calculated the empirical Green's functions(EGFs)between different station-pairs and extracted 776 Rayleigh-wave dispersion curves between 2 and 7 s.And then,we used the direct-inversion method to obtain the fine shallow crustal S-wave velocity structure within 6 km depth in the middle section of the Longmenshan fault zone and nearby areas.Our results show that the sedimentary layer(>5 km)exists in the northwest margin of Sichuan Basin with a low S-wave velocity(~1.5-2.5 km/s)which is much thicker than that beneath the Longmenshan fault zone and the Songpan-Garze block.The high-velocity structures with clear boundaries below the middle of Longmenshan fault zone(~2-4 km)and the Songpan-Garze block(~4.5-6 km)probably reveal the NW-SE distribution patterns of both the Pengguan complex and the high-density belt hidden in the northwest of the Pengguan complex.And the obviously high-velocity anomalies observed at the depth of^1-2 km in the southeastern margin of the Songpan-Garze block can be considered as the Laojungou granites.Our results provide a high-resolution shallow velocity structure for detailed studies of the Longmenshan fault zone.
基金supported by the Special Project of Basic Scientific Work ofthe Institute of Geology,China Earthquake Administration(IGCEA1004)the Project"Investigation and Mapping of Major Active Faults in Ya’an City"of Ya’an Bureau of Earthquake Prevention and Disaster Reduction
文摘Following the Lushan MS7.0 earthquake on 20 April 2013,a topic of much concern is whether events of MS7 or greater could occur again on the southern segment of the Longmenshan fault zone.In providing evidence to answer this question,this work analyzes the tectonic relationship between the Lushan event and the 2008 Wenchuan earthquake and the rupture history of the southern segment of the Longmenshan fault zone,through field investigations of active tectonics and paleoearthquake research,and our preliminary conclusions are as follows.The activity of the southern segment of the Longmenshan fault zone is much different to that of its central section,and the late Quaternary activity has propagated forward to the basin in the east.The seismogenic structure of the 2008 Wenchuan earthquake is the central-fore-range fault system,whereas that of the 2013 Lushan event is attributed to the fore-range-range-front fault system,rather than the central fault.The southern segment of the Longmenshan fault zone becomes wider towards the south with an increasing number of secondary faults,of which the individual faults exhibit much weaker surface activity.Therefore,this section is not as capable of generating a major earthquake as is the central segment.It is most likely that the 2013 earthquake fills the seismic gap around Lushan on the southern segment of the Longmenshan fault zone.
基金supported by the National Natural Science Foundation of China(4107406940974053+1 种基金40774043)RCEG201301
文摘Trapped waves in different sections of Longmenshan fault belt were observed, and the results show the difference between the northern and southern portions of this fault belt. Guanzhuang and Leigu surveying lines are located at the northern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 160 - 180 m. The center position of rupture zone underground corresponds to the surface breaking trace, and is equally distributed at the edges of the two fault walls. However, Hongkou surveying line is located at the southern portion of the fault belt, and the result indicates that the width of the rupture zone underground in this area is about 180 -200 m. The rupture zone underground is mainly distributed below fault scarp. The Wenchuan MsS. 0 earthquake and Lushan Ms7.0 earthquake both occurred at the Longmenshan fault belt. The results will provide information for the structure background of the two violent earthquakes.
文摘The Longmenshan-Longriba region is located on the eastern edge of the Tibetan Plateau, and is an ideal place to study the eastward extrusion and uplift mechanism of the plateau. Previous studies on this area mainly focused on tectonic activity and seismic hazard, with few studies giving its overall deformation characteristics and dynamic mechanism. This paper uses the latest dense GPS data, combined with precise Leveling data to analyze the kinematic characteristics and deformation mode of the Longmenshan fault zone (LMSF) and the Longriba fault zone (LRBF). The results show that both the Longmenshan fault zone and the Longriba fault zone have certain right-lateral strike-slip and thrusting, indicating that they play an important role in adjusting strain distribution and absorbing tectonic deformation;The strain-rate field on the Longriba fault zone is broadly distributed, suggesting that the deformation field is at least partially coupled;while the strain-rate field on the Longmenshan fault zone presents a non-uniform distribution, indicating different dynamic sources acting on segments. The high strain rate areas revealed in this study points us to the high-risk area for future earthquakes. The present-day vertical motion velocity field in the region obtained from Leveling and GPS data shows a mismatch between the regional deformation field and active tectonics, which can be explained by the incomplete coupling of deformation between the lower and upper crust.
基金supported by the National Natural Science Foundation ofChina(41074069,40974053,90814001)RRCEG201103
文摘Trapped waves in the Qingchuan fault zone were observed at Muyu near the northeastern end of the fractured zone of the Wenchuan Ms8. 0 earthquake. The results indicate a fault-zone width of about 200 m and a great difference in physical property of the crust on different sides of the fault. The inferred location of crustal changes is consistent with land-form boundary on the surface
基金supported by the Natural Science Fundation of China(40774043,40674043,90814001)
文摘Pingtong Town is located on the fractured zone of the Wenchuan 8.0 earthquake, and is seriously damaged by the earthquake. Our observation line is centered at an earthquake exploration trench across the fractured zone in the NW-SE direction, and is about 400 m long. The results reveal trapped waves in the rup- tured fault zone of the earthquake, and indicate a great difference in physical property between the media inside and outside the fault zone. The predominant frequency of the fault-zone trapped waves is about 3 -4 Hz. The wave amplitudes are larger near the exploration trench. The width of the fault zone in the crust at this location is estimated to be 200 m. In some records, the waveforms and the arrival times of S waves are quite different between the two sides of the trench. The place of change coincides with the boundary of uplift at the surface.
基金supported by the Natural Science Foundation of China(No.40830316,40774026,40704016,40774051)the Ministry of Finance People's Republic of China(No.140102)+3 种基金China Geological Survey(No.1212010611809,1212010811033)scientific research project for public welfare from the Ministry of Land and Resources of China(No.200811021)the international co-operation project from the Ministry of Science and Technology of China(No.2006DFA21340)the Basic outlay of scientific research work from Ministry of Science and Technology of China(No.J0803)
文摘This paper presents the 3D density structure of crust in the Longmenshan range and adjacent areas, with constraints from seismic and density data. The density structure of crust shows that the immense boundary plane of density distribution in relation to the Longmeshan fault belt is extended downward to -80 km deep. This density boundary plane dips towards the northwest and crosses the Moho. With the proximity to the Longmenshan fault belt, it has a larger magnitude of undulation in the upper and middle crust levels. Density changes abruptly across Longmeshan fault belt. Seismic data show that most of the earthquakes in the Longmenshan area after the 2008 Ms8.0 Wenchuan Earthquake occurred within the upper to middle crust. These earthquakes are clearly distributed in the uplifted region of the basement. A few of them occurs in the transitional zone between the uplifted and subsided areas. But most of the earthquakes distributes in transitional zone from subsided to uplifted areas in the upper and middle crust where relatively large density changes occurr The 3D density structure of crust in the Longmenshan and adjacent areas can thus help us to understand the pattern of overthrusting from the standpoint of deep crust and where the earthquakes occurred.