A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomne...A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.展开更多
As the 2nd generation digital terrestrial television broadcasting(DTTB)standard,digital terrestrial/television multimedia broadcasting-advanced(DTMB-A)can provide higher spectrum efficiency and transmission reliabilit...As the 2nd generation digital terrestrial television broadcasting(DTTB)standard,digital terrestrial/television multimedia broadcasting-advanced(DTMB-A)can provide higher spectrum efficiency and transmission reliability by adopting flexible frame structure and advanced forward error correction coding compared with the 1 st generation DTTB systems.In order to increase the flexibility and robustness of the DTTB network,the frequency reuse scheme of factor one(reuse-1)is proposed,where the same RF channel is used by different stations covering the adjacent service areas.However,it demands a very low carrier-tonoise ratio(C/N)threshold below 0 dB at the DTTB physical layer.In this paper,a robust broadcasting technique is proposed based on DTMB-A with newly designed low-rate low density parity check(LDPC)codes.By adopting quasi-cyclic(QC)Raptor-like structure and progressive lifting method,the high performance low-rate LDPC codes are designed supporting multiple code lengths.Both density-evolution analyses and laboratory measurements demonstrate that DTMB-A with low-rate coding can complete the demodulation reliably with the C/N threshold below0 d B,which is one important necessary condition to support frequency reuse-1 scheme.展开更多
Area-efficient design methodology is proposed for the analog decoding implementations of the rate-l/2 accumulate repeat-4 jagged-accumulate (AR4JA) low density parity check (LDPC) code. The proposed approach is de...Area-efficient design methodology is proposed for the analog decoding implementations of the rate-l/2 accumulate repeat-4 jagged-accumulate (AR4JA) low density parity check (LDPC) code. The proposed approach is designed using optimized decoding architecture and regularized routing network, in such a way that the overall wiring overhead is minimized and the silicon area utilization is significantly improved. The prototyping chip used to verily the approach is tully integrated in a four-metal double-poly 0.35 lam complementary metal oxide semiconductor (CMOS) technology, and includes an input-output interface that maximizes the decoder throughput. The decoding core area is 2.02 mm2 with a post-layout area utilization of 80%. The decoder was successfully tested at the maximum data rate of 10 Mbit/s, with a core power consumption of 6.78 mW at 3.3 V, which corresponds to an energy per decoded bit of 0.677 nJ. The proposed analog LDPC decoder with low processing power and high-reliability is suitable lbr space- and power-constrained spacecraft system.展开更多
A modified Benes network is proposed to be used as an optimal shuffle network in worldwide interoperability for microwave access (WiMAX) low density parity check (LDPC) decoders, When the size of the input is not ...A modified Benes network is proposed to be used as an optimal shuffle network in worldwide interoperability for microwave access (WiMAX) low density parity check (LDPC) decoders, When the size of the input is not a power of two, the modified Benes network can achieve the most optimal performance. This modified Benes network is non-blocking and can perform any sorts of permutations, so it can support 19 modes specified in the WiMAX system. Furthermore, an efficient algorithm to generate the control signals for all the 2 × 2 switches in this network is derived, which can reduce the hardware complexity and overall latency of the modified Benes network. Synthesis results show that the proposed control signal generator can save 25.4% chip area and the overall network latency can be reduced by 36. 2%.展开更多
Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronizati...Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronization attacks of QIM digital watermarking,a low density parity check (LDPC) code-aided QIM watermarking algorithm is proposed,and the performance of QIM watermarking system can be improved by incorporating LDPC code with message passing estimation/detection framework.Using the theory of iterative estimation and decoding,the watermark signal is decoded by the proposed algorithm through iterative estimation of amplitude scaling parameters and decoding of watermark.The performance of the proposed algorithm is closer to the dirty paper Shannon limit than that of repetition code aided algorithm when the algorithm is attacked by the additive white Gaussian noise.For constant amplitude scaling attacks,the proposed algorithm can obtain the accurate estimation of amplitude scaling parameters.The simulation result shows that the algorithm can obtain similar performance compared to the algorithm without desynchronization.展开更多
The application of protograph low density parity check (LDPC) codes involves the encoding complexity problem. Since the generator matrices are dense, and if the positions of "1" s are irregularity, the encoder nee...The application of protograph low density parity check (LDPC) codes involves the encoding complexity problem. Since the generator matrices are dense, and if the positions of "1" s are irregularity, the encoder needs to store every "1" of the generator matrices by using huge chip area. In order to solve this problem, we need to design the protograph LDPC codes with circular generator matrices. A theorem concerning the circulating property of generator matrices of nonsingular protograph LDPC codes is proposed. The circulating property of generator matrix of nonsingular protograph LDPC codes can be obtained from the corresponding quasi-cyclic parity check matrix. This paper gives a scheme of constructing protograph LDPC codes with circulating generator matrices, and it reveals that the fast encoding algorithm of protograph LDPC codes has lower encoding complexity under the condition of the proposed theorem. Simulation results in ad- ditive white Gaussian noise (AWGN) channels show that the bit error rate (BER) performance of the designed codes based on the proposed theorem is much better than that of GB20600 LDPC codes and Tanner LDPC codes.展开更多
This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach s...This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach synthesizes two techniques: protograph LDPC codes and OFDM. One symbol of encoded information by protograph LDPC codes corresponds to one sub-carrier, namely the length of encoded information equals to the number of sub-carriers. The design of good protograph LDPC codes with short lengths is given, and the proposed proto- graph LDPC codes can be of fast encoding, which can reduce the encoding complexity and simplify encoder hardware implementa- tion. The proposed approach provides a higher coding gain in the Rayleigh fading channel. The simulation results in the Rayleigh fading channel show that the bit error rate (BER) performance of the proposed time-frequency codes is as good as random LDPC- OFDM codes and is better than Tanner LDPC-OFDM codes under the condition of different fading coefficients.展开更多
Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz(THz) wireless communications. An error control coding scheme based on low density parit...Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz(THz) wireless communications. An error control coding scheme based on low density parity check(LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate(BER) performance of an on-off keying(OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications.展开更多
The 16-ary quadrature amplitude modulation (16QAM) is a high spectral efficient scheme for high-speed transmission systems. To remove the phase ambiguity in the coherent detection system, differential-encoded 16QAM ...The 16-ary quadrature amplitude modulation (16QAM) is a high spectral efficient scheme for high-speed transmission systems. To remove the phase ambiguity in the coherent detection system, differential-encoded 16QAM (DE-16QAM) is usually used, however, it will cause performance degradation about 3 dB as compared to the conventional 16QAM. To overcome the performance loss, a serial concatenated system with outer low density parity check (LDPC) codes and inner DE-16QAM is proposed. At the receiver, joint iterative differential demodulation and decoding (ID) is carried out to approach the maximum likelihood performance. Moreover, a genetic evolution algorithm based on the extrinsic information transfer chart is proposed to optimize the degree distribution of the outer LDPC codes. Both theoretical analyses and simulation results indicate that this algorithm not only compensates the performance loss, but also obtains a significant performance gain, which is up to 1 dB as compared to the conventional non-DE-16QAM.展开更多
An enhanced scheme is proposed for high code rate low density parity check (LDPC) coded partial incremental redundancy (PIR) hybrid automatic repeat request (HARQ). It employs the unequal error protection (UEP...An enhanced scheme is proposed for high code rate low density parity check (LDPC) coded partial incremental redundancy (PIR) hybrid automatic repeat request (HARQ). It employs the unequal error protection (UEP) technique for incremental redundancy bits and uses the constellation rearrangement (CoRe) technique for information bits in retransmissions so as to reduce the reliability variances of all encoded bits after soft combining. Simulation results show that the proposed scheme applies to both regular LDPC and irregular LDPC cases and can efficiently improve frame error rate (FER) performance and throughput performance.展开更多
This letter gives a random construction for Low Density Parity Check (LDPC) codes, which uses an iterative algorithm to avoid short cycles in the Tanner graph. The construction method has great flexible choice in LDPC...This letter gives a random construction for Low Density Parity Check (LDPC) codes, which uses an iterative algorithm to avoid short cycles in the Tanner graph. The construction method has great flexible choice in LDPC code's parameters including codelength, code rate, the least girth of the graph, the weight of column and row in the parity check matrix. The method can be applied to the irregular LDPC codes and strict regular LDPC codes. Systemic codes have many applications in digital communication, so this letter proposes a construction of the generator matrix of systemic LDPC codes from the parity check matrix. Simulations show that the method performs well with iterative decoding.展开更多
The dual-containing (or self-orthogonal) formalism of Calderbank-Shor-Steane (CSS) codes provides a universal connection between a classical linear code and a Quantum Error-Correcting Code (QECC). We propose a novel c...The dual-containing (or self-orthogonal) formalism of Calderbank-Shor-Steane (CSS) codes provides a universal connection between a classical linear code and a Quantum Error-Correcting Code (QECC). We propose a novel class of quantum Low Density Parity Check (LDPC) codes constructed from cyclic classes of lines in Euclidean Geometry (EG). The corresponding constructed parity check matrix has quasi-cyclic structure that can be encoded flexibility, and satisfies the requirement of dual-containing quantum code. Taking the advantage of quasi-cyclic structure, we use a structured approach to construct Generalized Parity Check Matrix (GPCM). This new class of quantum codes has higher code rate, more sparse check matrix, and exactly one four-cycle in each pair of two rows. Ex-perimental results show that the proposed quantum codes, such as EG(2,q)II-QECC, EG(3,q)II-QECC, have better performance than that of other methods based on EG, over the depolarizing channel and decoded with iterative decoding based on the sum-product decoding algorithm.展开更多
In this paper, the channel estimation techniques for Orthogonal Frequency Division Multiplexing (OFDM) systems based on pilot arrangement are studied and we apply Low Density Parity Check (LDPC) codes to the syste...In this paper, the channel estimation techniques for Orthogonal Frequency Division Multiplexing (OFDM) systems based on pilot arrangement are studied and we apply Low Density Parity Check (LDPC) codes to the system of IEEE 802.16a with OFDM modulation. First investigated is the influence of channel cstimation schemes on LDPC-code based OFDM system in static and multipath fading channels. According to the different propagation environments in 802.16a system, a dynamic channel estimation scheme is proposed. A good irregular LDPC code is designed with code rate of 1/2 and code length of 1200. Simulation results show that the performance of LDPC coded OFDM system proposed in this paper is better than that of the convolution Turbo coded OFDM system proposed in IEEE standard 802.16a.展开更多
In order to improve the video transmission performance in Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system, a new scheme, which integrates Multiple Description Coding (MD...In order to improve the video transmission performance in Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system, a new scheme, which integrates Multiple Description Coding (MDC), Low Density Parity Check (LDPC) coding and hybrid space time coding, is proposed in this letter. In particular, a hybrid space time coding algorithm is combined with LDPC codes to perform Unequal Error Protection (UEP) of MDC encoded video streams. Comparing with the UEP transmission with only LDPC codes, the proposed scheme achieves more than ldB gain in terms of Signal to Noise Ratio (SNR) when the Peak Signal to Noise Ratio (PSNR) of reconstructed video is above 30dB.展开更多
This paper proposes the Low Density Parity Check (LDPC) coded Filtered MultiTone (FMT) systems with high-order modulation for the high data rate reliable transmission over frequency selective fading channel. For the p...This paper proposes the Low Density Parity Check (LDPC) coded Filtered MultiTone (FMT) systems with high-order modulation for the high data rate reliable transmission over frequency selective fading channel. For the purpose of accomplishing soft input soft output iterative decoding of LDPC codes, a new soft decision metric generation method is proposed,which obviates the need of the noise variance estimation, for M-PSK/M-QAM-type high-order modulation over frequency selective fading channel. Computer simulation indicates that, there is no performance loss with our new metric, but the complexity of implementation is reduced, and that the LDPC codes are effective to improve the Bit Error Rate (BER) of FMT in frequency selective fading channel.展开更多
Reliability-based hybrid automatic repeat request (HARQ) (RB-HARQ) is a recently developed form of incremental-redundancy ARQ. It achieves good performance whereas large retransmission request packets should be fe...Reliability-based hybrid automatic repeat request (HARQ) (RB-HARQ) is a recently developed form of incremental-redundancy ARQ. It achieves good performance whereas large retransmission request packets should be fed back. In this paper, in order to reduce the number of the fed back bits, we propose a HARQ scheme applied in time duplex division orthogonal frequency division multiplexing (TDD- OFI)M) system over the slow fading channel which is named channel-based HARQ (CB-HARQ). Because one bit which meets deep fading is always with small value of log likelihood ratio (LLR) during the process of decoding of LDPC code, the bits transmitted on the carrier with deep fading are retransmitted. At the receiver, the decoder will compute the locations of retransmission bits according to the channel fading values which are gotten by utilizing the feature of channel symmetry in TDD mode. So the indices of retransmission bits are avoided to be transmitted. Simulation results show that this method achieves better BER performance and requires much smaller request packets in feedback link.展开更多
As an effective error correction technology,the Low Density Parity Check Code(LDPC)has been researched and applied by many scholars.Meanwhile,LDPC codes have some prominent performances,which involves close to the Sha...As an effective error correction technology,the Low Density Parity Check Code(LDPC)has been researched and applied by many scholars.Meanwhile,LDPC codes have some prominent performances,which involves close to the Shannon limit,achieving a higher bit rate and a fast decoding.However,whether these excellent characteristics are suitable for the resource-constrained Wireless Sensor Network(WSN),it seems to be seldom concerned.In this article,we review the LDPC code’s structure brief.ly,and them classify and summarize the LDPC codes’construction and decoding algorithms,finally,analyze the applications of LDPC code for WSN.We believe that our contributions will be able to facilitate the application of LDPC code in WSN.展开更多
This paper describes an efficient implementation of the Sum-Product Algorithm (SPA) within a Low Density Parity Check (LDPC) code decoder, where a horizontal process correction term is used to improve the decoclin...This paper describes an efficient implementation of the Sum-Product Algorithm (SPA) within a Low Density Parity Check (LDPC) code decoder, where a horizontal process correction term is used to improve the decocling performance of the Min-Sum algorithms. The correction term is implemented as a look-up table. The algorithm uses the correction term redundancy by means of a coordinate transformation to reduce the hardware complexity. Simulations and hardware tests indicate that the decoding performance is very good with the appropriate look-up table展开更多
To apply a quasi-cyclic low density parity check(QC-LDPC)to different scenarios,a data-stream driven pipelined macro instruction set and a reconfigurable processor architecture are proposed for the typical QC-LDPC alg...To apply a quasi-cyclic low density parity check(QC-LDPC)to different scenarios,a data-stream driven pipelined macro instruction set and a reconfigurable processor architecture are proposed for the typical QC-LDPC algorithm.The data-level parallelism is improved by instructions to dynamically configure the multi-core computing units.Simultaneously,an intelligent adjustment strategy based on a programmable wake-up controller(WuC)is designed so that the computing mode,operating voltage,and frequency of the QC-LDPC algorithm can be adjusted.This adjustment can improve the computing efficiency of the processor.The QC-LDPC processors are verified on the Xilinx ZCU102 field programmable gate array(FPGA)board and the computing efficiency is measured.The experimental results indicate that the QC-LDPC processor can support two encoding lengths of three typical QC-LDPC algorithms and 20 adaptive operating modes of operating voltage and frequency.The maximum efficiency can reach up to 12.18 Gbit/(s·W),which is more flexible than existing state-of-the-art processors for QC-LDPC.展开更多
The well-known CCSDS(consultative committee for space data systems) LDPC(low density parity check) code for near-earth applications is discussed and used for a case study of Mc Eliece system. First, a data error is pi...The well-known CCSDS(consultative committee for space data systems) LDPC(low density parity check) code for near-earth applications is discussed and used for a case study of Mc Eliece system. First, a data error is picked out with the CCSDS LDPC code. The problem with its generator matrix is illustrated and overcome by a shortened code with some middle code bits deleted. In correspondence, its parity check matrix is also revised with the new quasi-cyclic(QC)-LDPC code. Second, a fast decoding scheme for general QC-LDPC codes is proposed based on flipping bits and fetching words. Besides, a lightweight CCSDS LDPC code based Mc Eliece system can be set up with such codes. The repaired CCSDS LDPC code is supposed to be still useful for communications and storages, and the normalized decoding algorithm is also efficient for general QC-LDPC codes.展开更多
基金supported by the National Natural Science Foundation of China(61307121)ABRP of Datong(2017127)the Ph.D.’s Initiated Research Projects of Datong University(2013-B-17,2015-B-05)
文摘A great challenge faced by wireless sensor networks(WSNs) is to reduce energy consumption of sensor nodes. Fortunately, the data gathering via random sensing can save energy of sensor nodes. Nevertheless, its randomness and density usually result in difficult implementations, high computation complexity and large storage spaces in practical settings. So the deterministic sparse sensing matrices are desired in some situations. However,it is difficult to guarantee the performance of deterministic sensing matrix by the acknowledged metrics. In this paper, we construct a class of deterministic sparse sensing matrices with statistical versions of restricted isometry property(St RIP) via regular low density parity check(RLDPC) matrices. The key idea of our construction is to achieve small mutual coherence of the matrices by confining the column weights of RLDPC matrices such that St RIP is satisfied. Besides, we prove that the constructed sensing matrices have the same scale of measurement numbers as the dense measurements. We also propose a data gathering method based on RLDPC matrix. Experimental results verify that the constructed sensing matrices have better reconstruction performance, compared to the Gaussian, Bernoulli, and CSLDPC matrices. And we also verify that the data gathering via RLDPC matrix can reduce energy consumption of WSNs.
基金supported in part by the National Natural Science Foundation of China(NSFC)under Grant 61931015the Peng Cheng Laboratory under Grant PCL2021A10+1 种基金the Science,Technology and Innovation Commission of Shenzhen Municipality(No.JSGG20201103095805015)sponsored by Tsinghua University-Yunnan Mobile Digital TV Company Ltd.,Joint Research Center(JCICBN)。
文摘As the 2nd generation digital terrestrial television broadcasting(DTTB)standard,digital terrestrial/television multimedia broadcasting-advanced(DTMB-A)can provide higher spectrum efficiency and transmission reliability by adopting flexible frame structure and advanced forward error correction coding compared with the 1 st generation DTTB systems.In order to increase the flexibility and robustness of the DTTB network,the frequency reuse scheme of factor one(reuse-1)is proposed,where the same RF channel is used by different stations covering the adjacent service areas.However,it demands a very low carrier-tonoise ratio(C/N)threshold below 0 dB at the DTTB physical layer.In this paper,a robust broadcasting technique is proposed based on DTMB-A with newly designed low-rate low density parity check(LDPC)codes.By adopting quasi-cyclic(QC)Raptor-like structure and progressive lifting method,the high performance low-rate LDPC codes are designed supporting multiple code lengths.Both density-evolution analyses and laboratory measurements demonstrate that DTMB-A with low-rate coding can complete the demodulation reliably with the C/N threshold below0 d B,which is one important necessary condition to support frequency reuse-1 scheme.
文摘Area-efficient design methodology is proposed for the analog decoding implementations of the rate-l/2 accumulate repeat-4 jagged-accumulate (AR4JA) low density parity check (LDPC) code. The proposed approach is designed using optimized decoding architecture and regularized routing network, in such a way that the overall wiring overhead is minimized and the silicon area utilization is significantly improved. The prototyping chip used to verily the approach is tully integrated in a four-metal double-poly 0.35 lam complementary metal oxide semiconductor (CMOS) technology, and includes an input-output interface that maximizes the decoder throughput. The decoding core area is 2.02 mm2 with a post-layout area utilization of 80%. The decoder was successfully tested at the maximum data rate of 10 Mbit/s, with a core power consumption of 6.78 mW at 3.3 V, which corresponds to an energy per decoded bit of 0.677 nJ. The proposed analog LDPC decoder with low processing power and high-reliability is suitable lbr space- and power-constrained spacecraft system.
基金The National Natural Science Foundation of China(No.60871079)
文摘A modified Benes network is proposed to be used as an optimal shuffle network in worldwide interoperability for microwave access (WiMAX) low density parity check (LDPC) decoders, When the size of the input is not a power of two, the modified Benes network can achieve the most optimal performance. This modified Benes network is non-blocking and can perform any sorts of permutations, so it can support 19 modes specified in the WiMAX system. Furthermore, an efficient algorithm to generate the control signals for all the 2 × 2 switches in this network is derived, which can reduce the hardware complexity and overall latency of the modified Benes network. Synthesis results show that the proposed control signal generator can save 25.4% chip area and the overall network latency can be reduced by 36. 2%.
基金National Natural Science Foundation of China(No.61272432)Qingdao Science and Technology Development Plan(No.12-1-4-6-(10)-jch)
文摘Watermarking system based on quantization index modulation (QIM) is increasingly popular in high payload applications,but it is inherently fragile against amplitude scaling attacks.In order to resist desynchronization attacks of QIM digital watermarking,a low density parity check (LDPC) code-aided QIM watermarking algorithm is proposed,and the performance of QIM watermarking system can be improved by incorporating LDPC code with message passing estimation/detection framework.Using the theory of iterative estimation and decoding,the watermark signal is decoded by the proposed algorithm through iterative estimation of amplitude scaling parameters and decoding of watermark.The performance of the proposed algorithm is closer to the dirty paper Shannon limit than that of repetition code aided algorithm when the algorithm is attacked by the additive white Gaussian noise.For constant amplitude scaling attacks,the proposed algorithm can obtain the accurate estimation of amplitude scaling parameters.The simulation result shows that the algorithm can obtain similar performance compared to the algorithm without desynchronization.
基金supported by Beijing Natural Science Foundation(4102050)the National Natural Science of Foundation of China(NSFC)-Korea Science and Engineering Foundation (KOSF) Joint Research Project of China and Korea (60811140343)
文摘The application of protograph low density parity check (LDPC) codes involves the encoding complexity problem. Since the generator matrices are dense, and if the positions of "1" s are irregularity, the encoder needs to store every "1" of the generator matrices by using huge chip area. In order to solve this problem, we need to design the protograph LDPC codes with circular generator matrices. A theorem concerning the circulating property of generator matrices of nonsingular protograph LDPC codes is proposed. The circulating property of generator matrix of nonsingular protograph LDPC codes can be obtained from the corresponding quasi-cyclic parity check matrix. This paper gives a scheme of constructing protograph LDPC codes with circulating generator matrices, and it reveals that the fast encoding algorithm of protograph LDPC codes has lower encoding complexity under the condition of the proposed theorem. Simulation results in ad- ditive white Gaussian noise (AWGN) channels show that the bit error rate (BER) performance of the designed codes based on the proposed theorem is much better than that of GB20600 LDPC codes and Tanner LDPC codes.
基金supported by the Beijing Natural Science Foundation of China (4102050)the National Natural Science of Foundation of China (NSFC)-Korea Science and Engineering Foundation (KOSF) Joint Research Project of China and Korea (60811140343)
文摘This paper proposes a scheme to construct time- frequency codes based on protograph low density parity check (LDPC) codes in orthogonal frequency division multiplexing (OFDM) communication systems. This approach synthesizes two techniques: protograph LDPC codes and OFDM. One symbol of encoded information by protograph LDPC codes corresponds to one sub-carrier, namely the length of encoded information equals to the number of sub-carriers. The design of good protograph LDPC codes with short lengths is given, and the proposed proto- graph LDPC codes can be of fast encoding, which can reduce the encoding complexity and simplify encoder hardware implementa- tion. The proposed approach provides a higher coding gain in the Rayleigh fading channel. The simulation results in the Rayleigh fading channel show that the bit error rate (BER) performance of the proposed time-frequency codes is as good as random LDPC- OFDM codes and is better than Tanner LDPC-OFDM codes under the condition of different fading coefficients.
基金Project supported by the National Key Basic Research Program of China(Grant No.2014CB339803)the National High Technology Research and Development Program of China(Grant No.2011AA010205)+4 种基金the National Natural Science Foundation of China(Grant Nos.61131006,61321492,and 61204135)the Major National Development Project of Scientific Instrument and Equipment(Grant No.2011YQ150021)the National Science and Technology Major Project(Grant No.2011ZX02707)the International Collaboration and Innovation Program on High Mobility Materials Engineering of the Chinese Academy of Sciencesthe Shanghai Municipal Commission of Science and Technology(Grant No.14530711300)
文摘Atmospheric absorption, scattering, and scintillation are the major causes to deteriorate the transmission quality of terahertz(THz) wireless communications. An error control coding scheme based on low density parity check(LDPC) codes with soft decision decoding algorithm is proposed to improve the bit-error-rate(BER) performance of an on-off keying(OOK) modulated THz signal through atmospheric channel. The THz wave propagation characteristics and channel model in atmosphere is set up. Numerical simulations validate the great performance of LDPC codes against the atmospheric fading and demonstrate the huge potential in future ultra-high speed beyond Gbps THz communications.
基金supported by the National Natural Science Foundation of China(61171101)the State Major Science and Technology Special Projects(2009ZX03003-011-03)
文摘The 16-ary quadrature amplitude modulation (16QAM) is a high spectral efficient scheme for high-speed transmission systems. To remove the phase ambiguity in the coherent detection system, differential-encoded 16QAM (DE-16QAM) is usually used, however, it will cause performance degradation about 3 dB as compared to the conventional 16QAM. To overcome the performance loss, a serial concatenated system with outer low density parity check (LDPC) codes and inner DE-16QAM is proposed. At the receiver, joint iterative differential demodulation and decoding (ID) is carried out to approach the maximum likelihood performance. Moreover, a genetic evolution algorithm based on the extrinsic information transfer chart is proposed to optimize the degree distribution of the outer LDPC codes. Both theoretical analyses and simulation results indicate that this algorithm not only compensates the performance loss, but also obtains a significant performance gain, which is up to 1 dB as compared to the conventional non-DE-16QAM.
基金Sponsored by the National Natural Science Foundation of China(60502026)
文摘An enhanced scheme is proposed for high code rate low density parity check (LDPC) coded partial incremental redundancy (PIR) hybrid automatic repeat request (HARQ). It employs the unequal error protection (UEP) technique for incremental redundancy bits and uses the constellation rearrangement (CoRe) technique for information bits in retransmissions so as to reduce the reliability variances of all encoded bits after soft combining. Simulation results show that the proposed scheme applies to both regular LDPC and irregular LDPC cases and can efficiently improve frame error rate (FER) performance and throughput performance.
基金Supported by the National Natural Science Foundation of China(No.60472053)
文摘This letter gives a random construction for Low Density Parity Check (LDPC) codes, which uses an iterative algorithm to avoid short cycles in the Tanner graph. The construction method has great flexible choice in LDPC code's parameters including codelength, code rate, the least girth of the graph, the weight of column and row in the parity check matrix. The method can be applied to the irregular LDPC codes and strict regular LDPC codes. Systemic codes have many applications in digital communication, so this letter proposes a construction of the generator matrix of systemic LDPC codes from the parity check matrix. Simulations show that the method performs well with iterative decoding.
基金Supported by the National Natural Science Foundation ofChina (No. 61071145,41074090)the Specialized Research Fund for the Doctoral Program of Higher Education (200802880014)
文摘The dual-containing (or self-orthogonal) formalism of Calderbank-Shor-Steane (CSS) codes provides a universal connection between a classical linear code and a Quantum Error-Correcting Code (QECC). We propose a novel class of quantum Low Density Parity Check (LDPC) codes constructed from cyclic classes of lines in Euclidean Geometry (EG). The corresponding constructed parity check matrix has quasi-cyclic structure that can be encoded flexibility, and satisfies the requirement of dual-containing quantum code. Taking the advantage of quasi-cyclic structure, we use a structured approach to construct Generalized Parity Check Matrix (GPCM). This new class of quantum codes has higher code rate, more sparse check matrix, and exactly one four-cycle in each pair of two rows. Ex-perimental results show that the proposed quantum codes, such as EG(2,q)II-QECC, EG(3,q)II-QECC, have better performance than that of other methods based on EG, over the depolarizing channel and decoded with iterative decoding based on the sum-product decoding algorithm.
基金Supported by Jiangsu University Natural Science Re-search Fund (05KJB510090), National Natural Science Foundation of China (No.60472104).
文摘In this paper, the channel estimation techniques for Orthogonal Frequency Division Multiplexing (OFDM) systems based on pilot arrangement are studied and we apply Low Density Parity Check (LDPC) codes to the system of IEEE 802.16a with OFDM modulation. First investigated is the influence of channel cstimation schemes on LDPC-code based OFDM system in static and multipath fading channels. According to the different propagation environments in 802.16a system, a dynamic channel estimation scheme is proposed. A good irregular LDPC code is designed with code rate of 1/2 and code length of 1200. Simulation results show that the performance of LDPC coded OFDM system proposed in this paper is better than that of the convolution Turbo coded OFDM system proposed in IEEE standard 802.16a.
基金the National Natural Science Foundation of China (No. 60328103).
文摘In order to improve the video transmission performance in Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) system, a new scheme, which integrates Multiple Description Coding (MDC), Low Density Parity Check (LDPC) coding and hybrid space time coding, is proposed in this letter. In particular, a hybrid space time coding algorithm is combined with LDPC codes to perform Unequal Error Protection (UEP) of MDC encoded video streams. Comparing with the UEP transmission with only LDPC codes, the proposed scheme achieves more than ldB gain in terms of Signal to Noise Ratio (SNR) when the Peak Signal to Noise Ratio (PSNR) of reconstructed video is above 30dB.
基金Supported by 863 program of China under Grant 2001AA123015.
文摘This paper proposes the Low Density Parity Check (LDPC) coded Filtered MultiTone (FMT) systems with high-order modulation for the high data rate reliable transmission over frequency selective fading channel. For the purpose of accomplishing soft input soft output iterative decoding of LDPC codes, a new soft decision metric generation method is proposed,which obviates the need of the noise variance estimation, for M-PSK/M-QAM-type high-order modulation over frequency selective fading channel. Computer simulation indicates that, there is no performance loss with our new metric, but the complexity of implementation is reduced, and that the LDPC codes are effective to improve the Bit Error Rate (BER) of FMT in frequency selective fading channel.
基金the National High Technology Research and Development Programme of China(No.2003AA12331004)
文摘Reliability-based hybrid automatic repeat request (HARQ) (RB-HARQ) is a recently developed form of incremental-redundancy ARQ. It achieves good performance whereas large retransmission request packets should be fed back. In this paper, in order to reduce the number of the fed back bits, we propose a HARQ scheme applied in time duplex division orthogonal frequency division multiplexing (TDD- OFI)M) system over the slow fading channel which is named channel-based HARQ (CB-HARQ). Because one bit which meets deep fading is always with small value of log likelihood ratio (LLR) during the process of decoding of LDPC code, the bits transmitted on the carrier with deep fading are retransmitted. At the receiver, the decoder will compute the locations of retransmission bits according to the channel fading values which are gotten by utilizing the feature of channel symmetry in TDD mode. So the indices of retransmission bits are avoided to be transmitted. Simulation results show that this method achieves better BER performance and requires much smaller request packets in feedback link.
基金This work is partially supported by the National Natural Science Foundation of China(No.61571004)the Shanghai Natural Science Foundation(No.17ZR1429100)+2 种基金the Science and Technology Innovation Program of Shanghai(No.115DZ1100400)Fujian Science and Technology Plan STS Program(2017T3009)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(No.YJKYYQ20170074).
文摘As an effective error correction technology,the Low Density Parity Check Code(LDPC)has been researched and applied by many scholars.Meanwhile,LDPC codes have some prominent performances,which involves close to the Shannon limit,achieving a higher bit rate and a fast decoding.However,whether these excellent characteristics are suitable for the resource-constrained Wireless Sensor Network(WSN),it seems to be seldom concerned.In this article,we review the LDPC code’s structure brief.ly,and them classify and summarize the LDPC codes’construction and decoding algorithms,finally,analyze the applications of LDPC code for WSN.We believe that our contributions will be able to facilitate the application of LDPC code in WSN.
基金supported by Tsinghua University Initiative Scientific Research Program(No.2010THZ0)the National Key Basic Research (973) Program of China(No.2012CB316000)
文摘This paper describes an efficient implementation of the Sum-Product Algorithm (SPA) within a Low Density Parity Check (LDPC) code decoder, where a horizontal process correction term is used to improve the decocling performance of the Min-Sum algorithms. The correction term is implemented as a look-up table. The algorithm uses the correction term redundancy by means of a coordinate transformation to reduce the hardware complexity. Simulations and hardware tests indicate that the decoding performance is very good with the appropriate look-up table
基金the National Key Research and Development Program of China(2019YFB1803600)the Key Scientific Research Program of Shaanxi Provincial Department of Education(22JY059)the China Civil Aviation Airworthiness Center Open Foundation(SH2021111903)。
文摘To apply a quasi-cyclic low density parity check(QC-LDPC)to different scenarios,a data-stream driven pipelined macro instruction set and a reconfigurable processor architecture are proposed for the typical QC-LDPC algorithm.The data-level parallelism is improved by instructions to dynamically configure the multi-core computing units.Simultaneously,an intelligent adjustment strategy based on a programmable wake-up controller(WuC)is designed so that the computing mode,operating voltage,and frequency of the QC-LDPC algorithm can be adjusted.This adjustment can improve the computing efficiency of the processor.The QC-LDPC processors are verified on the Xilinx ZCU102 field programmable gate array(FPGA)board and the computing efficiency is measured.The experimental results indicate that the QC-LDPC processor can support two encoding lengths of three typical QC-LDPC algorithms and 20 adaptive operating modes of operating voltage and frequency.The maximum efficiency can reach up to 12.18 Gbit/(s·W),which is more flexible than existing state-of-the-art processors for QC-LDPC.
基金Supported by the Guangzhou Innovation Leading Team Program (201909010008)。
文摘The well-known CCSDS(consultative committee for space data systems) LDPC(low density parity check) code for near-earth applications is discussed and used for a case study of Mc Eliece system. First, a data error is picked out with the CCSDS LDPC code. The problem with its generator matrix is illustrated and overcome by a shortened code with some middle code bits deleted. In correspondence, its parity check matrix is also revised with the new quasi-cyclic(QC)-LDPC code. Second, a fast decoding scheme for general QC-LDPC codes is proposed based on flipping bits and fetching words. Besides, a lightweight CCSDS LDPC code based Mc Eliece system can be set up with such codes. The repaired CCSDS LDPC code is supposed to be still useful for communications and storages, and the normalized decoding algorithm is also efficient for general QC-LDPC codes.