期刊文献+
共找到48篇文章
< 1 2 3 >
每页显示 20 50 100
Fractal model of spontaneous imbibition in low-permeability reservoirs coupled with heterogeneity of pore seepage channels and threshold pressure
1
作者 Ming-Sheng Zuo Hao Chen +3 位作者 Xi-Liang Liu Hai-Peng Liu Yi Wu Xin-Yu Qi 《Petroleum Science》 SCIE EI CAS CSCD 2024年第2期1002-1017,共16页
Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability res... Spontaneous imbibition(SI)is an important mechanism for enhancing oil recovery in low-permeability reservoirs.Due to the strong heterogeneity,and the non-Darcy flow,the construction of SI model for lowpermeability reservoirs is extremely challenging.Commonly,traditional SI models based on single or averaged capillary tortuosity ignore the influence of heterogeneity of pore seepage channels and the threshold pressure(TP)on imbibition.Therefore,in this work,based on capillary model and fractal theory,a mathematical model of characterizing SI considering heterogeneity of pore seepage channels is established.On this basis,the threshold pressure was introduced to determine the pore radius at which the wetted phase can displace oil.The proposed new SI model was verified by imbibition experimental data.The study shows that for weakly heterogeneous cores with permeability of 0-1 m D,the traditional SI model can characterize the imbibition process relatively accurately,and the new imbibition model can increase the coefficient of determination by 1.05 times.However,traditional model has serious deviations in predicting the imbibition recovery for cores with permeability of 10-50 m D.The new SI model coupling with heterogeneity of pore seepage channels and threshold pressure effectively solves this problem,and the determination coefficient is increased from 0.344 to 0.922,which is increased by2.68 times.For low-permeability reservoirs,the production of the oil in transitional pores(0.01-0.1μm)and mesopores(0.1-1μm)significantly affects the imbibition recovery,as the research shows that when the heterogeneity of pore seepage channels is ignored,the oil recovery in transitional pores and mesopores decreases by 7.54%and 4.26%,respectively.Sensitivity analysis shows that increasing interfacial tension,decreasing contact angle,oil-water viscosity ratio and threshold pressure will increase imbibition recovery.In addition,there are critical values for the influence of these factors on the imbibition recovery,which provides theoretical support for surfactant optimization. 展开更多
关键词 Spontaneous imbibition low-permeability reservoir Fractal model Threshold pressure Capillary tube
下载PDF
Performance and enhanced oil recovery efficiency of an acid-resistant polymer microspheres of anti-CO_(2) channeling in low-permeability reservoirs
2
作者 Hai-Zhuang Jiang Hong-Bin Yang +5 位作者 Ruo-Sheng Pan Zhen-Yu Ren Wan-Li Kang Jun-Yi Zhang Shi-Long Pan Bauyrzhan Sarsenbekuly 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2420-2432,共13页
CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can... CO_(2) flooding is a vital development method for enhanced oil recovery in low-permeability reservoirs,However,micro-fractures are developed in low-permeability reservoirs,which are essential oil flow channels but can also cause severe CO_(2) gas channeling problems.Therefore,anti-gas channeling is a necessary measure to improve the effect of CO_(2) flooding.The kind of anti-gas channeling refers to the plugging of fractures in the deep formation to prevent CO_(2) gas channeling,which is different from the wellbore leakage.Polymer microspheres have the characteristics of controllable deep plugging,which can achieve the profile control of low-permeability fractured reservoirs.In acidic environments with supercritical CO_(2),traditional polymer microspheres have poor expandability and plugging properties.Based on previous work,a systematic evaluation of the expansion performance,dispersion rheological properties,stability,deep migration,anti-CO_(2) channeling and enhanced oil recovery ability of a novel acid-resistant polymer microsphere(DCNPM-A)was carried out under CQ oilifield conditions(salinity of85,000 mg/L,80℃,pH=3).The results show that the DCNPM-A microsphere had a better expansion performance than the traditional microsphere,with a swelling rate of 13.5.The microsphere dispersion with a concentration of 0.1%-0.5%had the advantages of low viscosity,high dispersion and good injectability in the low permeability fractured core.In the acidic environment of supercritical CO_(2),DCNPM-A microspheres showed excellent stability and could maintain strength for over 60 d with less loss.In core experiments,DCNPM-A microspheres exhibited delayed swelling characteristics and could effectively plug deep formations.With a plugging rate of 95%,the subsequent enhanced oil recovery of CO_(2) flooding could reach 21.03%.The experimental results can provide a theoretical basis for anti-CO_(2)channeling and enhanced oil recovery in low-permeability fractured reservoirs. 展开更多
关键词 low-permeability reservoir Anti-CO_(2)channeling Polymer microsphere Acid resistance
下载PDF
Surface-functionalized cellulose nanocrystals(CNC)and synergisms with surfactant for enhanced oil recovery in low-permeability reservoirs 被引量:1
3
作者 Zhe Li Wan-Li Kang +6 位作者 Meng-Lan Li Hong-Bin Yang Tong-Yu Zhu Ying-Qi He Hai-Zhuang jang Bo-Bo Zhou Ji-Ting Hao 《Petroleum Science》 SCIE EI CAS CSCD 2023年第3期1572-1583,共12页
Nanocellulose,a natural polymeric nanomaterial,has attracted significant attention in enhanced oil recovery(EOR)applications due to its abundance,nanoscale,high oil-water interfacial adsorption ef-ficiency.In this stu... Nanocellulose,a natural polymeric nanomaterial,has attracted significant attention in enhanced oil recovery(EOR)applications due to its abundance,nanoscale,high oil-water interfacial adsorption ef-ficiency.In this study,surface-functionalized cellulose nanocrystals(SF-CNCs)were prepared via hy-drochloric acid hydrolysis and chemical modification,with adaptable nanosize and considerable dispersion stability in low-permeability reservoirs.The SF-CNCs were structurally characterized by FT-IR,Cryo-TEM,which have a diameter of 5-10 nm and a length of 100-200 nm.The SF-CNC dispersions possessed higher stability and stronger salt-tolerance than those of corresponding CNC dispersions,due to the strong hydrophilicity of the sulfonic acid group.It was synergistically used with a non-ionic surfactant(APG1214)to formulate a combined flooding system(0.1 wt%SF-CNC+0.2 wt%APG1214).The combined flooding system exhibits strong emulsification stability,low oil-water interfacial tension of o.03 mN/m,and the ability to alter the wettability for oil-wetting rocks.Furthermore,the combined system was_able to provide an optimum EOR efficiency of 20.2%in low-permeability cores with 30.13×10^(-3)μm^(2).Notably.it can enlarge the sweep volume and increase the displacement efficiency simultaneously.Overall,the newly formulated nanocellulose/surfactant combined system exhibits a remarkable EoR performance in low-permeability reservoirs. 展开更多
关键词 low-permeability reservoirs Enhanced oil recovery Cellulose nanocrystals(CNC) SURFACTANT Dispersion stability
下载PDF
A Numerical Simulation Study of Temperature and Pressure Effects on the Breakthrough Pressure of CO_(2)in Unsaturated Low-permeability Rock Core 被引量:1
4
作者 HU Zhikai LI Yi +6 位作者 LI Qi DIAO Yujie MA Xin LIU Hejuan FENG Guanhong WANG Fugang YU Qingchun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第3期911-924,共14页
Gas breakthrough pressure is a key parameter to evaluate the sealing capacity of caprock,and it also plays important roles in safety and capacity of CO_(2)geological storage.Based on the published experimental results... Gas breakthrough pressure is a key parameter to evaluate the sealing capacity of caprock,and it also plays important roles in safety and capacity of CO_(2)geological storage.Based on the published experimental results,we present numerical simulations on CO_(2)breakthrough pressure in unsaturated low-permeability rock under 9 multiple P-T conditions(which can keep CO_(2)in gaseous,liquid and supercritical states)and thus,a numerical method which can be used to accurately predict CO_(2)breakthrough pressure on rock-core scale is proposed.The simulation results show that CO_(2)breakthrough pressure and breakthrough time are exponential correlated with P-T conditions.Meanwhile,pressure has stronger effects on experimental results than that of temperature.Moreover,we performed sensitivity studies on the pore distribution indexλ(0.6,0.7,0.8,and 0.9)in van Genuchten-Muale model.Results show that with the increase ofλ,CO_(2)breakthrough pressure and breakthrough time both show decreasing trends.In other words,the larger the value ofλis,the better the permeability of the caprock is,and the worse the CO_(2)sealing capacity is.The numerical method established in this study can provide an important reference for the prediction of gas breakthrough pressure on rock-core scale and for related numerical studies. 展开更多
关键词 CO_(2)geological storage CO_(2)breakthrough pressure unsaturated low-permeability rock multiple P-T conditions numerical simulation
下载PDF
Multifractal estimation of NMR T_(2) cut-off value in low-permeability rocks considering spectrum kurtosis: SMOTE-based oversampling integrated with machine learning
5
作者 Xiao-Jun Chen Rui-Xue Zhang +4 位作者 Xiao-Bo Zhao Jun-Wei Yang Zhang-Jian Lan Cheng-Fei Luo Jian-Chao Cai 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3411-3427,共17页
The transverse relaxation time (T_(2)) cut-off value plays a crucial role in nuclear magnetic resonance for identifying movable and immovable boundaries, evaluating permeability, and determining fluid saturation in pe... The transverse relaxation time (T_(2)) cut-off value plays a crucial role in nuclear magnetic resonance for identifying movable and immovable boundaries, evaluating permeability, and determining fluid saturation in petrophysical characterization of petroleum reservoirs. This study focuses on the systematic analysis of T_(2) spectra and T_(2) cut-off values in low-permeability reservoir rocks. Analysis of 36 low-permeability cores revealed a wide distribution of T_(2) cut-off values, ranging from 7 to 50 ms. Additionally, the T_(2) spectra exhibited multimodal characteristics, predominantly displaying unimodal and bimodal morphologies, with a few trimodal morphologies, which are inherently influenced by different pore types. Fractal characteristics of pore structure in fully water-saturated cores were captured through the T_(2) spectra, which were calculated using generalized fractal and multifractal theories. To augment the limited dataset of 36 cores, the synthetic minority oversampling technique was employed. Models for evaluating the T_(2) cut-off value were separately developed based on the classified T_(2) spectra, considering the number of peaks, and utilizing generalized fractal dimensions at the weight <0 and the singular intensity range. The underlying mechanism is that the singular intensity and generalized fractal dimensions at the weight <0 can detect the T_(2) spectral shift. However, the T_(2) spectral shift has negligible effects on multifractal spectrum function difference and generalized fractal dimensions at the weight >0. The primary objective of this work is to gain insights into the relationship between the kurtosis of the T_(2) spectrum and pore types, as well as to predict the T_(2) cut-off value of low-permeability rocks using machine learning and data augmentation techniques. 展开更多
关键词 Nuclear magnetic resonance low-permeability porous media T_(2)cut-off value Fractal and multifractal Data augmentation Machine learning
下载PDF
Permeability evolution mechanism and the optimum permeability determination of uranium leaching from low-permeability sandstone treated with low-frequency vibration
6
作者 Yong Zhao Xiqi Li +2 位作者 Lin Lei Ling Chen Zhiping Luo 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2597-2610,共14页
Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechani... Low-frequency vibrations can effectively improve natural sandstone permeability,and higher vibration frequency is associated with larger permeability.However,the optimum permeability and permeability evolution mechanism for uranium leaching and the relationship between permeability and the change of chemical reactive rate affecting uranium leaching have not been determined.To solve the above problems,in this study,identical homogeneous sandstone samples were selected to simulate lowpermeability sandstone;a permeability evolution model considering the combined action of vibration stress,pore water pressure,water flow impact force,and chemical erosion was established;and vibration leaching experiments were performed to test the model accuracy.Both the permeability and chemical reactions were found to simultaneously restrict U6þleaching,and the vibration treatment increased the permeability,causing the U6þleaching reaction to no longer be diffusion-constrained but to be primarily controlled by the reaction rate.Changes of the model calculation parameters were further analyzed to determine the permeability evolution mechanism under the influence of vibration and chemical erosion,to prove the correctness of the mechanism according to the experimental results,and to develop a new method for determining the optimum permeability in uranium leaching.The uranium leaching was found to primarily follow a process consisting of(1)a permeability control stage,(2)achieving the optimum permeability,(3)a chemical reactive rate control stage,and(4)a channel flow stage.The resolution of these problems is of great significance for facilitating the application and promotion of lowfrequency vibration in the CO_(2)+O_(2) leaching process. 展开更多
关键词 Low-frequency vibration low-permeability sandstone Uranium migration Permeability evolution mechanism Chemical reactive rate Optimum permeability
下载PDF
Characteristics of non-Darcy flow in low-permeability reservoirs 被引量:17
7
作者 Yao Yuedong Ge Jiali 《Petroleum Science》 SCIE CAS CSCD 2011年第1期55-62,共8页
Well testing is recognized as an effective means of accurately obtaining the formation parameters of low-permeability reservoirs and effectively analyzing the deliverability.Well test models must comply with the parti... Well testing is recognized as an effective means of accurately obtaining the formation parameters of low-permeability reservoirs and effectively analyzing the deliverability.Well test models must comply with the particular characteristics of flow in low-permeability reservoirs in order to obtain reasonable well test interpretation.At present,non-Darcy flow in low-permeability reservoirs is attracting much attention.In this study,displacement tests were conducted on typical cores taken from low-permeability reservoirs.Two dimensionless variables were introduced to analyze the collected experimental data.The results of the dimensionless analysis show whether non-Darcy flow happens or not depends on the properties of fluid and porous media and the pressure differential.The combination of the above three parameters was named as dimensionless criteria coefficient(DCC).When the value of the DCC was lower than a critical Reynolds number(CRN),the flow could not be well described by Darcy's law(so-called non-Darcy flow),when the DCC was higher than CRN,the flow obeyed Darcy's law.Finally,this paper establishes a transient mathematical model considering Darcy flow and non-Darcy flow in low-permeability reservoirs,and proposes a methodology to solve the model.The solution technique,which is based on the Boltzmann transformation,is well suited for solving the flow model of low-permeability reservoirs.Based on the typical curves analysis,it was found that the pressure and its derivative curves were determined by such parameters as non-Darcy flow index and the flow characteristics.The results can be used for well test analysis of low-permeability reservoirs. 展开更多
关键词 low-permeability non-Darcy flow dimensionless analysis transient flow well testing
下载PDF
Non-Darcy flow in oil accumulation (oil displacing water) and relative permeability and oil saturation characteristics of low-permeability sandstones 被引量:13
8
作者 Zeng Jianhui Cheng Shiwei +2 位作者 Kong Xu Guo Kai Wang Hongyu 《Petroleum Science》 SCIE CAS CSCD 2010年第1期20-30,共11页
Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or ca... Hydrocarbon resources in low-permeability sandstones are very abundant and are extensively distributed. Low-permeability reservoirs show several unique characteristics, including lack of a definite trap boundary or caprock, limited buoyancy effect, complex oil-gas-water distribution, without obvious oil-gas-water interfaces, and relatively low oil (gas) saturation. Based on the simulation experiments of oil accumulation in low-permeability sandstone (oil displacing water), we study the migration and accumulation characteristics of non-Darcy oil flow, and discuss the values and influencing factors of relative permeability which is a key parameter characterizing oil migration and accumulation in low-permeability sandstone. The results indicate that: 1) Oil migration (oil displacing water) in low- permeability sandstone shows non-Darcy percolation characteristics, and there is a threshold pressure gradient during oil migration and accumulation, which has a good negative correlation with permeability and apparent fluidity; 2) With decrease of permeability and apparent fluidity and increase of fluid viscosity, the percolation curve is closer to the pressure gradient axis and the threshold pressure gradient increases. When the apparent fluidity is more than 1.0, the percolation curve shows modified Darcy flow characteristics, while when the apparent fluidity up" non-Darcy percolation curve; 3) Oil-water is less than 1.0, the percolation curve is a "concave- two-phase relative permeability is affected by core permeability, fluid viscosity, apparent fluidity, and injection drive force; 4) The oil saturation of low- permeability sandstone reservoirs is mostly within 35%-60%, and the oil saturation also has a good positive correlation with the permeability and apparent fluidity. 展开更多
关键词 Non-Darcy flow relative permeability oil saturation low-permeability sandstone
下载PDF
Stress dependent permeability and porosity of low-permeability rock 被引量:7
9
作者 JIA Chao-jun XU Wei-ya +3 位作者 WANG Huan-ling WANG Ru-bin YU Jun YAN Long 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第10期2396-2405,共10页
The seepage property of low-permeability rock is of significant importance for the design and safety analysis of underground cavities. By using a self-developed test system, both permeability and porosity of granite f... The seepage property of low-permeability rock is of significant importance for the design and safety analysis of underground cavities. By using a self-developed test system, both permeability and porosity of granite from an underground oil storage depot were measured. In order to study the influence of rock types on permeability, a tight sandstone was selected as a contrast. The experimental results suggested that the porosity of this granite is less than 5% and permeability is low to 10–20 m^2 within the range of effective stress. During the loading process, both exponential relationship and power law can be utilized to describe the relationship between effective stress and permeability. However, power law matches the experimental data better during the unloading condition. The stress dependent porosity of granite during loading process can be described via an exponential relationship while the match between the model and experimental data can be improved by a power law in unloading paths. The correlation of permeability and porosity can be described in a power law form. Besides, granite shows great different evolution rules in permeability and porosity from sandstone. It is inferred that this difference can be attributed to the preparing of samples and different movements of microstructures subjected to effective stress. 展开更多
关键词 PERMEABILITY POROSITY effective STRESS STEADY-STATE METHOD TRANSIENT pulse METHOD low-permeability
下载PDF
Genesis of the low-permeability reservoir bed of upper Triassic Xujiahe Formation in Xinchang gas field,western Sichuan Depression 被引量:9
10
作者 Xu Zhangyou Zhang Xiaoyu +1 位作者 Wu Shenghe Zhao Yan 《Petroleum Science》 SCIE CAS CSCD 2008年第3期230-237,共8页
The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mec... The genesis of a reservoir is a result of the combined action of deposition, diagenesis, tectonic reworking, and interaction of rock and fluid and the evolutionary environment. We discuss the genetic and evolution mechanism of a low-permeability reservoir bed of the Xujiahe Formation in the western Sichuan Depression on the basis of the study of diagenesis, diagenetic reservoir facies and the diagenetic evolution sequence. The research indicated that this reservoir bed can be divided into five types of diagenetic reservoir facies, namely strong dissolution, chlorite-lined intergranular pores, compaction and pressure solution, carbonate cementation and secondary quartz increase. There are, however, just two diagenetic reservoir facies which provide low-permeability reservoir beds, namely strong dissolution and chlorite-lined intergranular pores. We also analyzed their diagenetic evolution sequences and the origin of the low-permeability reservoir bed. Besides, it was also indicated that the composition and structure of sandstones, types of sedimentary microfacies, diagenesis history as well as the tectonic reworking in later periods are the main factors controlling the formation of the low-permeability reservoir bed. The above- mentioned factors establish the foundation for the forecasting the distribution of high quality reservoir beds. 展开更多
关键词 low-permeability reservoir diagenetic reservoir facies Xujiahe Formation upper Triassic Xinchang gas field western Sichuan Depression
下载PDF
The Relationship between Fractures and Tectonic Stress Field in the Extra Low-Permeability Sandstone Reservoir at the South of Western Sichuan Depression 被引量:13
11
作者 曾联波 漆家福 李跃纲 《Journal of China University of Geosciences》 SCIE CSCD 2007年第3期223-231,共9页
The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has exper... The formation and distribution of fractures are controlled by paleotectonic stress field, and their preservative status and effects on development are dominated by the modern stress field. Since Triassic, it has experienced four tectonic movements and developed four sets of tectonic fractures in the extra low-permeability sandstone reservoir at the south of western Sichuan depression. The strikes of fractures are in the S-N, NE-SW, E-W, and NW-SE directions respectively. At the end of Triassic, under the horizontal compression tectonic stress field, for which the maximum principal stress direction was NW.SE, the fractures were well developed near the S-N faults and at the end of NE-SW faults, because of their stress concentration. At the end of Cretaceous, in the horizontal compression stress fields of the NE-SW direction, the stress was obviously lower near the NE-SW faults, thus, fractures mainly developed near the S-N faults. At the end of Neogene-Early Pleistocene, under the horizontal compression tectonic stress fields of E-W direction, stress concentrated near the NE-SW faults and fractures developed at these places, especially at the end of the NE-SE faults, the cross positions of NE-SW, and S-N faults. Therefore, fractures developed mostly near S-N faults and NE-SW faults. At the cross positions of the above two sets of faults, the degree of development of the fractures was the highest. Under the modern stress field of the NW-SE direction, the NW-SE fractures were mainly the seepage ones with tensional state, the best connectivity, the widest aperture, the highest permeability, and the minimum opening pressure. 展开更多
关键词 fracture tectonic stress field extra low-permeability reservoir south of western Sichuan depression
下载PDF
3D characterization of porosity and minerals of low-permeability uranium-bearing sandstone based on multi-resolution image fusion 被引量:7
12
作者 Bing Sun Shan-Shan Hou +3 位作者 Sheng Zeng Xin Bai Shu-Wen Zhang Jing Zhang 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第10期115-134,共20页
In the process of in situ leaching of uranium,the microstructure controls and influences the flow distribution,percolation characteristics,and reaction mechanism of lixivium in the pores of reservoir rocks and directl... In the process of in situ leaching of uranium,the microstructure controls and influences the flow distribution,percolation characteristics,and reaction mechanism of lixivium in the pores of reservoir rocks and directly affects the leaching of useful components.In this study,the pore throat,pore size distribution,and mineral composition of low-permeability uranium-bearing sandstone were quantitatively analyzed by high pressure mercury injection,nuclear magnetic resonance,X-ray diffraction,and wavelength-dispersive X-ray fluorescence.The distribution characteristics of pores and minerals in the samples were qualitatively analyzed using energy-dispersive scanning electron microscopy and multi-resolution CT images.Image registration with the landmarks algorithm provided by FEI Avizo was used to accurately match the CT images with different resolutions.The multi-scale and multi-mineral digital core model of low-permeability uranium-bearing sandstone is reconstructed through pore segmentation and mineral segmentation of fusion core scanning images.The results show that the pore structure of low-permeability uranium-bearing sandstone is complex and has multi-scale and multi-crossing characteristics.The intergranular pores determine the main seepage channel in the pore space,and the secondary pores have poor connectivity with other pores.Pyrite and coffinite are isolated from the connected pores and surrounded by a large number of clay minerals and ankerite cements,which increases the difficulty of uranium leaching.Clays and a large amount of ankerite cement are filled in the primary and secondary pores and pore throats of the low-permeability uraniumbearing sandstone,which significantly reduces the porosity of the movable fluid and results in low overall permeability of the cores.The multi-scale and multi-mineral digital core proposed in this study provides a basis for characterizing macroscopic and microscopic pore-throat structures and mineral distributions of low-permeability uranium-bearing sandstone and can better understand the seepage characteristics. 展开更多
关键词 low-permeability uranium-bearing sandstone Digital core MICRO-CT SEM–EDS Image fusion
下载PDF
A Comprehensive Evaluation Method for Low-permeability Reservoirs 被引量:5
13
作者 Zeng Lianbo Wang Zhengguo Zhang Guibin 《Petroleum Science》 SCIE CAS CSCD 2005年第4期9-13,共5页
According to the geological characteristics and their influential factors of the low-permeability reservoirs, a comprehensive method for evaluation of low-permeability reservoirs is put forward. The method takes a mat... According to the geological characteristics and their influential factors of the low-permeability reservoirs, a comprehensive method for evaluation of low-permeability reservoirs is put forward. The method takes a matrix system as the basis, a fracture system as the focus and a stress field system as the restricted factor. It can objectively reflect not only the storage capability and seepage capability of low-permeability reservoirs, but also the effect on development as well. At the same time, it can predict the seepage characteristics at different development stages and provide a reasonable geological basis for the development of low-permeability reservoirs. 展开更多
关键词 Matrix system fracture system stress field system low-permeability reservoir comprehensive evaluation
下载PDF
Characteristics and mechanisms of supercritical CO_(2) flooding under different factors in low-permeability reservoirs 被引量:6
14
作者 Zheng Chen Yu-Liang Su +2 位作者 Lei Li Fan-Kun Meng Xiao-Mei Zhou 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1174-1184,共11页
In recent years,supercritical CO_(2)flooding has become an effective method for developing lowpermeability reservoirs.In supercritical CO_(2)flooding different factors influence the mechanism of its displacement proce... In recent years,supercritical CO_(2)flooding has become an effective method for developing lowpermeability reservoirs.In supercritical CO_(2)flooding different factors influence the mechanism of its displacement process for oil recovery.Asynchronous injection-production modes can use supercritical CO_(2)to enhance oil recovery but may also worsen the injection capacity.Cores with high permeability have higher oil recovery rates and better injection capacity,however,gas channeling occurs.Supercritical CO_(2)flooding has a higher oil recovery at high pressure levels,which delays the occurrence of gas channeling.Conversely,gas injection has lower displacement efficiency but better injection capacity at the high water cut stage.This study analyzes the displacement characteristics of supercritical CO_(2)flooding with a series of experiments under different injection and production parameters.Experimental results show that the gas breakthrough stage has the fastest oil production and the supercritical CO_(2)injection capacity variation tendency is closely related to the gas-oil ratio.Further experiments show that higher injection rates represent significant ultimate oil recovery and injection index,providing a good reference for developing low-permeability reservoirs. 展开更多
关键词 low-permeability reservoir Supercritical CO_(2)flooding Influence mechanism Enhanced oil recovery Injection capacity
下载PDF
Experimental study of low-damage drilling fluid to minimize waterblocking of low-permeability gas reservoirs 被引量:4
15
作者 Zhang Hongxia Yan Jienian +2 位作者 Lu Yu Shu Yong Zhao Shengying 《Petroleum Science》 SCIE CAS CSCD 2009年第3期271-276,共6页
This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Ba... This paper discusses the systematic design and development of low-damage drilling fluid to protect the low-permeability gas reservoir of the Sulige block in the Ordos Basin, Inner Mongolia Autonomous Region, China. Based on investigation of the geological characteristics and the potential formation damage of the Permian formation of the reservoir, waterblocking due to invasion of drilling or completion fluids was identified one of the most severe causes of damage to gas well deliverability. By adopting the phase trap prevention method, ideal packing theory, and film-forming technology, a lowdamage drilling fluid, sodium formate brine containing efficient waterblocking preventing surfactants, optimized temporary bridging agents (TBAs), and film-forming agents has been developed. The performance of the new drilling fluid was evaluated by using a variety of techniques. The results show that the fluid has good rheological properties, good strong shale-swelling inhibition, good temporary plugging effect, ultra-low filtration, and good lubricity. It can efficiently minimize waterblocking and can be used to drill horizontal wells with minimal intervention of the reservoir in the Sulige Gas Field. 展开更多
关键词 low-permeability gas reservoir waterblocking ideal packing theory (IPT) film-forming agent drilling fluid
下载PDF
Permeability and heterogeneity adaptability of surfactant-alternating-gas foam for recovering oil from low-permeability reservoirs 被引量:3
16
作者 Ming-Chen Ding Qiang Li +3 位作者 Yu-Jing Yuan Ye-Fei Wang Ning Zhao Yu-Gui Han 《Petroleum Science》 SCIE CAS CSCD 2022年第3期1185-1197,共13页
As the traditional polymer stabilizer is eliminated to improve the injectability of foam in lowpermeability reservoirs,the stability,plugging capacity,conformance control and oil recovery performance of the surfactant... As the traditional polymer stabilizer is eliminated to improve the injectability of foam in lowpermeability reservoirs,the stability,plugging capacity,conformance control and oil recovery performance of the surfactant-alternating-gas(SAG)foam become significantly important for determining its adaptability to permeability and heterogeneity,which were focused and experimentally researched in this paper.Results show that the SAG bubbles are highly stable in micron-sized channels and porous media(than in the conventional unconstrained graduated cylinder),making it possible to use in enhanced oil recovery(EOR).Such bubbles formed in porous media could be passively adjusted to match their diameter with the size of the pore.This endows the SAG foam with underlying excellent injectability and deep migration capacity.Permeability adaptability results indicate a reduced plugging capacity,but,increased incremental oil recovery by the SAG foam with decreased permeability.This makes it a good candidate for EOR over a wide range of permeability,however,parallel core floods demonstrate that there is a limiting heterogeneity for SAG application,which is determined to be a permeability contrast of 12.0(for a reservoir containing oil of 9.9 m Pa s).Beyond this limit,the foam would become ineffective. 展开更多
关键词 SAG foam EOR low-permeability reservoir PERMEABILITY HETEROGENEITY
下载PDF
Application of fracturing technology to increase gas production in low-permeability hydrate reservoir:A numerical study 被引量:3
17
作者 Peng-Fei Shen Gang Li +2 位作者 Xiao-Sen Li Bo Li Jin-Ming Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第6期267-277,共11页
Low temperature and low permeability are the challenges for the development of hydrate reservoirs in permafrost.The ice produced around the production well caused by high depressurization driving force reduces the gas... Low temperature and low permeability are the challenges for the development of hydrate reservoirs in permafrost.The ice produced around the production well caused by high depressurization driving force reduces the gas production,and it is necessary to reduce the effect of ice production on gas production.In this work,a new combination of fracturing technology and depressurization method was proposed to evaluate the gas production potential at the site DK-2 in Qinghai-Tibet Plateau Permafrost.A relatively higher intrinsic permeability of the fracture zone surround the horizontal production well was created by the fracturing technology.The simulation results showed that the fracture zone reduced the blocking of production ice to production wells and promoted the propagation of production pressure.And the gas production increased by 2.1 times as the radius of the fracture zone increased from 0 to 4 m in 30 years.Nearly half of the hydrate reservoirs were dissociated in 30 years,and greater than 51.7%of the gas production was produced during the first 10 years.Moreover,production behaviours were sensitive to the depressurization driving force but not to the thermal conductivity.The growth of gas production was not obvious with the intrinsic permeability of the fracture zone higher than 100 m D.The effect of ice production on gas production by fracturing technology and depressurization method was limited. 展开更多
关键词 Gas hydrates Fracturing technology DEPRESSURIZATION low-permeability PERMAFROST
下载PDF
Nonlinear flow numerical simulation of low-permeability reservoir 被引量:2
18
作者 于荣泽 卞亚南 +3 位作者 周舒 王楷军 吕琦 陈朝辉 《Journal of Central South University》 SCIE EI CAS 2012年第7期1980-1987,共8页
A nonlinear flow reservoir mathematical model was established based on the flow characteristic of low-permeability reservoir.The well-grid equations were deduced and the dimensionless permeability coefficient was intr... A nonlinear flow reservoir mathematical model was established based on the flow characteristic of low-permeability reservoir.The well-grid equations were deduced and the dimensionless permeability coefficient was introduced to describe the permeability variation of nonlinear flow.The nonlinear flow numerical simulation program was compiled based on black-oil model.A quarter of five-spot well unit was simulated to study the effect of nonlinear flow on the exploitation of low-permeability reservoir.The comprehensive comparison and analysis of the simulation results of Darcy flow,quasi-linear flow and nonlinear flow were provided.The dimensionless permeability coefficient distribution was gained to describe the nonlinear flow degree.The result shows that compared with the results of Darcy flow,when considering nonlinear flow,the oil production is low,and production decline is rapid.The fluid flow in reservoir consumes more driving energy,which reduces the water flooding efficiency.Darcy flow model overstates the reservoir flow capability,and quasi-linear flow model overstates the reservoir flow resistance.The flow ability of the formation near the well and artificial fracture is strong while the flow ability of the formation far away from the main streamline is weak.The nonlinear flow area is much larger than that of quasi-linear flow during the fluid flow in low-permeability reservoir.The water propelling speed of nonlinear flow is greatly slower than that of Darcy flow in the vertical direction of artificial fracture,and the nonlinear flow should be taken into account in the well pattern arrangement of low-permeability reservoir. 展开更多
关键词 low-permeability reservoir nonlinear flow mathematical model numerical simulation
下载PDF
SENSITIVITY COEFFICIENTS OF SINGLE-PHASE FLOW IN LOW-PERMEABILITY HETEROGENEOUS RESERVOIRS
19
作者 程时清 张盛宗 +1 位作者 黄延章 朱维耀 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2002年第6期712-720,共9页
Theoretical equations for computing sensitivity coefficients of wellbore pressures to estimate the reservoir parameters in low-permeability reservoirs conditioning to non-Darcy flow data at low velocity were obtained.... Theoretical equations for computing sensitivity coefficients of wellbore pressures to estimate the reservoir parameters in low-permeability reservoirs conditioning to non-Darcy flow data at low velocity were obtained. It is shown by a lot of numerical calculations that the wellbore pressures are much more sensitive to permeability very near the well than to permeability a few gridblocks away from the well. When an initial pressure gradient existent sensitivity coefficients in the region are closer to the active well than to the observation well. Sensitivity coefficients of observation well at the line between the active well and the observation well are influenced greatly by the initial pressure gradient. 展开更多
关键词 non-Darcy flow through porous media PERMEABILITY POROSITY sensitivity coefficient inverse problem low-permeability reservoir
下载PDF
A Method for Identifying Channeling Paths in Low-Permeability Fractured Reservoirs
20
作者 Zhenfeng Zhao Bin Li +6 位作者 Zubo Su Lijing Chang Hongzheng Zhu Ming Liu Jialing Ma Fan Wang Qianwan Li 《Fluid Dynamics & Materials Processing》 EI 2022年第6期1781-1794,共14页
Often oilfield fractured horizontal wells produce water flowing in multiple directions.In this study,a method to identify such channeling paths is developed.The dual-medium model is based on the principle of inter-wel... Often oilfield fractured horizontal wells produce water flowing in multiple directions.In this study,a method to identify such channeling paths is developed.The dual-medium model is based on the principle of inter-well connectivity and considers the flow characteristics and related channeling terms.The Lorentz curve is drawn to qualitatively discern the geological type of the low-permeability fractured reservoir and determine the channeling direction and size.The practical application of such an approach to a sample oilfield shows that it can accurately identify the channeling paths of the considered low-permeability fractured reservoir and predict production performances according to the inter-well connectivity model.As a result,early detection of water channeling becomes possible,paving the way to real-time production system optimization in low-permeability fractured reservoirs. 展开更多
关键词 low-permeability fractured reservoir fracturing horizontal well interwell connectivity dual media channeling paths
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部