When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain ada...When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are welllabeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets.展开更多
Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The signif...Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.展开更多
Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Anal...Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.展开更多
Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical ...Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes.展开更多
A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with...A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.展开更多
To promote gas extraction in low-rank high-gas coal beds, the pore structure characteristics of the coal and their effect on gas desorption were studied. The results show that micropores are relatively rare in low-ran...To promote gas extraction in low-rank high-gas coal beds, the pore structure characteristics of the coal and their effect on gas desorption were studied. The results show that micropores are relatively rare in low-rank coal; mesopores are usually semi-open and inkpot-shaped whereas macropores are usually slit-shaped. Gas desorption is relatively easy at high- pressure stages, whereas it is difficult at low-pressure stages because of the 'bottleneck effect' of the semi-open inkpot-shaped mesopores. A 'two-three-two' gas extraction model was established following experimental analysis and engineering practice applied in the Binchang mining area. In this model, gas extraction is divided into three periods: a planning period, a transitional period and a production period. In each period, surface extraction and underground extraction are performed simultaneously, and pressure-relief extraction and conventional extraction are coupled to each other. After applying this model, the gas extraction rate rose to 78.8 %.展开更多
The high-value utilization of low-rank coal would allow for expanding energy sources,improving energy efficiencies,and alleviating environmental issues.In order to use low-rank coal effectively,the hypercoals(HPCs)wer...The high-value utilization of low-rank coal would allow for expanding energy sources,improving energy efficiencies,and alleviating environmental issues.In order to use low-rank coal effectively,the hypercoals(HPCs)were co-extracted from two types of low-rank coal and biomass via N-methyl-2-purrolidinone(NMP)under mild conditions.The structures of the HPCs and residues were characterized by proximate and ultimate analysis,Raman spectra,and Fourier transform infrared(FT-IR)spectra.The carbon structure changes within the raw coals and HPCs were discussed.The individual thermal dissolution of Xibu(XB)coal,Guandi(GD)coal,and the biomass demonstrated that the biomass provided the lowest thermal dissolution yield Y1 and the highest thermal soluble yield Y2 at 280℃,and the ash content of three HPCs decreased as the extraction temperature rose.Co-thermal extractions in NMP at various coal/biomass mass ratios were performed,demonstrating a positive synergic effect for Y2 in the whole coal/biomass mass ratios.The maximum value of Y2 was 52.25wt% for XB coal obtained with a XB coal/biomass of 50wt% biomass.The maximum value of Y2 was 50.77wt% for GD coal obtained with a GD coal/biomass of 1:4.The difference for the optimal coal/biomass mass ratios between XB and GD coals could be attributed to the different co-extraction mechanisms for this two type coals.展开更多
To reasonably utilize the coal direct liquefaction residue(DLR), contrasting research on the co-pyrolysis between different low-rank coals and DLR was investigated using a TGA coupled with an FT-IR spectrophotometer a...To reasonably utilize the coal direct liquefaction residue(DLR), contrasting research on the co-pyrolysis between different low-rank coals and DLR was investigated using a TGA coupled with an FT-IR spectrophotometer and a fixed-bed reactor. GC–MS, FTIR, and XRD were used to explore the reaction mechanisms of the various co-pyrolysis processes. Based on the TGA results, it was confirmed that the tetrahydrofuran insoluble fraction of DLR helped to catalyze the conversion reaction of lignite. Also, the addition of DLR improved the yield of tar in the fixed-bed, with altering the composition of the tar. Moreover, a kinetic analysis during the co-pyrolysis was conducted using a distributed activation energy model. The co-pyrolysis reactions showed an approximate double-Gaussian distribution.展开更多
The effect of sodium lignosulfonate(SL)as additive on the preparation of low-rank coal-water slurry(LCWS)was studied by experiments and molecular dynamics(MD)simulation s.The experimental results show that the appropr...The effect of sodium lignosulfonate(SL)as additive on the preparation of low-rank coal-water slurry(LCWS)was studied by experiments and molecular dynamics(MD)simulation s.The experimental results show that the appropriate amount of additives is beneficial to reduce the viscosity of LCWS and increase the slurry concentration.Adsorption isotherm studies showed that SL conforms to single-layer adsorption on the coal surface,andΔG_(ads)^(0) was negative,proving that the reaction was spontaneous.Zeta potential measurements showed that SL increased the negative charge on coal.FTIR scanning and XPS wide-range scanning were performed on the coal before and after adsorption,and it was found that the content of oxygen functional groups on coal increased after adsorption.Simulation results show that when a large number of SL molecules exist in the solution,some SL molecules will bind to hydrophobic hydrocarbon groups on coal.The rest of the SL molecule s,their hydrophobic alkyl tails,come into contact with each other and aggregate in solution.The agglomeration of SL molecules and the surface of coal with static electricity will also produce electrostatic interaction,which is conducive to the even dispersion of coal particles.The results of mean square displacement(MSD)and self-diffusion coefficient(D)show that the addition of SL reduces the diffusion rate of water molecules.Simulation results correspond to experimental results,indicating that MD simulation is accurate and feasible.展开更多
The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be ...The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.展开更多
In this paper,we proposed a novel method for low-field nuclear magnetic resonance(NMR)inversion based on low-rank and sparsity restraint(LRSR)of relaxation spectra,with which high quality construction is made possible...In this paper,we proposed a novel method for low-field nuclear magnetic resonance(NMR)inversion based on low-rank and sparsity restraint(LRSR)of relaxation spectra,with which high quality construction is made possible for one-and two-dimensional low-field and low signal to noise ratio NMR data.In this method,the low-rank and sparsity restraints are introduced into the objective function instead of the smoothing term.The low-rank features in relaxation spectra are extracted to ensure the local characteristics and morphology of spectra.The sparsity and residual term are contributed to the resolution and precision of spectra,with the elimination of the redundant relaxation components.Optimization process of the objective function is designed with alternating direction method of multiples,in which the objective function is decomposed into three subproblems to be independently solved.The optimum solution can be obtained by alternating iteration and updating process.At first,numerical simulations are conducted on synthetic echo data with different signal-to-noise ratios,to optimize the desirable regularization parameters and verify the feasibility and effectiveness of proposed method.Then,NMR experiments on solutions and artificial sandstone samples are conducted and analyzed,which validates the robustness and reliability of the proposed method.The results from simulations and experiments have demonstrated that the suggested method has unique advantages for improving the resolution of relaxation spectra and enhancing the ability of fluid quantitative identification.展开更多
Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed...Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.展开更多
Wave propagation in the viscoacoustic media is physically dispersive and dissipated.Completely excluding the numerical dispersion error from the physical dispersion in the viscoacoustic wave simu-lation is indispensab...Wave propagation in the viscoacoustic media is physically dispersive and dissipated.Completely excluding the numerical dispersion error from the physical dispersion in the viscoacoustic wave simu-lation is indispensable to understanding the intrinsic property of the wave propagation in attenuated media for the petroleum exploration geophysics.In recent years,a viscoacoustic wave equation char-acterized by fractional Laplacian gains wide attention in geophysical community.However,the first-order form of the viscoacoustic wave equation,often solved by the conventional staggered-grid pseu-dospectral method,suffers from the numerical dispersion error in time due to the low-order finite-difference approximation.It is challenging to completely eliminate the error because the viscoacoustic wave equation contains two temporal derivatives,which stem from the time stepping and the amplitude attenuation terms,respectively.To tackle the issue,we derive two exact first-order k-space viscoacoustic formulations that can fully exclude the numerical error from the physical dispersion.For the homoge-neous case,two formulations agree with the viscoacoustic analytical solution very well and have the same efficiency.For the heterogeneous case,our second k-space formulation is more efficient than the first one because the second formulation significantly reduces the number of the wavenumber-space mixed-domain operators,which are the expensive part of the viscoacoustic k-space simulation.Nu-merical cases validate that the two first-order k-space formulations are effective and efficient alternatives to the current staggered-grid pseudospectral formulation for the viscoacoustic wave simulation.展开更多
Pore structure characteristics are significant factor in the evaluation of the physical characteristics of low-rank coal.In this study,three low-rank coal samples were collected from the Xishanyao Formation,Santanghu ...Pore structure characteristics are significant factor in the evaluation of the physical characteristics of low-rank coal.In this study,three low-rank coal samples were collected from the Xishanyao Formation,Santanghu Basin,and low-temperature liquid-nitrogen adsorption(LP-N2A)measurements were taken under various pretreatment temperatures.Owing to the continuous loss of water and volatile matter in low-rank coal,the total pore volume assumes a three-step profile with knee temperatures of 150°C and 240°C.However,the ash in the coal can protect the coal skeleton.Pore collapse mainly occurs for mesopores with aperture smaller than 20 nm.Mesopores with apertures smaller than 5 nm exhibit a continuous decrease in pore volume,whereas the pore volume of mesopores with apertures ranging from 5 to 10 nm increases at lower pretreatment temperatures(<150°C)followed by a faint decrease.As for mesopores with apertures larger than 10 nm,the pore volume increases significantly when the pretreatment temperature reaches 300°C.The pore structure of low-rank coal features a significant heating effect,the pretreatment temperature should not exceed 150°C when the LP-N2A is used to evaluate the pore structure of low-rank coal to effectively evaluate the reservoir characteristics of low-rank coal.展开更多
The utilization of an appropriate collector or surfactant is crucial for the beneficiation of low-rank coal.However,in previous studies,the selection of surfactants was primarily based on flotation procedures,which hi...The utilization of an appropriate collector or surfactant is crucial for the beneficiation of low-rank coal.However,in previous studies,the selection of surfactants was primarily based on flotation procedures,which hinders the understanding of the interaction mechanism between surfactant groups and oxygen-containing functional groups at the surface of low-rank coal.In this study,we investigate the flotation of low-rank coal in the presence of a composite collector by using a combined theoretical and experimental approach.The maximum flotation mass recovery achieved was 82.89%using a 3:1 mixture of dodecane and castor oil acid.Fourier-transform infrared and X-ray photoelectron spectroscopic analyses showed that castor oil acid was effectively adsorbed onto the surface of low-rank coal,enhancing the hydrophobicity of the coal.In addition,the diffusion coefficient of water molecules in the water-composite collector-coal system was greater than that in the dodecane system.Moreover,due to the presence of castor oil acid in the flotation process,the adsorption distance of dodecane and low-rank coal became shorter.Molecular dynamics simulations revealed that the diffusion and interaction of surfactant molecules at the interface of low-rank coal particles and water was enhanced because the adsorption of the dodecane-castor oil acid mixture is primarily controlled by hydrogen bonds and electrostatic attraction.Based on these results,a better surfactant for flotation of low-rank coal is also proposed.展开更多
基金supported by the National Natural Science Foundation of China (62206204,62176193)the Natural Science Foundation of Hubei Province,China (2023AFB705)the Natural Science Foundation of Chongqing,China (CSTB2023NSCQ-MSX0932)。
文摘When encountering the distribution shift between the source(training) and target(test) domains, domain adaptation attempts to adjust the classifiers to be capable of dealing with different domains. Previous domain adaptation research has achieved a lot of success both in theory and practice under the assumption that all the examples in the source domain are welllabeled and of high quality. However, the methods consistently lose robustness in noisy settings where data from the source domain have corrupted labels or features which is common in reality. Therefore, robust domain adaptation has been introduced to deal with such problems. In this paper, we attempt to solve two interrelated problems with robust domain adaptation:distribution shift across domains and sample noises of the source domain. To disentangle these challenges, an optimal transport approach with low-rank constraints is applied to guide the domain adaptation model training process to avoid noisy information influence. For the domain shift problem, the optimal transport mechanism can learn the joint data representations between the source and target domains using a measurement of discrepancy and preserve the discriminative information. The rank constraint on the transport matrix can help recover the corrupted subspace structures and eliminate the noise to some extent when dealing with corrupted source data. The solution to this relaxed and regularized optimal transport framework is a convex optimization problem that can be solved using the Augmented Lagrange Multiplier method, whose convergence can be mathematically proved. The effectiveness of the proposed method is evaluated through extensive experiments on both synthetic and real-world datasets.
文摘Multi-view Subspace Clustering (MVSC) emerges as an advanced clustering method, designed to integrate diverse views to uncover a common subspace, enhancing the accuracy and robustness of clustering results. The significance of low-rank prior in MVSC is emphasized, highlighting its role in capturing the global data structure across views for improved performance. However, it faces challenges with outlier sensitivity due to its reliance on the Frobenius norm for error measurement. Addressing this, our paper proposes a Low-Rank Multi-view Subspace Clustering Based on Sparse Regularization (LMVSC- Sparse) approach. Sparse regularization helps in selecting the most relevant features or views for clustering while ignoring irrelevant or noisy ones. This leads to a more efficient and effective representation of the data, improving the clustering accuracy and robustness, especially in the presence of outliers or noisy data. By incorporating sparse regularization, LMVSC-Sparse can effectively handle outlier sensitivity, which is a common challenge in traditional MVSC methods relying solely on low-rank priors. Then Alternating Direction Method of Multipliers (ADMM) algorithm is employed to solve the proposed optimization problems. Our comprehensive experiments demonstrate the efficiency and effectiveness of LMVSC-Sparse, offering a robust alternative to traditional MVSC methods.
文摘Principal Component Analysis (PCA) is a widely used technique for data analysis and dimensionality reduction, but its sensitivity to feature scale and outliers limits its applicability. Robust Principal Component Analysis (RPCA) addresses these limitations by decomposing data into a low-rank matrix capturing the underlying structure and a sparse matrix identifying outliers, enhancing robustness against noise and outliers. This paper introduces a novel RPCA variant, Robust PCA Integrating Sparse and Low-rank Priors (RPCA-SL). Each prior targets a specific aspect of the data’s underlying structure and their combination allows for a more nuanced and accurate separation of the main data components from outliers and noise. Then RPCA-SL is solved by employing a proximal gradient algorithm for improved anomaly detection and data decomposition. Experimental results on simulation and real data demonstrate significant advancements.
基金funded by the National Natural Science Foundation of China,grant number 61302188.
文摘Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes.
文摘A number of previous papers have studied the problem of recovering low-rank matrices with noise, further combining the noisy and perturbed cases, we propose a nonconvex Schatten p-norm minimization method to deal with the recovery of fully perturbed low-rank matrices. By utilizing the p-null space property (p-NSP) and the p-restricted isometry property (p-RIP) of the matrix, sufficient conditions to ensure that the stable and accurate reconstruction for low-rank matrix in the case of full perturbation are derived, and two upper bound recovery error estimation ns are given. These estimations are characterized by two vital aspects, one involving the best r-approximation error and the other concerning the overall noise. Specifically, this paper obtains two new error upper bounds based on the fact that p-RIP and p-NSP are able to recover accurately and stably low-rank matrix, and to some extent improve the conditions corresponding to RIP.
基金Acknowledgments The research was supported by the National Basic Research Programme of China (973 Project) (2011CB201205), National Natural Science Foundation of China (51474211), and the National Key Technology R&D Program (2012BAK04B07).
文摘To promote gas extraction in low-rank high-gas coal beds, the pore structure characteristics of the coal and their effect on gas desorption were studied. The results show that micropores are relatively rare in low-rank coal; mesopores are usually semi-open and inkpot-shaped whereas macropores are usually slit-shaped. Gas desorption is relatively easy at high- pressure stages, whereas it is difficult at low-pressure stages because of the 'bottleneck effect' of the semi-open inkpot-shaped mesopores. A 'two-three-two' gas extraction model was established following experimental analysis and engineering practice applied in the Binchang mining area. In this model, gas extraction is divided into three periods: a planning period, a transitional period and a production period. In each period, surface extraction and underground extraction are performed simultaneously, and pressure-relief extraction and conventional extraction are coupled to each other. After applying this model, the gas extraction rate rose to 78.8 %.
基金financially supported by the National Natural Science Foundation of China (No. 51574023)
文摘The high-value utilization of low-rank coal would allow for expanding energy sources,improving energy efficiencies,and alleviating environmental issues.In order to use low-rank coal effectively,the hypercoals(HPCs)were co-extracted from two types of low-rank coal and biomass via N-methyl-2-purrolidinone(NMP)under mild conditions.The structures of the HPCs and residues were characterized by proximate and ultimate analysis,Raman spectra,and Fourier transform infrared(FT-IR)spectra.The carbon structure changes within the raw coals and HPCs were discussed.The individual thermal dissolution of Xibu(XB)coal,Guandi(GD)coal,and the biomass demonstrated that the biomass provided the lowest thermal dissolution yield Y1 and the highest thermal soluble yield Y2 at 280℃,and the ash content of three HPCs decreased as the extraction temperature rose.Co-thermal extractions in NMP at various coal/biomass mass ratios were performed,demonstrating a positive synergic effect for Y2 in the whole coal/biomass mass ratios.The maximum value of Y2 was 52.25wt% for XB coal obtained with a XB coal/biomass of 50wt% biomass.The maximum value of Y2 was 50.77wt% for GD coal obtained with a GD coal/biomass of 1:4.The difference for the optimal coal/biomass mass ratios between XB and GD coals could be attributed to the different co-extraction mechanisms for this two type coals.
基金Supported by National High-tech Research and Development Program of China(2011AA05A2021)the National Natural Science Foundation of China(21536009)Science and Technology Plan Projects of Shaanxi Province(2017ZDCXL-GY-10-03).
文摘To reasonably utilize the coal direct liquefaction residue(DLR), contrasting research on the co-pyrolysis between different low-rank coals and DLR was investigated using a TGA coupled with an FT-IR spectrophotometer and a fixed-bed reactor. GC–MS, FTIR, and XRD were used to explore the reaction mechanisms of the various co-pyrolysis processes. Based on the TGA results, it was confirmed that the tetrahydrofuran insoluble fraction of DLR helped to catalyze the conversion reaction of lignite. Also, the addition of DLR improved the yield of tar in the fixed-bed, with altering the composition of the tar. Moreover, a kinetic analysis during the co-pyrolysis was conducted using a distributed activation energy model. The co-pyrolysis reactions showed an approximate double-Gaussian distribution.
基金supported by SDUST Research Fund(Grant No.2018TDJH101)Key Research and Development Project of Shandong(Grant No.2019GGX103035)+2 种基金National Natural Science Foundation of China(Grant Nos.51904174,52074175)Young Science and Technology Innovation Program of Shandong Province(Grant No.2020KJD001)Project of Shandong Province Higher Educational Young Innovative Talent Introduction and Cultivation Team。
文摘The effect of sodium lignosulfonate(SL)as additive on the preparation of low-rank coal-water slurry(LCWS)was studied by experiments and molecular dynamics(MD)simulation s.The experimental results show that the appropriate amount of additives is beneficial to reduce the viscosity of LCWS and increase the slurry concentration.Adsorption isotherm studies showed that SL conforms to single-layer adsorption on the coal surface,andΔG_(ads)^(0) was negative,proving that the reaction was spontaneous.Zeta potential measurements showed that SL increased the negative charge on coal.FTIR scanning and XPS wide-range scanning were performed on the coal before and after adsorption,and it was found that the content of oxygen functional groups on coal increased after adsorption.Simulation results show that when a large number of SL molecules exist in the solution,some SL molecules will bind to hydrophobic hydrocarbon groups on coal.The rest of the SL molecule s,their hydrophobic alkyl tails,come into contact with each other and aggregate in solution.The agglomeration of SL molecules and the surface of coal with static electricity will also produce electrostatic interaction,which is conducive to the even dispersion of coal particles.The results of mean square displacement(MSD)and self-diffusion coefficient(D)show that the addition of SL reduces the diffusion rate of water molecules.Simulation results correspond to experimental results,indicating that MD simulation is accurate and feasible.
基金Supported by the National Natural Science Foundation of China(Grant No.11971149,11871381)Natural Science Foundation of Henan Province for Youth(Grant No.202300410146)。
文摘The task of dividing corrupted-data into their respective subspaces can be well illustrated,both theoretically and numerically,by recovering low-rank and sparse-column components of a given matrix.Generally,it can be characterized as a matrix and a 2,1-norm involved convex minimization problem.However,solving the resulting problem is full of challenges due to the non-smoothness of the objective function.One of the earliest solvers is an 3-block alternating direction method of multipliers(ADMM)which updates each variable in a Gauss-Seidel manner.In this paper,we present three variants of ADMM for the 3-block separable minimization problem.More preciously,whenever one variable is derived,the resulting problems can be regarded as a convex minimization with 2 blocks,and can be solved immediately using the standard ADMM.If the inner iteration loops only once,the iterative scheme reduces to the ADMM with updates in a Gauss-Seidel manner.If the solution from the inner iteration is assumed to be exact,the convergence can be deduced easily in the literature.The performance comparisons with a couple of recently designed solvers illustrate that the proposed methods are effective and competitive.
基金supported by “National Natural Science Foundation of China (Grant No. 42204106)”“China Postdoctoral Science Foundation (Grant No. 2021M700172)”+1 种基金“The Strategic Cooperation Technology Projects of CNPC and CUP (Grant No. ZLZX2020-03)”“Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 20KJD430002)”
文摘In this paper,we proposed a novel method for low-field nuclear magnetic resonance(NMR)inversion based on low-rank and sparsity restraint(LRSR)of relaxation spectra,with which high quality construction is made possible for one-and two-dimensional low-field and low signal to noise ratio NMR data.In this method,the low-rank and sparsity restraints are introduced into the objective function instead of the smoothing term.The low-rank features in relaxation spectra are extracted to ensure the local characteristics and morphology of spectra.The sparsity and residual term are contributed to the resolution and precision of spectra,with the elimination of the redundant relaxation components.Optimization process of the objective function is designed with alternating direction method of multiples,in which the objective function is decomposed into three subproblems to be independently solved.The optimum solution can be obtained by alternating iteration and updating process.At first,numerical simulations are conducted on synthetic echo data with different signal-to-noise ratios,to optimize the desirable regularization parameters and verify the feasibility and effectiveness of proposed method.Then,NMR experiments on solutions and artificial sandstone samples are conducted and analyzed,which validates the robustness and reliability of the proposed method.The results from simulations and experiments have demonstrated that the suggested method has unique advantages for improving the resolution of relaxation spectra and enhancing the ability of fluid quantitative identification.
基金National Natural Foundation of China(No.41971279)Fundamental Research Funds of the Central Universities(No.B200202012)。
文摘Low-Rank and Sparse Representation(LRSR)method has gained popularity in Hyperspectral Image(HSI)processing.However,existing LRSR models rarely exploited spectral-spatial classification of HSI.In this paper,we proposed a novel Low-Rank and Sparse Representation with Adaptive Neighborhood Regularization(LRSR-ANR)method for HSI classification.In the proposed method,we first represent the hyperspectral data via LRSR since it combines both sparsity and low-rankness to maintain global and local data structures simultaneously.The LRSR is optimized by using a mixed Gauss-Seidel and Jacobian Alternating Direction Method of Multipliers(M-ADMM),which converges faster than ADMM.Then to incorporate the spatial information,an ANR scheme is designed by combining Euclidean and Cosine distance metrics to reduce the mixed pixels within a neighborhood.Lastly,the predicted labels are determined by jointly considering the homogeneous pixels in the classification rule of the minimum reconstruction error.Experimental results based on three popular hyperspectral images demonstrate that the proposed method outperforms other related methods in terms of classification accuracy and generalization performance.
文摘Wave propagation in the viscoacoustic media is physically dispersive and dissipated.Completely excluding the numerical dispersion error from the physical dispersion in the viscoacoustic wave simu-lation is indispensable to understanding the intrinsic property of the wave propagation in attenuated media for the petroleum exploration geophysics.In recent years,a viscoacoustic wave equation char-acterized by fractional Laplacian gains wide attention in geophysical community.However,the first-order form of the viscoacoustic wave equation,often solved by the conventional staggered-grid pseu-dospectral method,suffers from the numerical dispersion error in time due to the low-order finite-difference approximation.It is challenging to completely eliminate the error because the viscoacoustic wave equation contains two temporal derivatives,which stem from the time stepping and the amplitude attenuation terms,respectively.To tackle the issue,we derive two exact first-order k-space viscoacoustic formulations that can fully exclude the numerical error from the physical dispersion.For the homoge-neous case,two formulations agree with the viscoacoustic analytical solution very well and have the same efficiency.For the heterogeneous case,our second k-space formulation is more efficient than the first one because the second formulation significantly reduces the number of the wavenumber-space mixed-domain operators,which are the expensive part of the viscoacoustic k-space simulation.Nu-merical cases validate that the two first-order k-space formulations are effective and efficient alternatives to the current staggered-grid pseudospectral formulation for the viscoacoustic wave simulation.
基金This work was supported by the Natural Science Basic Research Plan in Shaanxi Province of China(Program No.2019JQ-527)Shandong Key laboratory of Depositional Mineralization and Sedimentary Mineral Open Fund(Program No.DMSM20190014)Scientific Research Program Funded by Shaanxi Provincial Education Department(Program No.20JS116)。
文摘Pore structure characteristics are significant factor in the evaluation of the physical characteristics of low-rank coal.In this study,three low-rank coal samples were collected from the Xishanyao Formation,Santanghu Basin,and low-temperature liquid-nitrogen adsorption(LP-N2A)measurements were taken under various pretreatment temperatures.Owing to the continuous loss of water and volatile matter in low-rank coal,the total pore volume assumes a three-step profile with knee temperatures of 150°C and 240°C.However,the ash in the coal can protect the coal skeleton.Pore collapse mainly occurs for mesopores with aperture smaller than 20 nm.Mesopores with apertures smaller than 5 nm exhibit a continuous decrease in pore volume,whereas the pore volume of mesopores with apertures ranging from 5 to 10 nm increases at lower pretreatment temperatures(<150°C)followed by a faint decrease.As for mesopores with apertures larger than 10 nm,the pore volume increases significantly when the pretreatment temperature reaches 300°C.The pore structure of low-rank coal features a significant heating effect,the pretreatment temperature should not exceed 150°C when the LP-N2A is used to evaluate the pore structure of low-rank coal to effectively evaluate the reservoir characteristics of low-rank coal.
基金the Foundation of Guizhou Province(No.Qiankehe-ZK[2021]Yiban 255)the National Natural Science Foundation of China(No.52264032)the Foundation of Liupanshui Normal University(No.LPSSYLPY202122).
文摘The utilization of an appropriate collector or surfactant is crucial for the beneficiation of low-rank coal.However,in previous studies,the selection of surfactants was primarily based on flotation procedures,which hinders the understanding of the interaction mechanism between surfactant groups and oxygen-containing functional groups at the surface of low-rank coal.In this study,we investigate the flotation of low-rank coal in the presence of a composite collector by using a combined theoretical and experimental approach.The maximum flotation mass recovery achieved was 82.89%using a 3:1 mixture of dodecane and castor oil acid.Fourier-transform infrared and X-ray photoelectron spectroscopic analyses showed that castor oil acid was effectively adsorbed onto the surface of low-rank coal,enhancing the hydrophobicity of the coal.In addition,the diffusion coefficient of water molecules in the water-composite collector-coal system was greater than that in the dodecane system.Moreover,due to the presence of castor oil acid in the flotation process,the adsorption distance of dodecane and low-rank coal became shorter.Molecular dynamics simulations revealed that the diffusion and interaction of surfactant molecules at the interface of low-rank coal particles and water was enhanced because the adsorption of the dodecane-castor oil acid mixture is primarily controlled by hydrogen bonds and electrostatic attraction.Based on these results,a better surfactant for flotation of low-rank coal is also proposed.