期刊文献+
共找到628篇文章
< 1 2 32 >
每页显示 20 50 100
Intrinsic apoptotic pathway and G2/M cell cycle arrest involved in tubeimoside I-induced EC109 cell death 被引量:14
1
作者 Yang Xu Guanghui Wang +5 位作者 Quancheng Chen Ting Lin Zhiping Zeng Qiang Luo Jie Liu Cuiling Sun 《Chinese Journal of Cancer Research》 SCIE CAS CSCD 2013年第3期312-321,共10页
Objective: Squamous esophageal carcinoma is highly prevalent in developing countries, especially in China. Tu Bei Mu (TBM), a traditional folk medicine, has been used to treat esophageal squamous cell carcinoma (E... Objective: Squamous esophageal carcinoma is highly prevalent in developing countries, especially in China. Tu Bei Mu (TBM), a traditional folk medicine, has been used to treat esophageal squamous cell carcinoma (ESCC) for a long term. tubeimoside I (TBMS1) is the main component of TBM, exhibiting great anticancer potential. In this study, we investigated the mechanism of TBMS1 cytotoxic effect on EC109 cells. Methods: Comparative nuclear proteomic approach was applied in the current study and we identified several altered protein spots. Further biochemical studies were carried out to detect the mitochondrial membrane potential, cell cycle and corresponding proteins' expression and location. Results: Subcellular proteomic study in the nucleus from EC109 cells revealed that altered proteins were associated with mitochondrial function and cell proliferation. Further biochemical studies showed that TBMSl-induced molecular events were related to mitochondria-induced intrinsic apoptosis and P21-cyclin B 1/cdc2 complex-related G2/M cell cycle arrest. Conclusions: Considering the conventional application of TBM in esophageal cancer, TBMS1 therefore may have a great potential as a chemotherapeutic drug candidate for ESCC. 展开更多
关键词 Anticancer drug G2/m cell cycle arrest intrinsic apoptosis subcellular proteomics and tubeimoside I(TBmS 1)
下载PDF
Intestinal M cells:The fallible sentinels? 被引量:6
2
作者 Harvey Miller Rhonda KuoLee Girishchandra B Patel 《World Journal of Gastroenterology》 SCIE CAS CSCD 2007年第10期1477-1486,共10页
The gastrointestinal tract represents the largest mucosal membrane surface in the human body. The immune system in the gut is the first line of host defense against mucosal microbial pathogens and it plays a crucial r... The gastrointestinal tract represents the largest mucosal membrane surface in the human body. The immune system in the gut is the first line of host defense against mucosal microbial pathogens and it plays a crucial role in maintaining mucosal homeostasis. Membranous or microfold cells, commonly referred to as microfold cells, are specialized epithelial cells of the gut-associated lymphoid tissues (GALT) and they play a sentinel role for the intestinal immune system by delivering luminal antigens through the follicle-associated epithelium to the underlying immune cells. M cells sample and uptake antigens at their apical membrane, encase them in vesicles to transport them to the basolateral membrane of M cells, and from there deliver antigens to the nearby lymphocytes. On the flip side, some intestinal pathogens exploit M cells as their portal of entry to invade the host and cause infections. In this article, we briefly review our current knowledge on the morphology, development, and function of M cells, with an emphasis on their dual role in the pathogenesis of gut infection and in the development of host mucosal immunity. 展开更多
关键词 m cell GASTROINTESTINAL DEVELOPmENT PATHOGENESIS mucosal immunity
下载PDF
Prion Protein Binds to Aldolase A Produced by Bovine Intestinal M Cells 被引量:1
3
作者 Yuya Nagasawa Yu Takahashi +15 位作者 Wataru Itani Hitoshi Watanabe Yusuke Hidaka Shotaro Morita Kei Suzuki Kouichi Watanabe Shyuichi Ohwada Haruki Kitazawa Morikazu Imamura Takashi Yokoyama Motohiro Horiuchi Suehiro Sakaguchi Shirou Mohri Michael T. Rose Tomonori Nochi Hisashi Aso 《Open Journal of Veterinary Medicine》 2015年第3期43-60,共18页
Microfold (M) cells are a kind of intestinal epithelial cell in the follicle-associated epithelium (FAE) of Peyer’s patches. They can transport antigens and microorganisms to lymphoid tissues. Bovine spongiform encep... Microfold (M) cells are a kind of intestinal epithelial cell in the follicle-associated epithelium (FAE) of Peyer’s patches. They can transport antigens and microorganisms to lymphoid tissues. Bovine spongiform encephalopathy (BSE) is a fatal neurodegenerative disorder in cattle. It is linked to variant Creutzfeldt-Jakob disease in humans. Although it is thought that M cells transport the BSE agent, the exact mechanism by which it crosses the intestinal barrier is not clear. We have bovine intestinal epithelial cell line (BIE cells), which can differentiate into the M cell type in vitro after stimulation, and which is able to transport the BSE agent. We show here that M cells are able to incorporate large numbers of PrP coated magnetic particles into intracellular vesicles, which we collected. The results of 2-DE show a specific protein associated with the PrP-coated particles, compared with non-coated particles. This protein was identified as aldolase A, a glycolytic pathway enzyme, using LC-MS/MS analysis. Aldolase A was synthesized and secreted by BIE cells, and increased during M cell differentiation. In the villi of the bovine intestine, aldolase A was detected on the surface of the epithelium and in the mucus droplet of goblet cells. In the FAE of bovine jejunal and ileal Peyer’s patches, aldolase A was localized on the surface and the apical part of the M cells. The binding of rbPrP to aldolase A was clearly detected and inhibited by pre-treatment of anti-aldolase A antibody. Aldolase A was co-stained with incorporated PrPSc in M-BIE cells. These results suggest that bovine M cells and goblet cells synthesize aldolase A, and that aldolase A may have the ability to bind PrP and associate with PrP in cellular vesicles. Therefore, aldolase A-positive M cells may play a key role in the invasion of BSE into the body. 展开更多
关键词 Peyer’s PATCH m cell BIE cells ALDOLASE A PRP Binding Protein
下载PDF
Müller cells are activated in response to retinal outer nuclear layer degeneration in rats subjected to simulated weightlessness conditions
4
作者 Yuxue Mu Ning Zhang +7 位作者 Dongyu Wei Guoqing Yang Lilingxuan Yao Xinyue Xu Yang Li Junhui Xue Zuoming Zhang Tao Chen 《Neural Regeneration Research》 SCIE CAS 2025年第7期2116-2128,共13页
A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to ... A microgravity environment has been shown to cause ocular damage and affect visual acuity,but the underlying mechanisms remain unclear.Therefore,we established an animal model of weightlessness via tail suspension to examine the pathological changes and molecular mechanisms of retinal damage under microgravity.After 4 weeks of tail suspension,there were no notable alterations in retinal function and morphology,while after 8 weeks of tail suspension,significant reductions in retinal function were observed,and the outer nuclear layer was thinner,with abundant apoptotic cells.To investigate the mechanism underlying the degenerative changes that occurred in the outer nuclear layer of the retina,proteomics was used to analyze differentially expressed proteins in rat retinas after 8 weeks of tail suspension.The results showed that the expression levels of fibroblast growth factor 2(also known as basic fibroblast growth factor)and glial fibrillary acidic protein,which are closely related to Müller cell activation,were significantly upregulated.In addition,Müller cell regeneration and Müller cell gliosis were observed after 4 and 8 weeks,respectively,of simulated weightlessness.These findings indicate that Müller cells play an important regulatory role in retinal outer nuclear layer degeneration during weightlessness. 展开更多
关键词 glial fibrous acidic protein GLIOSIS müller cells nerve growth factor neural differentiation neurodegeneration proteomic retinal degeneration retinal outer nuclear layer simulated weightlessness
下载PDF
Absence of ephrin-A2/A3 increases retinal regenerative potential for Müller cells in Rhodopsin knockout mice
5
作者 Rui-Lin Zhu Yuan Fang +3 位作者 Hong-Hua Yu Dong FChen Liu Yang Kin-Sang Cho 《Neural Regeneration Research》 SCIE CAS CSCD 2021年第7期1317-1322,共6页
Müller cells(MC) are considered dormant retinal progenitor cells in mammals.Previous studies demonstrated ephrin-As act as negative regulators of neural progenitor cells in the retina and brain.It remains unclear... Müller cells(MC) are considered dormant retinal progenitor cells in mammals.Previous studies demonstrated ephrin-As act as negative regulators of neural progenitor cells in the retina and brain.It remains unclear whether the lack of ephrin-A2/A3 is sufficient to promote the neurogenic potential of MC.Here we investigated whether the MC is the primary retinal cell type expressing ephrin-A2/A3 and their role on the neurogenic potential of Müller cells.In this study, we showed that ephrin-A2/A3 and their receptor EphA4 were expressed in retina and especially enriched in MC.The level of ephrin As/EphA4 expression increased as the retina matured that is correlated with the reduced proliferative and progenitor cell potential of MC.Next, we investigated the proliferation in primary MC cultures isolated from wild-type and A2~(–/–) A3~(–/–) mice by 5-ethynyl-2′-deoxyuridine(EdU) incorporation.We detected a significant increase of EdU~+ cells in MC derived from A2~(–/–) A3~(–/–) mice.Next, we investigated the role of ephrin-A2/A3 in mice undergoing photoreceptor degeneration such as Rhodopsin knockout(Rho~(–/–)) mice.To further evaluate the role of ephrin-A2/A3 in MC proliferation in vivo, EdU was injected intraperitoneally to adult wild-type, A2~(–/–) A3~(–/–), Rho~(–/–) and Rho~(–/–) A2~(–/–) A3~(–/–) mice and the numbers of EdU~+ cells distributed among different layers of the retina.Ephrin As/EphA4 expression was upregulated in the retina of Rho~(–/–) mice compared to the wild-type mice.In addition, cultured MC derived from ephrin-A2~(–/–) A3~(–/–) mice also expressed higher levels of progenitor cell markers and exhibited higher proliferation potential than those from wild-type mice.Interestingly, we detected a significant increase of EdU~+ cells in the retinas of adult ephrin-A2~(–/–) A3~(–/–) mice mainly in the inner nuclear layer;and these EdU~+ cells were co-localized with MC marker, cellular retinaldehyde-binding protein, suggesting some proliferating cells are from MC.In Rhodopsin knockout mice(Rho~(–/–) A2~(–/–) A3~(–/–) mice), a significantly greater amount of EdU~+ cells were located in the ciliary body, retina and RPE than that of Rho~(–/–) mice.Comparing between 6 and 12 weeks old Rho~(–/–) A2~(–/–) A3~(–/–) mice, we recorded more EdU~+ cells in the outer nuclear layer in the 12-week-old mice undergoing severe retinal degeneration.Taken together, Ephrin-A2/A3 are negative regulators of the proliferative and neurogenic potentials of MC.Absence of ephrin-A2/A3 promotes the migration of proliferating cells into the outer nuclear layer and may lead to retinal cell regeneration.All experimental procedures were approved by the Animal Care and Use Committee at Schepens Eye Research Institute, USA(approval No.S-353-0715) on October 24, 2012. 展开更多
关键词 endogenous stem cell EphA4 ephrin-A2 ephrin-A3 EPHRINS müller cell photoreceptor cell regeneration retinal degeneration retinal regeneration retinal stem cell
下载PDF
The construction of in vitro nasal cavity-mimic M-cell model,design of M cell-targeting nanoparticles and evaluation of mucosal vaccination by nasal administration 被引量:6
6
作者 Xiaotong Yang Xianchun Chen +5 位作者 Ting Lei Lin Qin Yang Zhou Chuan Hu Qingfeng Liu Huile Gao 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2020年第6期1094-1105,共12页
In order to better evaluate the transport effect of nanoparticles through the nasal mucosa,an in vitro nasal cavity-mimic model was designed based on M cells.The differentiation of M cells was induced by co-culture of... In order to better evaluate the transport effect of nanoparticles through the nasal mucosa,an in vitro nasal cavity-mimic model was designed based on M cells.The differentiation of M cells was induced by co-culture of Calu-3 and Raji cells in invert model.The ZO-1 protein staining and the transport of fluorescein sodium and dexamethasone showed that the inverted co-culture model formed a dense monolayer and possessed the transport ability.The differentiation of M cells was observed by upregulated expression of Sialyl Lewis A antigen(SLAA)and integrinβ1,and down-regulated activity of alkaline phosphatase.After targeting M cells with iRGD peptide(cRGDKGPDC),the transport of nanoparticles increased.In vivo,the co-administration of iRGD could result in the increase of nanoparticles transported to the brain through the nasal cavity after intranasal administration.In the evaluation of immune effect in vivo,the nasal administration of OVA-PLGA/iRGD led to more release of IgG,IFN-γ,IL-2 and secretory IgA(sIgA)compared with OVA@PLGA group.Collectively,the study constructed in vitro M cell model,and proved the enhanced effect of targeting towards M cell with iRGD on improving nasal immunity. 展开更多
关键词 m cells In vitro cell model iRGD peptide Nasal administration mucosal vaccination
原文传递
Cucurbitacin B-induced G2/M cell cycle arrest of conjunctival melanoma cells mediated by GRP78-FOXM1-KIF20A pathway 被引量:1
7
作者 Jinlian Wei Xin Chen +11 位作者 Yongyun Li Ruoxi Li Keting Bao Liang Liao Yuqing Xie Tiannuo Yang Jin Zhu Fei Mao Shuaishuai Ni Renbing Jia Xiaofang Xu Jian Li 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第10期3861-3876,共16页
Conjunctival melanoma(CM) is a rare and fatal malignant eye tumor. In this study, we deciphered a novel anti-CM mechanism of a natural tetracyclic compound named as cucurbitacin B(CuB). We found that CuB remarkably in... Conjunctival melanoma(CM) is a rare and fatal malignant eye tumor. In this study, we deciphered a novel anti-CM mechanism of a natural tetracyclic compound named as cucurbitacin B(CuB). We found that CuB remarkably inhibited the proliferation of CM cells including CM-AS16,CRMM1, CRMM2 and CM2005.1, without toxicity to normal cells. CuB can also induce CM cells G2/M cell cycle arrest. RNA-seq screening identified KIF20A, a key downstream effector of FOXM1 pathway, was abolished by CuB treatment. Further target identification by activity-based protein profiling chemoproteomic approach revealed that GRP78 is a potential target of CuB. Several lines of evidence demonstrated that CuB interacted with GRP78 and bound with a Kdvalue of0.11 μmol/L. Furthermore, ATPase activity evaluation showed that CuB suppressed GRP78 both in human recombinant GRP78 protein and cellular lysates. Knockdown of the GRP78 gene significantly induced the downregulation of FOXM1 and related pathway proteins including KIF20A, underlying an interesting therapeutic perspective. Finally, CuB significantly inhibited tumor progression in NCG mice without causing obvious side effects in vivo. Taken together, our current work proved that GRP78-FOXM1-KIF20A as a promising pathway for CM therapy, and the traditional medicine CuB as a candidate drug to hinder this pathway. 展开更多
关键词 Conjunctival melanoma Cucurbitacin B Activity-based protein profiling G2/m cell cycle GRP78 FOXm1 KIF20A Rare tumor
原文传递
Lanthanum chloride or citrate is absorbed mainly via M cells in gastrointestinal tracts with lanthanum phosphates as the transformed species 被引量:1
8
作者 Huixia Huang Huixue Liu +2 位作者 Xiaojie Ma Hui Guan Xiaogai Yang 《Journal of Chinese Pharmaceutical Sciences》 CAS CSCD 2018年第8期553-564,共12页
In the present study, we investigated the transformed species and the absorptive mechanism of rare earth elements(REEs) in gastrointestinal(GI) tract, using La Cl3 and La Cit as representative compounds. Artificia... In the present study, we investigated the transformed species and the absorptive mechanism of rare earth elements(REEs) in gastrointestinal(GI) tract, using La Cl3 and La Cit as representative compounds. Artificial gastric and intestinal fluids were used to simulate the environment of the digestive tract in vivo. The inductively coupled plasma mass spectrometry(ICP-MS) result showed that more than 99.9% of La Cl3 and La Cit formed precipitation in artificial intestinal fluid, with the average size distribution of 200 nm(2-h incubation) increasing to 600 nm(24-h incubation) determined by dynamic light scattering(DLS), indicating the aggregation of the particles. The Fourier transform infrared spectroscopy(FTIR) analysis demonstrated that the constituents of these particles were mainly in the form of lanthanum phosphates. To explore the transport mechanism of REEs in GI tract, the mice Peyer's patches(PPs) and intestinal epithelium were separated to evaluate the content of lanthanum by ICP-MS following oral administration with 2 or 100 mg/kg/day of La Cit for 7 d. The results showed that the amount of lanthanum phosphate particles absorbed by PPs was significantly greater than that of intestinal epithelium, indicating that lanthanum particles might be phagocytosed mainly by M cells located in the follicle-associated epithelium(FAE) overlying PPs. Furthermore, Caco-2 cell monoculture and Caco-2/Raji B cell coculture models were established to simulate intestinal epithelial cells and FAE, respectively. The result showed that the transport of lanthanum in Caco-2/Raji B coculture model was significantly higher than that in Caco-2 monoculture model(about 60 times higher), and the level of lanthanum in the basal compartment of Caco-2 monoculture model was very low, supporting that M cells were the main route for lanthanum phosphate particles to be transported and absorbed. Taken together, these data suggested that La Cl3 and La Cit in GI tract were absorbed mainly via M cells with lanthanum phosphates as transformed species. The obtained results would provide the theoretical basis for the rational application of REEs in agriculture and medicine. 展开更多
关键词 Lanthanum chloride (LaCl3) Lanthanum citrate (LaCit) Lanthanum phosphates Artificial intestinal fluid Peyer's patches m cells Caco-2 cell monoculture model Caco-2/Raji B cells coculture model Transport and absorption
原文传递
An Ultrastructural Study of Phagocytosis and Transport of Formalized Campylobacter jejuni By M Cells into Mouse Peyer's Patches
9
作者 王维亚 郭仁强 《The Journal of Biomedical Research》 CAS 1994年第1期41-44,共4页
Suspension of formalized Campylobacter jejunt (2×10 CFU/ml)was injected into a bothend-ligated intestinal loop of ileum which contained some Peyer's patches from non-immunized adult mice after laparotomy unde... Suspension of formalized Campylobacter jejunt (2×10 CFU/ml)was injected into a bothend-ligated intestinal loop of ileum which contained some Peyer's patches from non-immunized adult mice after laparotomy under anesthesia.After 1-hour post inoculation, the specimen was taken out and prepared for TEM and SEM observation.The results showed that bacteria adhered specifically on the surface of M cells of Peyer's patches.The microvilli and microfolds of the M cells fused to capture the bacteria and to form a large endocytotic vesicle in the cytoplasm of the M cell,then transported inward,and, at last.released into the central cavity between lymphocytes.Occasionally, we found some of them were phagocytosed by lymphocytes. 展开更多
关键词 m cell Campylobacter jejunt transepithelial transport Peyer's patch
下载PDF
Genistein-induced Anticancer Effects on Acute Leukemia Cells Involve the Regulation of Wnt Signaling Pathway Through H4K20mel Rather Than DNA Demethylation
10
作者 Hua-rong ZHOU Jian-zhen SHEN +1 位作者 Hai-ying FU Feng ZHANG 《Current Medical Science》 SCIE CAS 2021年第5期869-879,共11页
Objective:To investigate the effects and mechanisms of genistein on the gene expression in the Wnt pathway in acute leukemia(AL)cells.Methods:The expression of Wnt pathway genes and cell cycle-related genes were analy... Objective:To investigate the effects and mechanisms of genistein on the gene expression in the Wnt pathway in acute leukemia(AL)cells.Methods:The expression of Wnt pathway genes and cell cycle-related genes were analyzed in two AL cell lines.Pyrophosphate sequencing was performed to determine the methylation degree.Then,the enrichment of H4K20mel and H3K9ac was determined using ChIP-qPCR.Flow cytometry was used to analyze the cell cycle.Results:The IC_(50) of genistein in the two AL cell lines was lower than that for the bone marrow mesenchymal stem cell line.Genistein upregulated H4K20mel,KMT5A and Wnt suppressor genes,including Wnt5a,and downregulated the downstream target genes of Wnt,such as c-myc and β-catenin.The methylation degree and H3K9ac enrichment in the Wnt5a promoter region remained unchanged.However,the enrichment of H4K20mel in the Wnt5a promoter and coding regions increased.In addition,genistein upregulated Phospho-cdc2,Mytl,Cyclin A,Cyclin E2,p21 and Phospho-histone H3,but downregulated Phospho-weel.Cell cycle arrest was induced in the G2/M phase.Conclusion:Genistein inhibits the activation of the Wnt pathway by promoting the expression of Wnt5a through the activation of KMT5A and enrichment of H4K20mel in the Wnt5a gene promoter and coding regions,rather than demethylation.Genistein also blocks the cell cycle in the G2/M phase.Therefore,genistein is a potential anti-leukemia drug. 展开更多
关键词 GENISTEIN acute leukemia H4K20mel Wnt pathway G2/m cell cycle arrest
下载PDF
Modulation of TGFβ_2 and dopamine by PKC in retinal Müller cells of guinea pig myopic eye 被引量:11
11
作者 Jun-Feng Mao, Shuang-Zhen Liu, Wen-Juan Qin, Qian Xiang Department of Ophthalmology, Xiangya Hospital of Central South University, Changsha 410008, Hunan Province, China 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2011年第4期357-360,共4页
AIM: To investigate the effect of protein kinase C (PKC) on transforming growth factor-β2 (TGFβ2) and dopamine in retinal Müller cells of guinea pig myopic eye. METHODS: Myopia was induced by translucent goggle... AIM: To investigate the effect of protein kinase C (PKC) on transforming growth factor-β2 (TGFβ2) and dopamine in retinal Müller cells of guinea pig myopic eye. METHODS: Myopia was induced by translucent goggles in guinea pig, whose retinal Müller cells were cultured using the enzyme-digesting method. Retinal Müller cells were divided into 5 groups: normal control, myopia, myopia plus GF109203X, myopia plus PMA, myopia plus DMSO. PKC activities were detected by the non-radioactive methods. TGFβ2 and tyrosine hydroxylase (TH) proteins were analyzed by Western Blotting in retinal Müller cells. Dopamine was determined by the high-performance liquid chromatography- electrochemical detection in suspensions. RESULTS: After 14 days deprived, the occluded eyes became myopic with ocular axle elongating. Müller cells of guinea pigs were obtained using enzyme digestion. Compared with normal control group, the increase in PKC activity and the up-regulation in TGFβ2 expression were found in retinal Müller cells of myopic eyes, with the decrease of TH and dopamine content (P <0.05). After PKC activated by PMA, TGFβ2 and TH content were up-regulated with the increase of dopamine content (P <0.05). While the PKC activities was inhibited by GF109203X, proteins of TGFβ2 and TH were down-regulated in the myopic eyes, with the decrease of dopamine content (P <0.05). CONCLUSION: TGFβ2 and dopamine are modulated by PKC in Müller cells of the myopic eyes in guinea pig. 展开更多
关键词 protein kinase C retinal müller cell transforming growth factor-β2 DOPAmINE mYOPIA
下载PDF
Protective effects of curcumin on retinal Müller cell in early diabetic rats 被引量:5
12
作者 Zhong-Fu Zuo Qiang Zhang Xue-Zheng Liu 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2013年第4期422-424,共3页
·AIM: To explore the effects and potential mechanisms of curcumin on retinal Müller cell in early diabetic rats. ·METHODS: Diabetic rats were induced by a single intraperitoneal injection of streptozoto... ·AIM: To explore the effects and potential mechanisms of curcumin on retinal Müller cell in early diabetic rats. ·METHODS: Diabetic rats were induced by a single intraperitoneal injection of streptozotocin (STZ). Male Sprague-Dawley (SD) rats were randomly assigned into 4 groups: control group (nave SD rats administered with a single intraperitoneal injection of citric buffer), diabetic group (STZ -diabetic rats), dimethyl sulfoxide (DMSO) group (diabetic rats intraperitoneally administered with mixture of DMSO and normal saline, once a day) and curcumin group (diabetic rats intraperitoneally administered with curcumin, 80mg/kg, once a day). Three months after diabetes onset, malondialdehyde (MDA, indication of oxidative stress level) and reduced glutathione (GSH) in retina were detected with kits, glial fibrillary acidic protein (GFAP) in retina was revealed by immunohistochemistry and Western blot, and retinal glutamine synthetase (GS) were observed by Western blot. ·RESULTS: Compared with control group, retinal MDA was increased, and GSH was decreased in diabetic and DMSO groups ( 【0.05, respectively). While, retinal MDA and GSH in curcumin group showed no difference compared with control group ( 】0.05). Furthermore, upregulation of retinal GFAP and down-regulation of retinal GS were detected in diabetic and DMSO groups, and no alteration could be observed in curcumin group revealed with Western blot. Compared with control group, retinal Müller cells showed significant increase in GFAP immunochemistry staining in diabetic and DMSO groups. Moreover, GFAP -positive staining was decreased in curcumin group compared with diabetic group. · CONCLUSION: Curcumin inhibits diabetic retinal oxidative stress, protects Müller cell, and prevents the down -regulation of GS in diabetic retina. Therefore, curcumin has a therapeutic potential in the treatment of diabetic retinopathy (DR). 展开更多
关键词 diabetic retinopathy CURCUmIN oxidative stress müller cell
下载PDF
Overexpressing NeuroD1 reprograms Müller cells into various types of retinal neurons 被引量:5
13
作者 Di Xu Li-Ting Zhong +6 位作者 Hai-Yang Cheng Zeng-Qiang Wang Xiong-Min Chen Ai-Ying Feng Wei-Yi Chen Gong Chen Ying Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第5期1124-1131,共8页
The onset of retinal degenerative disease is often associated with neuronal loss. Therefore, how to regenerate new neurons to restore vision is an important issue. NeuroD1 is a neural transcription factor with the abi... The onset of retinal degenerative disease is often associated with neuronal loss. Therefore, how to regenerate new neurons to restore vision is an important issue. NeuroD1 is a neural transcription factor with the ability to reprogram brain astrocytes into neurons in vivo. Here, we demonstrate that in adult mice, NeuroD1 can reprogram Müller cells, the principal glial cell type in the retina, to become retinal neurons. Most strikingly, ectopic expression of NeuroD1 using two different viral vectors converted Müller cells into different cell types. Specifically, AAV7 m8 GFAP681::GFP-ND1 converted Müller cells into inner retinal neurons, including amacrine cells and ganglion cells. In contrast, AAV9 GFAP104::ND1-GFP converted Müller cells into outer retinal neurons such as photoreceptors and horizontal cells, with higher conversion efficiency. Furthermore, we demonstrate that Müller cell conversion induced by AAV9 GFAP104::ND1-GFP displayed clear dose-and time-dependence. These results indicate that Müller cells in adult mice are highly plastic and can be reprogrammed into various subtypes of retinal neurons. 展开更多
关键词 amacrine cell ganglion cell horizontal cell in vivo reprogramming müller cell NeuroD1 PHOTORECEPTOR REGENERATION RETINA retinal degeneration
下载PDF
基于METTL3介导的miR-29a-3p的m^(6)A修饰探讨平喘颗粒抑制气道上皮细胞泛凋亡治疗哮喘的机制研究
14
作者 毛旭 杨柳欣 +2 位作者 高佳炜 王瑶 袁星星 《海南医学院学报》 CAS 北大核心 2024年第15期1139-1146,共8页
目的:观察平喘颗粒对METTL3介导的气道上皮细胞中miR-29a-3p的m^(6)A修饰的影响,明确其抑制哮喘气道炎症的分子机制。方法:16HBE采用LPS诱导(50 mg/L)构建细胞模型,并给予平喘颗粒含药血清和地塞米松进行干预。分别采用CCK8法检测细胞... 目的:观察平喘颗粒对METTL3介导的气道上皮细胞中miR-29a-3p的m^(6)A修饰的影响,明确其抑制哮喘气道炎症的分子机制。方法:16HBE采用LPS诱导(50 mg/L)构建细胞模型,并给予平喘颗粒含药血清和地塞米松进行干预。分别采用CCK8法检测细胞活性、ELISA法检测炎症因子(TNF-α、IL-6和IL-8)的含量和miR-29a-3p的m^(6)A修饰水平、Western blot检测METTL3与泛凋亡蛋白的表达和qRT-PCR检测METTL3与miR-29a-3p的表达。结果:与模型组相比,平喘颗粒能够显著增加16HBE的活力,抑制炎症因子TNF-α、IL-6和IL-8的含量,下调泛凋亡相关蛋白p-RIPK3、p-MLKL、cleaved Caspase-1、cleaved Caspase-3的表达和GSDMD-NT/FL-GSDMD与GSDME-NT/FL-GSDME的比值,差异均具有统计学意义(P<0.01)。此外,平喘颗粒能够显著上调细胞中miR-29a-3p和METTL3的表达水平,促进miR-29a-3p的m^(6)A修饰水平,与模型组相比差异均具有统计学意义(P<0.01)。结论:平喘颗粒主要通过METTL3增强miR-29a-3p的m^(6)A修饰水平,抑制气道上皮细胞泛凋亡,改善气道炎症。 展开更多
关键词 平喘颗粒 支气管哮喘 泛凋亡 m^(6)A甲基化修饰 气道上皮细胞
下载PDF
Potential role of Müller cells in the pathogenesis of macropsia associated with epiretinal membrane:a hypothesis revisited 被引量:1
15
作者 Ahmet Colakoglu Solmaz Balci Aka 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2017年第11期1759-1767,共9页
Pathophysiological explanations for metamorphopsia associated with retinal pathologies generally focus on photoreceptor organization disruption. However, the retinal microarchitecture is complicated, and we hypothesiz... Pathophysiological explanations for metamorphopsia associated with retinal pathologies generally focus on photoreceptor organization disruption. However, the retinal microarchitecture is complicated, and we hypothesize that other retinal cells may also be involved. Metamorphopsia has been widely studied in eyes with epiretinal membranes and we revisit the idea that Müller cell displacement causes retinal macropsia. A Pub Med query and related article search for the macula ultrastructure under normal and pathological conditions revealed an enormous amount of information, particularly ultrahigh definition optical coherence tomography and other retinal imaging modality studies. Findings of these imaging studies support our hypothesis that Müller cells, and not cone photoreceptors, are primarily responsible for macropsia in eyes with epiretinal membranes. More specifically, we conclude that displacement of Müller cell endfeet, and not photoreceptor cones, is a more likely the explanation for retinal macropsia associated with epiretinal membranes. 展开更多
关键词 macropsia mETAmORPHOPSIA epiretinal membrane müller cells
下载PDF
The ROCK pathway inhibitor Y-27632 mitigates hypoxia and oxidative stress-induced injury to retinal Müller cells 被引量:5
16
作者 Xiao-hui Zhang Zhao-hui Feng Xiao-yu Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第3期549-555,共7页
Rho kinase (ROCK) was the first downstream Rho effector found to mediate RhoA-induced actin cytoskeletal changes through effects on myosin light chain phosphorylation. There is abundant evidence that the ROCK pathwa... Rho kinase (ROCK) was the first downstream Rho effector found to mediate RhoA-induced actin cytoskeletal changes through effects on myosin light chain phosphorylation. There is abundant evidence that the ROCK pathway participates in the pathogenesis of retinal endothelial injury and proliferative epiretinal membrane traction. In this study, we investigated the effect of the ROCK pathway inhibitor Y-27632 on retinal Müller cells subjected to hypoxia or oxidative stress. Müller cells were subjected to hypoxia or oxidative stress by exposure to CoCl2 or H2O2. After a 24-hour treatment with Y-27632, the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide assay was used to assess the survival of Müller cells. Hoechst 33258 was used to detect apoptosis, while 2′,7′-dichlorodihydrofluorescein diacetate was used to measure reactive oxygen species generation. A transwell chamber system was used to examine the migration ability of Müller cells. Western blot assay was used to detect the expression levels of α-smooth muscle actin, glutamine synthetase and vimentin. After treatment with Y-27632, Müller cells subjected to hypoxia or oxidative stress exhibited a morphology similar to control cells. Y-27632 reduced apoptosis, α-smooth muscle actin expression and reactive oxygen species generation under oxidative stress, and it reduced cell migration under hypoxia. Y-27632 also upregulated glutamine synthetase expression under hypoxia but did not impact vimentin expression. These findings suggest that Y-27632 protects Müller cells against cellular injury caused by oxidative stress and hypoxia by inhibiting the ROCK pathway. 展开更多
关键词 nerve regeneration diabetic retinopathy Rho kinases müller cells reactive oxygen species glutamine synthetase α-smooth muscle actin CoCl2 H2O2 HYPOXIA oxidative stress neural regeneration
下载PDF
Effect of taurine on GFAP and TauT expressions in rat retinal Müller cells in high glucose culture 被引量:1
17
作者 张亚洁 许红霞 +1 位作者 曾凯宏 糜漫天 《Journal of Medical Colleges of PLA(China)》 CAS 2007年第3期137-142,共6页
Objective: To detect the expression of glial fibrillary acid protein (GFAP) and taurine transporter (TauT) in the retinal Müller cells in high glucose culture with taurine and to explore the influence of glu... Objective: To detect the expression of glial fibrillary acid protein (GFAP) and taurine transporter (TauT) in the retinal Müller cells in high glucose culture with taurine and to explore the influence of glucose on the taurine transporting, and the possible protective effects of taurine on MUller cells in early diabetic retinopathy. Methods: The Müller cells from the rat retina were cultured in high glucose, and GFAP and Taut expressions were detected in the cells treated with different doses of taurine by immuocytochemical fluorescein staining and Western blotting. Results: High glucose enhanced the expression of GFAP and decreased the expression of TauT in Müller cells. Taurine decreased the up-regulation of GFAP in the cells which was induced by high glucose; 0. 1-10 mmol/L taurine increased the expression of TauT in Müller cells. Conclusion: Taurine can inhibit the changes in Müller cell resulted from high glucose. 展开更多
关键词 müller cells TAURINE taurine transporter glial fibrillary acid protein immunocytochemical fluorescein staining
下载PDF
pigment epithelium-derived factor protects the morphological structure of retinal Müller cells in diabetic rats 被引量:1
18
作者 Xiao-Hui Zhang Zhao-Hui Feng Yi Zhang 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2014年第6期941-946,共6页
AIM: To investigate if pigment epithelium-derived factor(PEDF) has any protective effect on the retinal Müller cells of Sprague-Dawley rats suffering from diabetes mellitus.METHODS: Sixty Sprague-Dawley rats were... AIM: To investigate if pigment epithelium-derived factor(PEDF) has any protective effect on the retinal Müller cells of Sprague-Dawley rats suffering from diabetes mellitus.METHODS: Sixty Sprague-Dawley rats were randomly divided into a negative control group, a group receiving0.1 μg/μL PEDF, another group receiving 0.2 μg/μL PEDF,and a group receiving balanced salt solution(BSS). Rats in both the PEDF and BSS groups were treated intravitreally based on previously established diabetic models. After 4wk of treatment, morphological alterations of Müller cells and protein expression of glutamine synthase(GS) and glial fibrillary acidic protein(GFAP)were analyzed.RESULTS:PEDFateither0.1μg/μLor0.2μg/μLsignificantly improved the structures of both nuclei and organelles of Müller cells compared to the BSS-treated group.Expression of GS was significantly higher in the 0.2 μg/μL PEDF group than that in the BSS group(P =0.012), but expression of GFAP was significantly lower in the 0.2 μg/μL PEDF group than that in the BSS group(P =0.000);however, there were no significant differences in expression of these proteins between the 0.1 μg/μL PEDF group and the BSS group(P =0.608, P =0.152). CONCLUSION: PEDF protects the morphological ultrastructure of Müller cells, improves the expression of glutamate synthase and prevents cell gliosis. 展开更多
关键词 diabetes mellitus pigment epitheliumderived factor retinal müller cells glutamine synthase glial fibrillary acidic protein
下载PDF
Role of endoplasmic reticulum stress in the loss of retinal ganglion cells in diabetic retinopathy 被引量:7
19
作者 Liping Yang Lemeng Wu +4 位作者 Dongmei Wang Ying Li Hongliang Dou Mark O.M.Tso Zhizhong Ma 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第33期3148-3158,共11页
Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeox... Endoplasmic reticulum stress is closely involved in the early stage of diabetic retinopathy. In the present study, a streptozotocin-induced diabetic animal model was given an intraperitoneal injection of tauroursodeoxycholic acid. Results from immunofluorescent co-localization experiments showed that both caspase-12 protein and c-Jun N-terminal kinase 1 phosphorylation levels significantly in- creased, which was associated with retinal ganglion cell death in diabetic retinas. The C/ERB ho- mologous protein pathway directly contributed to glial reactivity, and was subsequently responsible for neuronal loss and vascular abnormalities in diabetic retinopathy. Our experimental findings in- dicate that endoplasmic reticulum stress plays an important role in diabetes-induced retinal neu- ronal loss and vascular abnormalities, and that inhibiting the activation of the endoplasmic reticulum stress pathway provides effective protection against diabetic retinopathy. 展开更多
关键词 neural regeneration peripheral nerve injury endoplasmic reticulum stress diabetic retinopathy injury of retinal ganglion cells m011er cells ASTROCYTES c-Jun N-terminal kinase caspase-12 protein C/ERB homologous protein retinal microcirculation glial fibrillary acidic protein grant-supportedpaper NEUROREGENERATION
下载PDF
Foveal regeneration after resolution of cystoid macular edema without and with internal limiting membrane detachment:presumed role of glial cells for foveal structure stabilization 被引量:1
20
作者 Andreas Bringmann Martin Karol +5 位作者 Jan Darius Unterlauft Thomas Barth Renate Wiedemann Leon Kohen Matus Rehak Peter Wiedemann 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2021年第6期818-833,共16页
AIM: To document with spectral-domain optical coherence tomography the morphological regeneration of the fovea after resolution of cystoid macular edema(CME) without and with internal limiting membrane(ILM) detachment... AIM: To document with spectral-domain optical coherence tomography the morphological regeneration of the fovea after resolution of cystoid macular edema(CME) without and with internal limiting membrane(ILM) detachment and to discuss the presumed role of the glial scaffold for foveal structure stabilization. METHODS: A retrospective case series of 38 eyes of 35 patients is described. Of these, 17 eyes of 16 patients displayed foveal regeneration after resolution of CME, and 6 eyes of 6 patients displayed CME with ILM detachment. Eleven eyes of 9 patients displayed other kinds of foveal and retinal disorders associated with ILM detachment. RESULTS: The pattern of edematous cyst distribution, with or without a large cyst in the foveola and preferred location of cysts in the inner nuclear layer or Henle fiber layer(HFL), may vary between different eyes with CME or in one eye during different CME episodes. Large cysts in the foveola may be associated with a tractional elevation of the inner foveal layers and the formation of a foveoschisis in the HFL. Edematous cysts are usually not formed in the ganglion cell layer. Eyes with CME and ILM detachment display a schisis between the detached ILM and nerve fiber layer(NFL) which is traversed by Müller cell trunks. ILM detachment was also found in single eyes with myopic traction maculopathy, macular pucker, full-thickness macular holes, outer lamellar holes, and glaucomatous parapapillary retinoschisis, and in 3 eyes with Müller cell sheen dystrophy(MCSD). As observed in eyes with MCSD, cellophane maculopathy, and macular pucker, respectively, fundus light reflections can be caused by different highly reflective membranes or layers: the thickened and tightened ILM which may or may not be detached from the NFL, the NFL, or idiopathic epiretinal membranes. In eyes with short single or multiple CME episodes, the central fovea regenerated either completely, which included the disappearance of irregularities of the photoreceptor layer lines and the reformation of a fovea externa, or with remaining irregularities of the photoreceptor layer lines. CONCLUSION: The examples of a complete regeneration of the foveal morphology after transient CME show that the fovea may withstand even large tractional deformations and has a conspicuous capacity of structural regeneration as long as no cell degeneration occurs. It is suggested that the regenerative capacity depends on the integrity of the threedimensional glial scaffold for foveal structure stabilization composed of Müller cell and astrocyte processes. The glial scaffold may also maintain the retinal structure after loss of most retinal neurons as in late-stage MCSD. 展开更多
关键词 FOVEA cystoid macular edema internal limiting membrane detachment müller cell sheen dystrophy müller glia ASTROCYTES
下载PDF
上一页 1 2 32 下一页 到第
使用帮助 返回顶部