Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and stra...Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.展开更多
This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates pa...This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates parts of fuzzy logic and soft set theory to develop a robust alternative for disease detection in stressful situations,especially in areas affected by floods.Compared to the traditional intuitionistic fuzzy soft set and Pythagorean fuzzy soft set,the q-rung orthopair fuzzy soft set(q-ROFSS)adequately incorporates unclear and indeterminate facts.The major objective of this investigation is to formulate the q-rung orthopair fuzzy soft Einstein hybrid weighted average(q-ROFSEHWA)operator and its specific characteristics.Moreover,our stated operator is implementing intelligentmulti-criteria group decision-making(MCGDM)methodology.Floods are severe natural catastrophes that raise the risk of diseases and epidemics,particularly those caused by contaminants in the water,such as gastrointestinal diseases,respiratory infections,vector-borne diseases,skin infections,and water-borne parasites.The designed MCGDM strategy tackles the prevalence of certain conditions in flood-affected patients.A comparative investigation determined that the suggested method for detecting water-borne infectious disease due to floods is more effective and productive than conventional methods because of its logical structure.展开更多
A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the ...A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.展开更多
Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perc...Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper,we extend the concept of PFHSS to interval-valued PFHSS(IVPFHSS),which is the generalized form of intervalvalued intuitionistic fuzzy soft set.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set.It is the most potent method for amplifying fuzzy data in the decision-making(DM)practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws,two inventive AOs have been established:interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and interval-valued Pythagorean fuzzy hypersoft weighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But,the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs,a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projectedMCGDMmethod for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.展开更多
The objective of this paper is to present a new approach for solving the multicriteria group decision-making(MCGDM)problems in type-2 single valued neutrosophic set(T2SVNS)environment.Firstly,we give the concepts SVNS...The objective of this paper is to present a new approach for solving the multicriteria group decision-making(MCGDM)problems in type-2 single valued neutrosophic set(T2SVNS)environment.Firstly,we give the concepts SVNS,T2SVNS and tangent similarity measure with T2SVN information.Secondly,we define a new entropy function for determining unknown attribute weights.In addition,a MCGDM method is developed based on entropy and tangent similarity measure of T2SVNSs.Finally,an illustrative example and comparative analysis are given to confirm the rationality and feasibility of the proposed method.展开更多
The corona virus disease 2019(COVID-19)has emerged as a fatal virus.This deadly virus has taken the whole world into clutches and many people have embraced death due to this invincible bug.The death toll is rising wit...The corona virus disease 2019(COVID-19)has emerged as a fatal virus.This deadly virus has taken the whole world into clutches and many people have embraced death due to this invincible bug.The death toll is rising with every tick of time.The aspiration behind this article is to discover the preventive measure that should be taken to cope with this intangible enemy.We study the prime notions of novel sort of topology accredited Pythagorean m-polar fuzzy topology along with its prime attributes.We slightly amend the well-acknowledged multi-criteria decision analysis tool TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution)to befit the proposed multi-criteria group decision making(MCGDM)problem of exploring the most effective method for curing from COVID-19 employing the proposed model.展开更多
基金funded by King Saud University,Riyadh,Saudi Arabia.
文摘Green supplier selection is an important debate in green supply chain management(GSCM),attracting global attention from scholars,especially companies and policymakers.Companies frequently search for new ideas and strategies to assist them in realizing sustainable development.Because of the speculative character of human opinions,supplier selection frequently includes unreliable data,and the interval-valued Pythagorean fuzzy soft set(IVPFSS)provides an exceptional capacity to cope with excessive fuzziness,inconsistency,and inexactness through the decision-making procedure.The main goal of this study is to come up with new operational laws for interval-valued Pythagorean fuzzy soft numbers(IVPFSNs)and create two interaction operators-the intervalvalued Pythagorean fuzzy soft interaction weighted average(IVPFSIWA)and the interval-valued Pythagorean fuzzy soft interaction weighted geometric(IVPFSIWG)operators,and analyze their properties.These operators are highly advantageous in addressing uncertain problems by considering membership and non-membership values within intervals,providing a superior solution to other methods.Moreover,specialist judgments were calculated by the MCGDM technique,supporting the use of interaction AOs to regulate the interdependence and fundamental partiality of green supplier assessment aspects.Lastly,a statistical clarification of the planned method for green supplier selection is presented.
基金funded by King Saud University,Research Supporting Project Number(RSP2024R167),Riyadh,Saudi Arabia.
文摘This research is devoted to diagnosing water-borne infectious diseases caused by floods employing a novel diagnosis approach,the Einstein hybrid structure of q-rung orthopair fuzzy soft set.This approach integrates parts of fuzzy logic and soft set theory to develop a robust alternative for disease detection in stressful situations,especially in areas affected by floods.Compared to the traditional intuitionistic fuzzy soft set and Pythagorean fuzzy soft set,the q-rung orthopair fuzzy soft set(q-ROFSS)adequately incorporates unclear and indeterminate facts.The major objective of this investigation is to formulate the q-rung orthopair fuzzy soft Einstein hybrid weighted average(q-ROFSEHWA)operator and its specific characteristics.Moreover,our stated operator is implementing intelligentmulti-criteria group decision-making(MCGDM)methodology.Floods are severe natural catastrophes that raise the risk of diseases and epidemics,particularly those caused by contaminants in the water,such as gastrointestinal diseases,respiratory infections,vector-borne diseases,skin infections,and water-borne parasites.The designed MCGDM strategy tackles the prevalence of certain conditions in flood-affected patients.A comparative investigation determined that the suggested method for detecting water-borne infectious disease due to floods is more effective and productive than conventional methods because of its logical structure.
基金supported by the National Natural Science Foundation of China (60904059 60975049)+1 种基金the Philosophy and Social Science Foundation of Hunan Province (2010YBA104)the National High Technology Research and Development Program of China (863 Program)(2009AA04Z107)
文摘A method of minimizing rankings inconsistency is proposed for a decision-making problem with rankings of alternatives given by multiple decision makers according to multiple criteria. For each criteria, at first, the total inconsistency between the rankings of all alternatives for the group and the ones for every decision maker is defined after the decision maker weights in respect to the criteria are considered. Similarly, the total inconsistency between their final rankings for the group and the ones under every criteria is determined after the criteria weights are taken into account. Then two nonlinear integer programming models minimizing respectively the two total inconsistencies above are developed and then transformed to two dynamic programming models to obtain separately the rankings of all alternatives for the group with respect to each criteria and their final rankings. A supplier selection case illustrated the proposed method, and some discussions on the results verified its effectiveness. This work develops a new measurement of ordinal preferences’ inconsistency in multi-criteria group decision-making (MCGDM) and extends the cook-seiford social selection function to MCGDM considering weights of criteria and decision makers and can obtain unique ranking result.
基金funding this work through General Research Project under Grant No.R.G.P.327/43.
文摘Experts use Pythagorean fuzzy hypersoft sets(PFHSS)in their investigations to resolve the indeterminate and imprecise information in the decision-making process.Aggregation operators(AOs)perform a leading role in perceptivity among two circulations of prospect and pull out concerns from that perception.In this paper,we extend the concept of PFHSS to interval-valued PFHSS(IVPFHSS),which is the generalized form of intervalvalued intuitionistic fuzzy soft set.The IVPFHSS competently deals with uncertain and ambagious information compared to the existing interval-valued Pythagorean fuzzy soft set.It is the most potent method for amplifying fuzzy data in the decision-making(DM)practice.Some operational laws for IVPFHSS have been proposed.Based on offered operational laws,two inventive AOs have been established:interval-valued Pythagorean fuzzy hypersoft weighted average(IVPFHSWA)and interval-valued Pythagorean fuzzy hypersoft weighted geometric(IVPFHSWG)operators with their essential properties.Multi-criteria group decision-making(MCGDM)shows an active part in contracts with the difficulties in industrial enterprise for material selection.But,the prevalent MCGDM approaches consistently carry irreconcilable consequences.Based on the anticipated AOs,a robust MCGDMtechnique is deliberate formaterial selection in industrial enterprises to accommodate this shortcoming.A real-world application of the projectedMCGDMmethod for material selection(MS)of cryogenic storing vessels is presented.The impacts show that the intended model is more effective and reliable in handling imprecise data based on IVPFHSS.
基金Supported by Humanities and Social Sciences Foundation of Ministry of Education of the Peoples Republic of China(Grant No.17YJA630115)。
文摘The objective of this paper is to present a new approach for solving the multicriteria group decision-making(MCGDM)problems in type-2 single valued neutrosophic set(T2SVNS)environment.Firstly,we give the concepts SVNS,T2SVNS and tangent similarity measure with T2SVN information.Secondly,we define a new entropy function for determining unknown attribute weights.In addition,a MCGDM method is developed based on entropy and tangent similarity measure of T2SVNSs.Finally,an illustrative example and comparative analysis are given to confirm the rationality and feasibility of the proposed method.
文摘The corona virus disease 2019(COVID-19)has emerged as a fatal virus.This deadly virus has taken the whole world into clutches and many people have embraced death due to this invincible bug.The death toll is rising with every tick of time.The aspiration behind this article is to discover the preventive measure that should be taken to cope with this intangible enemy.We study the prime notions of novel sort of topology accredited Pythagorean m-polar fuzzy topology along with its prime attributes.We slightly amend the well-acknowledged multi-criteria decision analysis tool TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution)to befit the proposed multi-criteria group decision making(MCGDM)problem of exploring the most effective method for curing from COVID-19 employing the proposed model.