基于地震作用下弹塑性SDOF(Single Degree of Freedom)和弹性MDOF(Multi-degree of Freedom)系统能量输入研究,本文分析了弹塑性MDOF系统能量输入规律。以实测地震记录为输入,采用弹塑性时程分析方法,计算了一阶初始周期≤3s的5、10、20...基于地震作用下弹塑性SDOF(Single Degree of Freedom)和弹性MDOF(Multi-degree of Freedom)系统能量输入研究,本文分析了弹塑性MDOF系统能量输入规律。以实测地震记录为输入,采用弹塑性时程分析方法,计算了一阶初始周期≤3s的5、10、20、30层双线性滞回剪切层模型,不同阻尼比、承载力降低系数情况下4800个结构和一阶初始周期>3s的40层结构能量输入,与弹塑性SDOF系统的输入能量谱进行对比。研究表明:一阶周期在3s以内的弹塑性MDOF系统输入能量EI可用相同阻尼比、初始周期、承载力降低系数的弹塑性SDOF系统计算结果近似确定;一阶周期大于3s的弹塑性MDOF系统,可采用MPA方法等效为多个弹塑性SDOF系统,按照振型叠加法计算总输入能。展开更多
将小波理论应用于多自由度(MDOF,multi degree of freedom)系统的模态参数的识别中,首先对MD OF系统的响应函数作基于Morlet小波的时频分解,再由小波系数模的局部极大值求得小波脊,最后求出MDOF系统的各阶模态的固有频率及阻尼比.文中...将小波理论应用于多自由度(MDOF,multi degree of freedom)系统的模态参数的识别中,首先对MD OF系统的响应函数作基于Morlet小波的时频分解,再由小波系数模的局部极大值求得小波脊,最后求出MDOF系统的各阶模态的固有频率及阻尼比.文中给出了实例,进行了计算说明,结果表明了该方法的有效性.展开更多
It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performan...It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades. However, no investigation has yet been carried out for the case of soil-structure systems. In the present study, through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns, including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils, the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated. The results of this study show that depending on the level of inelasticity, soil flexibility and number of degrees-of-freedoms (DOFs), structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems. It is also found that at high levels of inelasticity, the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases.展开更多
A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various ...A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various levels of GMs.The robustness of a design is measured by an incremental dynamic analysis(IDA)curve and an ideal drift response curve(IDRC).The IDRC is a plot of the optimized maximum deformation under a constraint on the total damper quantity vs.the design level of the GMs.The total damper quantity corresponds to the total cost of the added dampers.First,a problem of generation of IDRCs is stated.Then,its solution algorithm,which consists of the sensitivity-based algorithm(SBA)and a local search method,is proposed.In the application of the SBA,the passive added dampers are removed sequentially under the specified-level GMs.On the other hand,the proposed local search method can search the optimal solutions for a constant total damper quantity under GMs’increased levels.In this way,combining these two algorithms enables the comprehensive search of the optimal solutions for various conditions of the status of the GMs and the total damper quantity.The influence of selecting the type of added dampers(oil,hysteretic,and so on)and the selection of the input GMs on the IDRCs are investigated.Finally,a robust optimal design problem is formulated,and a simple local search-based algorithm is proposed.A simple index using the IDRC and the IDA curve of the model is used as the objective function.It is demonstrated that the proposed algorithm works well in spite of its simplicity.展开更多
场地-城市相互作用(site-city interaction,SCI)效应会显著改变场地地震波场分布及建筑反应,基于SCI效应理论计算研究方法的发展现状,发挥谱元(spectral element,SE)法可快速高效求解三维地震波场传播和多自由度(multi-degree of freedo...场地-城市相互作用(site-city interaction,SCI)效应会显著改变场地地震波场分布及建筑反应,基于SCI效应理论计算研究方法的发展现状,发挥谱元(spectral element,SE)法可快速高效求解三维地震波场传播和多自由度(multi-degree of freedom,MDOF)模型计算量小且可同时模拟大量建筑的优势,同时,结合频率波数域(frequency wave number analysis,FK)方法,以等效地震荷载的方式施加地震波场,建立了FK-SE-MDOF耦合方法,实现了SE-MDOF耦合模型中多种波型(P波、SV波和SH波)的斜入射输入,解决了当前三维SCI效应研究方法中未能同时考虑建筑非线性、频谱特性、地震波波型及入射角度影响的问题。首先对方法原理进行了介绍;然后,通过与振动台试验的对比,验证了方法的正确性;进而,采用该方法建立理想场地-城市建筑群相互作用耦合模型,主要探讨了入射角度和地震波波型对SCI效应的影响,得到了一些有益结论。该方法较为真实地反映SCI效应影响的同时,可反映建筑基础轮廓对地震波场的影响,适用于需考虑建筑轮廓信息的社区尺度SCI效应研究,可为城市规划、抗震设计、风险评估以及震后救援等工作提供定量指导。展开更多
In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squa...In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESSbased EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5- DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.展开更多
文摘基于地震作用下弹塑性SDOF(Single Degree of Freedom)和弹性MDOF(Multi-degree of Freedom)系统能量输入研究,本文分析了弹塑性MDOF系统能量输入规律。以实测地震记录为输入,采用弹塑性时程分析方法,计算了一阶初始周期≤3s的5、10、20、30层双线性滞回剪切层模型,不同阻尼比、承载力降低系数情况下4800个结构和一阶初始周期>3s的40层结构能量输入,与弹塑性SDOF系统的输入能量谱进行对比。研究表明:一阶周期在3s以内的弹塑性MDOF系统输入能量EI可用相同阻尼比、初始周期、承载力降低系数的弹塑性SDOF系统计算结果近似确定;一阶周期大于3s的弹塑性MDOF系统,可采用MPA方法等效为多个弹塑性SDOF系统,按照振型叠加法计算总输入能。
文摘将小波理论应用于多自由度(MDOF,multi degree of freedom)系统的模态参数的识别中,首先对MD OF系统的响应函数作基于Morlet小波的时频分解,再由小波系数模的局部极大值求得小波脊,最后求出MDOF系统的各阶模态的固有频率及阻尼比.文中给出了实例,进行了计算说明,结果表明了该方法的有效性.
文摘It is known that structural stiffness and strength distributions have an important role in the seismic response of buildings. The effect of using different code-specified lateral load patterns on the seismic performance of fixed-base buildings has been investigated by researchers during the past two decades. However, no investigation has yet been carried out for the case of soil-structure systems. In the present study, through intensive parametric analyses of 21,600 linear and nonlinear MDOF systems and considering five different shear strength and stiffness distribution patterns, including three code-specified patterns as well as uniform and concentric patterns subjected to a group of earthquakes recorded on alluvium and soft soils, the effect of structural characteristics distribution on the strength demand and ductility reduction factor of MDOF fixed-base and soil-structure systems are parametrically investigated. The results of this study show that depending on the level of inelasticity, soil flexibility and number of degrees-of-freedoms (DOFs), structural characteristics distribution can significantly affect the strength demand and ductility reduction factor of MDOF systems. It is also found that at high levels of inelasticity, the ductility reduction factor of low-rise MDOF soil-structure systems could be significantly less than that of fixed-base structures and the reduction is less pronounced as the number of stories increases.
基金Part of the present work is supported by the Grant-in-Aid for Scientific Research(KAKENHI)of the Japan Society for the Promotion of Science(Nos.18H01584,JP20J20811)This support is greatly appreciated.
文摘A new method of robust damper design is presented for elastic-plastic multi-degree-of-freedom(MDOF)building structures under multi-level ground motions(GMs).This method realizes a design that is effective for various levels of GMs.The robustness of a design is measured by an incremental dynamic analysis(IDA)curve and an ideal drift response curve(IDRC).The IDRC is a plot of the optimized maximum deformation under a constraint on the total damper quantity vs.the design level of the GMs.The total damper quantity corresponds to the total cost of the added dampers.First,a problem of generation of IDRCs is stated.Then,its solution algorithm,which consists of the sensitivity-based algorithm(SBA)and a local search method,is proposed.In the application of the SBA,the passive added dampers are removed sequentially under the specified-level GMs.On the other hand,the proposed local search method can search the optimal solutions for a constant total damper quantity under GMs’increased levels.In this way,combining these two algorithms enables the comprehensive search of the optimal solutions for various conditions of the status of the GMs and the total damper quantity.The influence of selecting the type of added dampers(oil,hysteretic,and so on)and the selection of the input GMs on the IDRCs are investigated.Finally,a robust optimal design problem is formulated,and a simple local search-based algorithm is proposed.A simple index using the IDRC and the IDA curve of the model is used as the objective function.It is demonstrated that the proposed algorithm works well in spite of its simplicity.
文摘场地-城市相互作用(site-city interaction,SCI)效应会显著改变场地地震波场分布及建筑反应,基于SCI效应理论计算研究方法的发展现状,发挥谱元(spectral element,SE)法可快速高效求解三维地震波场传播和多自由度(multi-degree of freedom,MDOF)模型计算量小且可同时模拟大量建筑的优势,同时,结合频率波数域(frequency wave number analysis,FK)方法,以等效地震荷载的方式施加地震波场,建立了FK-SE-MDOF耦合方法,实现了SE-MDOF耦合模型中多种波型(P波、SV波和SH波)的斜入射输入,解决了当前三维SCI效应研究方法中未能同时考虑建筑非线性、频谱特性、地震波波型及入射角度影响的问题。首先对方法原理进行了介绍;然后,通过与振动台试验的对比,验证了方法的正确性;进而,采用该方法建立理想场地-城市建筑群相互作用耦合模型,主要探讨了入射角度和地震波波型对SCI效应的影响,得到了一些有益结论。该方法较为真实地反映SCI效应影响的同时,可反映建筑基础轮廓对地震波场的影响,适用于需考虑建筑轮廓信息的社区尺度SCI效应研究,可为城市规划、抗震设计、风险评估以及震后救援等工作提供定量指导。
基金Acknowledgements This work was supported by the National Science Foundation of China (Grant No. 11572082), the Excellent Talents Support Program in Institutions of Higher Learning in Liaoning Province, China (Grant No. LJQ2015038), the Fundamental Research Funds for the Central Universities of China (Grant Nos. N150304004 and N140301001), and the Key Laboratory for Precision and Non-traditional Machining of the Ministry of Education, Dalian University of Technology (Grant No. JMTZ201602).
文摘In response to the identification problem concerning multi-degree of freedom (MDOF) nonlinear systems, this study presents the extended forward orthogonal regression (EFOR) based on predicted residual sums of squares (PRESS) to construct a nonlinear dynamic parametrical model. The proposed parametrical model is based on the non-linear autoregressive with exogenous inputs (NARX) model and aims to explicitly reveal the physical design parameters of the system. The PRESSbased EFOR algorithm is proposed to identify such a model for MDOF systems. By using the algorithm, we built a common-structured model based on the fundamental concept of evaluating its generalization capability through cross-validation. The resulting model aims to prevent over-fitting with poor generalization performance caused by the average error reduction ratio (AERR)-based EFOR algorithm. Then, a functional relationship is established between the coefficients of the terms and the design parameters of the unified model. Moreover, a 5- DOF nonlinear system is taken as a case to illustrate the modeling of the proposed algorithm. Finally, a dynamic parametrical model of a cantilever beam is constructed from experimental data. Results indicate that the dynamic parametrical model of nonlinear systems, which depends on the PRESS-based EFOR, can accurately predict the output response, thus providing a theoretical basis for the optimal design of modeling methods for MDOF nonlinear systems.