期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
External-Cavity Tunable Laser Using MEMS Technology
1
作者 J. Z. Hao X. M. Zhang +1 位作者 C. Lu A. Q. Liu 《光学学报》 EI CAS CSCD 北大核心 2003年第S1期433-434,共2页
This paper introduces a tunable external-cavity diode laser using a MEMS vertical mirror fabricated on a silicon-on-insulator (SOI) wafer. This laser has the merits of simple alignment process, easy integration/packag... This paper introduces a tunable external-cavity diode laser using a MEMS vertical mirror fabricated on a silicon-on-insulator (SOI) wafer. This laser has the merits of simple alignment process, easy integration/packaging, and potentially large wavelength tuning range. 展开更多
关键词 mems as in on BE with External-Cavity Tunable Laser Using mems technology for MODE of DBM from
原文传递
Wireless passive flexible accelerometer fabricated using micro-electro-mechanical system technology for bending structure surfaces 被引量:2
2
作者 Chen LI Mangu JIA +2 位作者 Yingping HONG Yanan XUE Jijun XIONG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第5期801-809,共9页
We propose an inductor-capacitor(LC)wireless passive flexible accelerometer,which eliminates the difficulty in measuring the acceleration on the surface of a bending structure.The accelerometer is composed of a flexib... We propose an inductor-capacitor(LC)wireless passive flexible accelerometer,which eliminates the difficulty in measuring the acceleration on the surface of a bending structure.The accelerometer is composed of a flexible polyimide(PI)substrate and a planar spiral inductance coil(thickness 300 nm),made using micro-electro-mechanical system(MEMS)technology.It can be bent or folded at will,and can be attached firmly to the surface of objects with a bending structure.The principle of radio frequency wireless transmission is used to measure the acceleration signal by changing the distance between the accelerometer and the antenna.Compared with other accelerometers with a lead wire,the accelerometer can prevent the lead from falling off in the course of vibration,thereby prolonging its service life.Through establishment of an experimental platform,when the distance between the antenna and accelerometer was 5 mm,the characterization of the surface of bending structures demonstrated the sensing capabilities of the accelerometer at accelerations of 20-100 m/s2.The results indicate that the acceleration and peak-to-peak output voltage were nearly linear,with accelerometer sensitivity reaching 0.27 mV/(m·s-2).Moreover,the maximum error of the accelerometer was less than 0.037%. 展开更多
关键词 Bending structure surfaces Flexible accelerometer Micro-electro-mechanical system(mems)technology Wireless non-contact measurement
原文传递
Temperature characteristics research of SOI pressure sensor based on asymmetric base region transistor 被引量:5
3
作者 Xiaofeng Zhao Dandan Li +1 位作者 Yang Yu Dianzhong Wen 《Journal of Semiconductors》 EI CAS CSCD 2017年第7期89-92,共4页
Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type sil... Based on the asymmetric base region transistor, a pressure sensor with temperature compensation circuit is proposed in this paper. The pressure sensitive structure of the proposed sensor is constructed by a C-type silicon cup and a Wheatstone bridge with four piezoresistors(R_1, R_2, R_3 and R_4/locating on the edge of a square silicon membrane. The chip was designed and fabricated on a silicon on insulator(SOI) wafer by micro electromechanical system(MEMS) technology and bipolar transistor process. When the supply voltage is 5.0 V, the corresponding temperature coefficient of the sensitivity(TCS) for the sensor before and after temperature compensation are -1862 and -1067 ppm/℃, respectively. Through varying the ratio of the base region resistances r_1 and r_2, the TCS for the sensor with the compensation circuit is -127 ppm/℃. It is possible to use this compensation circuit to improve the temperature characteristics of the pressure sensor. 展开更多
关键词 SOI pressure sensor asymmetric base region transistor temperature compensation temperature coefficient of the sensitivity mems technology
原文传递
Design and fabrication of an surface acoustic wave resonator based on AlN/4H-SiC material for harsh environments 被引量:1
4
作者 Wei-zhong WANG Ji LIANG +2 位作者 Yong RUAN Wei PANG Zheng YOU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2017年第1期67-74,共8页
Surface acoustic wave (SAW) sensors and micro-electromechanical system (MEMS) technology provide a promising solution for measurement in harsh environments such as gas turbines. In this paper, a SAW resonator (s... Surface acoustic wave (SAW) sensors and micro-electromechanical system (MEMS) technology provide a promising solution for measurement in harsh environments such as gas turbines. In this paper, a SAW resonator (size: 1107μm× 721 μm) based on the AlN/4H-SiC multilayer structure is designed and simulated. A MEMS-compatible fabrication process is employed to fabricate the resonator. The results show that highly c-axis-oriented AlN thin films deposited on the 4H-SiC substrate are obtained, with that the diffraction peak of AlN is 36.10° and the lowest full width at half maximum (FWHM) value is only 1.19°. The test results of the network analyzer are consistent with the simulation curve, which is very encouraging and indicates that our work is a significant attempt to solve the measurement problems mainly including high temperature stability of sensitive structures and the heat transmission of leads in harsh environments. It is essential to get the best performance of SAW resonator, optimize and characterize the behaviors in high temperatures in future research. 展开更多
关键词 Surface acoustic wave (SAW) resonator AlN/4H-SiC Harsh environment Micro-electromechanical system(mems technology Gas turbine
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部