期刊文献+
共找到521篇文章
< 1 2 27 >
每页显示 20 50 100
Integrated high-performance and accurate shaping technology of low-cost powder metallurgy titanium alloys: A comprehensive review 被引量:1
1
作者 Xuemeng Gan Shaofu Li +1 位作者 Shunyuan Xiao Yafeng Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第3期413-426,共14页
The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O ... The practical engineering applications of powder metallurgy (PM) Ti alloys produced through cold compaction and pressure-less sintering are impeded by poor sintering densification, embrittlement caused by excessive O impurities, and severe sintering deforma-tion resulting from the use of heterogeneous powder mixtures. This review presents a summary of our previous work on addressing the above challenges. Initially, we proposed a novel strategy using reaction-induced liquid phases to enhance sintering densification. Near- complete density (relative density exceeding 99%) was achieved by applying the above strategy and newly developed sintering aids. By focusing on the O-induced embrittlement issue, we determined the onset dissolution temperature of oxide films in the Ti matrix. On the basis of this finding, we established a design criterion for effective O scavengers that require reaction with oxide films before their dissol-ution. Consequently, a ductile PM Ti alloy was successfully obtained by introducing 0.3wt% NdB6 as the O scavenger. Lastly, a powder- coating strategy was adopted to address the sintering deformation issue. The ultrafine size and shell-like distribution characteristics of coating particles ensured rapid dissolution and homogeneity in the Ti matrix, thereby facilitating linear shrinkage during sintering. As a result, geometrically complex Ti alloy parts with high dimensional accuracy were fabricated by using the coated powder. Our fundament-al findings and related technical achievements enabled the development of an integrated production technology for the high-performance and accurate shaping of low-cost PM Ti alloys. Additionally, the primary engineering applications and progress in the industrialization practice of our developed technology are introduced in this review. 展开更多
关键词 powder metallurgy titanium sintering densification oxygen scavenging accurate shaping
下载PDF
Microstructure evolution and strengthening mechanism of high -performance powder metallurgy TA15 titanium alloy by hot rolling 被引量:1
2
作者 Ying Gao Ce Zhang +1 位作者 Jiazhen Zhang Xin Lu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1426-1436,共11页
Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titaniu... Hot deformation of sintered billets by powder metallurgy(PM)is an effective preparation technique for titanium alloys,which is more significant for high-alloying alloys.In this study,Ti–6.5Al–2Zr–Mo–V(TA15)titanium alloy plates were prepared by cold press-ing sintering combined with high-temperature hot rolling.The microstructure and mechanical properties under different process paramet-ers were investigated.Optical microscope,electron backscatter diffraction,and others were applied to characterize the microstructure evolution and mechanical properties strengthening mechanism.The results showed that the chemical compositions were uniformly dif-fused without segregation during sintering,and the closing of the matrix craters was accelerated by increasing the sintering temperature.The block was hot rolled at 1200℃ with an 80%reduction under only two passes without annealing.The strength and elongation of the plate at 20–25℃ after solution and aging were 1247 MPa and 14.0%,respectively,which were increased by 24.5%and 40.0%,respect-ively,compared with the as-sintered alloy at 1300℃.The microstructure was significantly refined by continuous dynamic recrystalliza-tion,which was completed by the rotation and dislocation absorption of the substructure surrounded by low-angle grain boundaries.After hot rolling combined with heat treatment,the strength and plasticity of PM-TA15 were significantly improved,which resulted from the dense,uniform,and fine recrystallization structure and the synergistic effect of multiple slip systems. 展开更多
关键词 elemental powder powder metallurgy titanium alloy hot rolling strength and plasticity
下载PDF
Effect of titanium on the sticking of pellets based on hydrogen metallurgy shaft furnace:Behavior analysis and mechanism evolution
3
作者 Jinge Feng Jue Tang +4 位作者 Zichuan Zhao Mansheng Chu Aijun Zheng Xiaobing Li Xiao’ai Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期282-291,共10页
Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pelle... Direct reduction based on hydrogen metallurgical gas-based shaft furnace is a promising technology for the efficient and low-carbon smelting of vanadium-titanium magnetite.However,in this process,the sticking of pellets occurs due to the aggregation of metal-lic iron between the contact surfaces of adjacent pellets and has a serious negative effect on the continuous operation.This paper presents a detailed experimental study of the effect of TiO2 on the sticking behavior of pellets during direct reduction under different conditions.Results showed that the sticking index(SI)decreased linearly with the increasing TiO2 addition.This phenomenon can be attributed to the increase in unreduced FeTiO3 during reduction,leading to a decrease in the number and strength of metallic iron interconnections at the sticking interface.When the TiO2 addition amount was raised from 0 to 15wt%at 1100°C,the SI also increased from 0.71%to 59.91%.The connection of the slag phase could be attributed to the sticking at a low reduction temperature,corresponding to the low sticking strength.Moreover,the interconnection of metallic iron became the dominant factor,and the SI increased sharply with the increase in re-duction temperature.TiO2 had a greater effect on SI at a high reduction temperature than at a low reduction temperature. 展开更多
关键词 TITANIUM sticking index hydrogen metallurgy direct reduction PELLETS
下载PDF
Ballistic performance of titanium-based layered composites made using blended elemental powder metallurgy and hot isostatic pressing
4
作者 Pavlo Markovsky Jacek Janiszewski +5 位作者 Dmytro Savvakin Oleksandr Stasyuk Bartosz Fikus Victor Samarov Vianey Ellison Sergey V.Prikhodko 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第9期1-14,共14页
Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded to... Metal matrix composites tiles based on Ti-6Al-4V(Ti64)alloy,reinforced with 10,20,and 40(vol%)of either TiC or TiB particles were made using press-and-sinter blended elemental powder metallurgy(BEPM)and then bonded together into 3-layer laminated plates using hot isostatic pressing(HIP).The laminates were ballistically tested and demonstrated superior performance.The microstructure and properties of the laminates were analyzed to determine the effect of the BEPM and HIP processing on the ballistic properties of the layered plates.The effect of porosity in sintered composites on further diffusion bonding of the plates during HIP is analyzed to understand the bonding features at the interfaces between different adjacent layers in the laminate.Exceptional ballistic performance of fabricated structures was explained by a significant reduction in the residual porosity of the BEPM products by their additional processing using HIP,which provides an unprecedented increase in the hardness of the layered composites.It is argued that the combination of the used two technologies,BEPM and HIP is principally complimentary for the materials in question with the abilities to solve the essential problems of each used individually. 展开更多
关键词 Metal matrix composites Powder metallurgy Titanium hydride powder Master alloy Titanium carbide Titanium boride Hot isostatic pressing Ballistic tests
下载PDF
Deep eutectic solvents for separation and purification applications in critical metal metallurgy:Recent advances and perspectives
5
作者 Shuo Chen Shengpeng Su +4 位作者 Yanfang Huang Bingbing Liu Hu Sun Shuzhen Yang Guihong Han 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期1-19,共19页
Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and ... Solvent extraction,a separation and purification technology,is crucial in critical metal metallurgy.Organic solvents commonly used in solvent extraction exhibit disadvantages,such as high volatility,high toxicity,and flammability,causing a spectrum of hazards to human health and environmental safety.Neoteric solvents have been recognized as potential alternatives to these harmful organic solvents.In the past two decades,several neoteric solvents have been proposed,including ionic liquids(ILs)and deep eutectic solvents(DESs).DESs have gradually become the focus of green solvents owing to several advantages,namely,low toxicity,degradability,and low cost.In this critical review,their classification,formation mechanisms,preparation methods,characterization technologies,and special physicochemical properties based on the most recent advancements in research have been systematically described.Subsequently,the major separation and purification applications of DESs in critical metal metallurgy were comprehensively summarized.Finally,future opportunities and challenges of DESs were explored in the current research area.In conclusion,this review provides valuable insights for improving our overall understanding of DESs,and it holds important potential for expanding separation and purification applications in critical metal metallurgy. 展开更多
关键词 deep eutectic solvents preparations PROPERTIES separation and purification critical metal metallurgy
下载PDF
Development in oxide metallurgy for improving the weldability of high -strength low-alloy steel-Combined deoxidizers and microalloying elements
6
作者 Tingting Li Jian Yang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1263-1284,共22页
The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles du... The mechanisms of oxide metallurgy include inducing the formation of intragranular acicular ferrite(IAF)using micron-sized inclusions and restricting the growth of prior austenite grains(PAGs)by nanosized particles during welding.The chaotically oriented IAF and refined PAGs inhibit crack initiation and propagation in the steel,resulting in high impact toughness.This work summarizes the com-bined effect of deoxidizers and alloying elements,with the aim to provide a new perspective for the research and practice related to im-proving the impact toughness of the heat affected zone(HAZ)during the high heat input welding.Ti complex deoxidation with other strong deoxidants,such as Mg,Ca,Zr,and rare earth metals(REMs),can improve the toughness of the heat-affected zone(HAZ)by re-fining PAGs or increasing IAF contents.However,it is difficult to identify the specific phase responsible for IAF nucleation because ef-fective inclusions formed by complex deoxidation are usually multiphase.Increasing alloying elements,such as C,Si,Al,Nb,or Cr,con-tents can impair HAZ toughness.A high C content typically increases the number of coarse carbides and decreases the potency of IAF formation.Si,Cr,or Al addition leads to the formation of undesirable microstructures.Nb reduces the high-temperature stability of the precipitates.Mo,V,and B can enhance HAZ toughness.Mo-containing precipitates present good thermal stability.VN or V(C,N)is ef-fective in promoting IAF nucleation due to its good coherent crystallographic relationship with ferrite.The formation of the B-depleted zone around the inclusion promotes IAF formation.The interactions between alloying elements are complex,and the effect of adding dif-ferent alloying elements remains to be evaluated.In the future,the interactions between various alloying elements and their effects on ox-ide metallurgy,as well as the calculation of the nucleation effects of effective inclusions using first principles calculations will become the focus of oxide metallurgy. 展开更多
关键词 oxide metallurgy technology heat affected zone high-strength low-alloy steel intragranular acicular ferrite microalloying element
下载PDF
Erratum to:Review on biomass metallurgy:Pretreatment technology,metallurgical mechanism and process design
7
作者 Jianliang Zhang Hongyuan Fu +4 位作者 Yanxiang Liu Han Dang Lian Ye Alberto NConejo Runsheng Xu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第10期2326-2326,共1页
Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 29,Number 6,June 2022,Page 1133 https://doi.org/10.1007/s12613-022-2501-9 The original version of this article unfortunately contained a mis... Erratum to:International Journal of Minerals,Metallurgy and Materials Volume 29,Number 6,June 2022,Page 1133 https://doi.org/10.1007/s12613-022-2501-9 The original version of this article unfortunately contained a mistake.The spelling of the surname of one of the co-authors was incorrect.The name should be Alberto N.Conejo. 展开更多
关键词 NUMBER MISTAKE metallurgy
下载PDF
Analysis of Oxygen Consumption in Lead and Zinc Metallurgy
8
作者 Lun Sheng Pengpeng Zhang 《Frontiers of Metallurgical Industry》 2024年第2期5-9,共5页
This article analyzes the role of oxygen in lead zinc metallurgy,including shortening the metallurgical process,promoting energy conservation and environmental protection,improving metallurgical strength,enhancing raw... This article analyzes the role of oxygen in lead zinc metallurgy,including shortening the metallurgical process,promoting energy conservation and environmental protection,improving metallurgical strength,enhancing raw material adaptability,and enhancing comprehensive recovery efficiency.This article introduces different lead zinc metallurgical processes and their oxygen consumption characteristics,including oxygen enriched side blowing lead smelting,oxygen bottom blowing lead smelting,oxygen enriched top blowing lead smelting,flash smelting lead,oxygen pressure leaching zinc smelting,and atmospheric pressure oxygen leaching zinc smelting.It is pointed out that oxygen enhanced metallurgy is the direction for the transformation and upgrading of lead zinc metallurgy. 展开更多
关键词 lead zinc metallurgy oxygen rich smelting oxygen pressure leaching energy conservation and emission reduction
下载PDF
Ceramic particles reinforced copper matrix composites manufactured by advanced powder metallurgy:preparation, performance, and mechanisms 被引量:6
9
作者 Yi-Fan Yan Shu-Qing Kou +4 位作者 Hong-Yu Yang Shi-Li Shu Feng Qiu Qi-Chuan Jiang Lai-Chang Zhang 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期200-234,共35页
Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and e... Copper matrix composites doped with ceramic particles are known to effectively enhance the mechanical properties,thermal expansion behavior and high-temperature stability of copper while maintaining high thermal and electrical conductivity.This greatly expands the applications of copper as a functional material in thermal and conductive components,including electronic packaging materials and heat sinks,brushes,integrated circuit lead frames.So far,endeavors have been focusing on how to choose suitable ceramic components and fully exert strengthening effect of ceramic particles in the copper matrix.This article reviews and analyzes the effects of preparation techniques and the characteristics of ceramic particles,including ceramic particle content,size,morphology and interfacial bonding,on the diathermancy,electrical conductivity and mechanical behavior of copper matrix composites.The corresponding models and influencing mechanisms are also elaborated in depth.This review contributes to a deep understanding of the strengthening mechanisms and microstructural regulation of ceramic particle reinforced copper matrix composites.By more precise design and manipulation of composite microstructure,the comprehensive properties could be further improved to meet the growing demands of copper matrix composites in a wide range of application fields. 展开更多
关键词 copper matrix composites advanced powder metallurgy model prediction particle characteristics strengthening mechanism
下载PDF
Deformation behaviors and processing maps of CNTs/Al alloy composite fabricated by flake powder metallurgy 被引量:2
10
作者 何维均 李春红 +4 位作者 栾佰峰 邱日盛 王柯 李志强 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3578-3584,共7页
Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and str... Deformation behaviors of CNTs/Al alloy composite fabricated by the method of flake powder metallurgy were investigated by hot compression tests, which were performed in the temperature range of 300?550 °C and strain rate range of 0.001? 10 s?1 with Gleeble?3500 thermal simulator system. Processing maps of the CNTs/Al alloy at different strains were calculated to study the optimum processing domain. Microstructures before and after hot compressions were characterized by electron backscattered diffraction (EBSD) method. Stress?strain curves indicate that the flow stress increases with the increase of strain rate and the decrease of temperature. The processing maps of the CNTs/Al alloy at different strains show that the optimum processing domain is 500?550 °C, 10 s?1 for hot working. EBSD analysis demonstrates that fully dynamic recrystallization occurs in the optimum processing domain (high strainrate 10 s?1), whereas the main soften mechanism is dynamic recovery at low strain rate (0.001 s?1). 展开更多
关键词 CNTs/Al alloy composite flake powder metallurgy recrystallization processing map flow stress
下载PDF
Phase transformation and damping behavior of lightweight porous TiNiCu alloys fabricated by powder metallurgy process 被引量:2
11
作者 江鸿杰 柯常波 +2 位作者 曹姗姗 马骁 张新平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第7期2029-2036,共8页
Porous TiNiCu ternary shape memory alloys (SMAs) were successfully fabricated by powder metallurgy method. The microstructure, martensitic transformation behavior, damping performance and mechanical properties of th... Porous TiNiCu ternary shape memory alloys (SMAs) were successfully fabricated by powder metallurgy method. The microstructure, martensitic transformation behavior, damping performance and mechanical properties of the fabricated alloys were intensively studied. It is found that the apparent density of alloys decreases with increasing the Cu content, the porous Ti50Ni40Cu10 alloy exhibits wide endothermic and exothermic peaks arisen from the hysteresis of martensitic transformations, while the porous Ti50Ni30Cu20 alloy shows much stronger and narrower endothermic and exothermic peaks owing to the B2-B19 transformation taking place easily. Moreover, the porous Ti50Ni40Cu10 alloy shows a lower shape recovery rate than the porous Ti50Ni50 alloy, while the porous Ti50Ni30Cu20 alloy behaves reversely. In addition, the damping capacity (or internal friction, IF) of the porous TiNiCu alloys increases with increasing the Cu content. The porous Ti50Ni30Cu20 alloy has very high equivalent internal friction, with the maximum equivalent internal friction value five times higher than that of the porous Ti50Ni50 alloy. 展开更多
关键词 porous TiNiCu alloys powder metallurgy martensitic transformation damping behavior
下载PDF
Tribological behaviors of Fe-Al-Cr-Nb alloyed layer deposited on 45 steel via double glow plasma surface metallurgy technique 被引量:2
12
作者 罗西希 姚正军 +6 位作者 张平则 陈煜 杨红勤 吴小凤 张泽磊 林玉划 徐尚君 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3694-3699,共6页
Double glow plasma surface metallurgy technique was used to fabricate a Fe?Al?Cr?Nb alloyed layer onto the surface of the 45 steel. The microstructures and composition of th?eA Fl?eCr?Nb alloyed layer were analyzed by... Double glow plasma surface metallurgy technique was used to fabricate a Fe?Al?Cr?Nb alloyed layer onto the surface of the 45 steel. The microstructures and composition of th?eA Fl?eCr?Nb alloyed layer were analyzed by scanning electronic microscopy, X-ray diffraction and energy dispersive spectroscopy. The results indicate thatthe 20 μm alloyed layer is homogeneous and compact. The alloyed elements exhibit a gradient distribution along the cross section. Microhardness and nanoindentation tests imply that the surface hardness of the alloyed layer reaches HV 580, which is almost 2.8 times that of the substrate. Compared with the substrate, the alloyed layer has a much smaller displacement and a larger elastic modulus. According to the friction and wear tests at room temperature, the? FeAl?Cr?Nb alloyed layer has lower friction coefficient and less wear mass, implying that the Fe?Al?Cr?Nb alloyed layer can effectively improve the surface hardness and wear resistance of the substrate. 展开更多
关键词 Fe-Al-Cr-Nb alloyed layer double glow plasma surface metallurgy technique tribological behavior
下载PDF
Effect of milling time on microstructure of Ti35Nb2.5Sn/10HA biocomposite fabricated by powder metallurgy and sintering 被引量:1
13
作者 王晓鹏 徐丽娟 +4 位作者 陈玉勇 禹基道 肖树龙 孔凡涛 刘志光 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第3期608-612,共5页
A new β-Ti based Ti35Nb2.5Sn/10 hydroxyapitite(HA) biocompatible composite was fabricated by mechanical milling and pulsed current activated sintering(PCAS).The microstructures of Ti35Nb2.5Sn/10HA powder particle... A new β-Ti based Ti35Nb2.5Sn/10 hydroxyapitite(HA) biocompatible composite was fabricated by mechanical milling and pulsed current activated sintering(PCAS).The microstructures of Ti35Nb2.5Sn/10HA powder particles and composites sintered from the milled powders were studied.Results indicated that α-Ti phase began to transform into β-Ti phase after the powders were mechanically milled for 8 h.After mechanical milling for 12 h,α-Ti completely transformed into β-Ti phase,and the ultra fine Ti35Nb2.5Sn/10HA composite powders were obtained.And ultra fine grain sized Ti35Nb2.5Sn/10HA sintered composites were obtained by PCAS.The hardness and relative density of the sintered composites both increased with increasing the ball milling time. 展开更多
关键词 Ti35Nb2.5Sn/10HA ultrafine grain powder metallurgy milling time
下载PDF
Hot deformation and processing maps of Al_2O_3/Al composites fabricated by flake powder metallurgy 被引量:1
14
作者 栾佰峰 邱日盛 +4 位作者 李春红 杨晓芳 李志强 张荻 刘庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第4期1056-1063,共8页
The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The r... The deformation behaviors of Al2O3/Al composites were investigated by compressive tests conducted at temperature of 300-450 °C and strain rates of 0.001-1.0 s-1 with Gleeble-1500 D thermal simulator system. The results show that the flow stress increases with increasing strain rate and decreasing temperature. The hyperbolic sine constitutive equation can describe the flow stress behavior of Al2O3/Al composites, and the deformation activation energy and constitutive equations were calculated. The processing maps of Al2O3/Al-2 μm and Al2O3/Al-1 μm composites at strain of 0.6 were obtained and the optimum processing domains are in ranges of 300-330 °C, 0.007-0.03 s-1 and 335-360 °C, 0.015-0.06 s-1 for hot working, respectively. The instability zones of flow behavior can also be recognized by the maps. 展开更多
关键词 Al2O3/Al composites flake powder metallurgy flow stress processing map
下载PDF
TUNDISH METALLURGY AND ITS DEVELOPMENT 被引量:1
15
作者 马中庭 倪瑞明 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1995年第2期130+124-130,共8页
The research on tundish metallurgy has focused mainly on taking countermeasures to avoid and remove inclusions and the recent developments on tundish metallurgy were surveyed.The authers'advices for future develop... The research on tundish metallurgy has focused mainly on taking countermeasures to avoid and remove inclusions and the recent developments on tundish metallurgy were surveyed.The authers'advices for future development of tundish metallurgy were given in summary section. 展开更多
关键词 second refining/tundish metallurgy steel cleanness
下载PDF
Modeling, Optimization, and Control of Solution Purification Process in Zinc Hydrometallurgy 被引量:5
16
作者 Bei Sun Chunhua Yang +2 位作者 Hongqiu Zhu Yonggang Li Weihua Gui 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2018年第2期564-576,共13页
The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This pa... The solution purification process is an essential step in zinc hydrometallurgy. The performance of solution purification directly affects the normal functioning and economical benefits of zinc hydrometallurgy. This paper summarizes the authors' recent work on the modeling, optimization, and control of solution purification process. The online measurable property of the oxidation reduction potential(ORP) and the multiple reactors, multiple running statuses characteristic of the solution purification process are extensively utilized in this research. The absence of reliable online equipment for detecting the impurity ion concentration is circumvented by introducing the oxidationreduction potential into the kinetic model. A steady-state multiple reactors gradient optimization, unsteady-state operationalpattern adjustment strategy, and a process evaluation strategy based on the oxidation-reduction potential are proposed. The effectiveness of the proposed research is demonstrated by its industrial experiment. 展开更多
关键词 Index Terms-Nonferrous metallurgy oxidation reduction po-tential (ORP) process control solution purification zinc hy-drometallurgy.
下载PDF
Microstructure and mechanical properties of powder metallurgy Ti-Al-Mo-V-Ag alloy
17
作者 肖代红 袁铁锤 +1 位作者 欧小琴 贺跃辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第6期1269-1276,共8页
The Ti-Al-Mo-V-Ag α+β alloys were processed by powder metallurgy(PM) using the blended elemental(BE) technique.The effects of Ag addition and sintering temperature on microstructure and properties of the Ti-5Al... The Ti-Al-Mo-V-Ag α+β alloys were processed by powder metallurgy(PM) using the blended elemental(BE) technique.The effects of Ag addition and sintering temperature on microstructure and properties of the Ti-5Al-4Mo-4V alloys were investigated using X-ray diffraction,optical microscope,scanning electron microscope and mechanical properties tests.The results show that adding Ag element increases the relative density and improves the mechanical properties of PM Ti-5Al-4Mo-4V alloy.After sintering at 1 250 ℃ for 4 h,the relative density and compression strength of Ti-5Al-4Mo-4V-5Ag alloy are 96.3% and 1 656 MPa,respectively. 展开更多
关键词 titanium alloys powder metallurgy(PM) AG microstructure mechanical properties
下载PDF
Effect of glass fibre(GF) addition on microstructure and tensile property of GF/Pb composites fabricated by powder metallurgy
18
作者 耿耀宏 王蓬瑚 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第10期2672-2678,共7页
GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that rel... GF/Pb compositeswerefabricated by the method of powder metallurgy, and the density, microstructure and tensile propertywerecharacterized considering the size and content ofglass fibre (GF). The results show that relative densities decrease with increasing GF fraction, and the 50μm-GF reinforced specimens exhibit a better densification than the 300μm-GF reinforced ones. The GF particles distribute quite uniformly inPb matrix, and the composites fabricated at low sintering temperature (〈200℃) possess fine-grain microstructure. The addition of GF significantly improves the strength of the Pb composites, and the ultimate tensile strength of the Pb composite reinforcedwith the addition of 50μm-0.5% GF(mass fraction)is about 30MPa higher than that of GF-free sample. For all composites groups, increasing the reinforcement content from 0.5%to 2%(mass fraction)results in a decrease in both tensile strength and ductility. 展开更多
关键词 GF/Pb composites powder metallurgy sintering microstructure tensile property
下载PDF
Damping capacity of high strength-damping aluminum alloys prepared by rapid solidification and powder metallurgy process 被引量:6
19
作者 李国丛 马岳 +2 位作者 何晓磊 李伟 李沛勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第5期1112-1117,共6页
Two kinds of high strength-damping aluminum alloys (LZ7) were fabricated by rapid solidification and powder metallurgy (RS-PM) process. One material was extruded to profile aluminum directly and the other was extr... Two kinds of high strength-damping aluminum alloys (LZ7) were fabricated by rapid solidification and powder metallurgy (RS-PM) process. One material was extruded to profile aluminum directly and the other was extruded to bar and then rolled to sheet. The damping capacity over a temperature range of 25-300 ℃was studied with damping mechanical thermal analyzer (DMTA) and the microstructures were investigated by optical microscopy (OM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The experimental results show that the damping capacity increases with the test temperature elevating. Internal friction value of rolled sheet aluminum is up to 11.5×10^-2 and that of profile aluminum is as high as 6.0×10^-2 and 7.5×10^-2 at 300 ℃, respectively. Microstructure analysis shows the shape of precipitation phase of rolled alloy is more regular and the distribution is more homogeneous than that of profile alloy. Meanwhile, the interface between particulate and matrix of rolled sheet alloy is looser than that of profile alloy. Maybe the differences at interface can explain why damping capacity of rolled sheet alloy is higher than that of profile alloys at high temperature (above 120 ℃). 展开更多
关键词 damping capacity rapid solidification and powder metallurgy process composite materials damping mechanism
下载PDF
Development and progress on hydrogen metallurgy 被引量:67
20
作者 Jue Tang Man-sheng Chu +3 位作者 Feng Li Cong Feng Zheng-gen Liu Yu-sheng Zhou 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第6期713-723,共11页
Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO2 emission,and the use of hydrogen is beneficial to promoting the sustainable development of the steel indus... Hydrogen metallurgy is a technology that applies hydrogen instead of carbon as a reduction agent to reduce CO2 emission,and the use of hydrogen is beneficial to promoting the sustainable development of the steel industry.Hydrogen metallurgy has numerous applications,such as H2reduction ironmaking in Japan,ULCORED and hydrogen-based steelmaking in Europe;hydrogen flash ironmaking technology in the US;HYBRIT in the Nordics;Midrex H2TM by Midrex Technologies,Inc.(United States);H2FUTURE by Voestalpine(Austria);and SALCOS by Salzgitter AG(Germany).Hydrogen-rich blast furnaces(BFs)with COG injection are common in China.Running BFs have been industrially tested by AnSteel,XuSteel,and BenSteel.In a currently under construction pilot plant of a coal gasification–gas-based shaft furnace with an annual output of 10000 t direct reduction iron(DRI),a reducing gas composed of 57 vol%H2 and 38 vol%CO is prepared via the Ende method.The life cycle of the coal gasification–gas-based shaft furnace–electric furnace short process(30 wt%DRI+70 wt%scrap)is assessed with 1 t of molten steel as a functional unit.This plant has a total energy consumption per ton of steel of 263.67 kg standard coal and a CO2 emission per ton of steel of 829.89 kg,which are superior to those of a traditional BF converter process.Considering domestic materials and fuels,hydrogen production and storage,and hydrogen reduction characteristics,we believe that a hydrogen-rich shaft furnace will be suitable in China.Hydrogen production and storage with an economic and large-scale industrialization will promote the further development of a full hydrogen shaft furnace. 展开更多
关键词 HYDROGEN hydrogen metallurgy blast furnace shaft furnace low carbon
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部