期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
ELECTRONIC ENERGY BAND STRUCTURE OF MOLECULAR CRYSTALS MCI·(TCNQ)_2 AND ITS RELATIONSHIP WITH THE ELECTRICAL CONDUCTION
1
作者 张启元 严继民 《Science China Chemistry》 SCIE EI CAS 1990年第10期1163-1171,共9页
The structure of electronic energy bands, electric charge distribution and the amount of charge transfer of molecular crystals 1-MCI·(TCNQ)_2 (Ⅰ) and 2-MCI· (TCNQ)_2 (Ⅱ) have been studied. The results are... The structure of electronic energy bands, electric charge distribution and the amount of charge transfer of molecular crystals 1-MCI·(TCNQ)_2 (Ⅰ) and 2-MCI· (TCNQ)_2 (Ⅱ) have been studied. The results are: (ⅰ) The dominant contributions to the electrical conductivities for crystals Ⅰ and Ⅱ are from TCNQ molecular columns, and the charge carriers are electrons. (ⅱ) The electrical conduction is mainly due to the hopping of charge carriers between the seats of lattice. (ⅲ) The considerable difference of the electrical conductivities between crystals Ⅰ and Ⅱ is due to the differences between (a) the concentrations of charge carriers n_(AⅠ)~C= 0.9988-|e|/cell and n_(AⅡ)~C=0.0340-|e|/cell; (b) the widths of the energy bands △E_(AⅠ)^(LU)=0.88 eV and △E_(AⅡ)~LU=0.040 eV; (c) the first derivative of E with respect to k, (dE/dk)_(K_FAⅠ)^(LU)=0.27 eV· and (dE/dk)_(K_FAⅡ)~LU=0.0048 eV·; and (d) the difference of energy barriers for the hopping of charge carriers ∈_Ⅱ-∈Ⅰ=2.5-8.8 kJ/mol. 展开更多
关键词 structure of electronic energy bands energy bands and the electrical conductivities molecular crystal mic·(tcnq)_2
原文传递
Ni(OH)_(2) nanoparticles encapsulated in conductive nanowire array for high-performance alkaline seawater oxidation 被引量:7
2
作者 Longcheng Zhang Jiaqian Wang +10 位作者 Pengyu Liu Jie Liang Yongsong Luo Guanwei Cui Bo Tang Qian Liu Xuedong Yan Haigang Hao Meiling Liu Rui Gao Xuping Sun 《Nano Research》 SCIE EI CSCD 2022年第7期6084-6090,共7页
Design and development of high-efficiency and durable oxygen evolution reaction(OER)electrocatalysts is crucial for hydrogen production from seawater splitting.Herein,we report the in situ electrochemical conversion o... Design and development of high-efficiency and durable oxygen evolution reaction(OER)electrocatalysts is crucial for hydrogen production from seawater splitting.Herein,we report the in situ electrochemical conversion of a nanoarray of Ni(TCNQ)2(TCNQ=tetracyanoquinodimethane)on graphite paper into Ni(OH)_(2) nanoparticles confined in a conductive TCNQ nanoarray(Ni(OH)_(2)-TCNQ/GP)by anode oxidation.The Ni(OH)_(2)-TCNQ/GP exhibits high OER performance and demands overpotentials of 340 and 382 mV to deliver 100 mA·cm^(−2) in alkaline freshwater and alkaline seawater,respectively.Meanwhile,the Ni(OH)_(2)-TCNQ/GP also demonstrates steady long-term electrochemical durability for at least 80 h under alkaline seawater. 展开更多
关键词 Ni(OH)_(2)nanoparticles tetracyanoquinodimethane(tcnq)nanoarray electrocatalysis seawater splitting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部