We numerically study the enhancement factor of energy density and absorption efficiency inside the double cylindrical microcavities based on a triple-band metamaterial absorber. The compact single unit cell consists o...We numerically study the enhancement factor of energy density and absorption efficiency inside the double cylindrical microcavities based on a triple-band metamaterial absorber. The compact single unit cell consists of concentric gold rings with a gold disk in the center and a metallic ground plane separated by a dielectric layer. We demonstrate that the multilayer structure with subwavelength electromagnetic confinement allows 104-105-fold enhancement of the electromagnetic energy density inside the double cavities and contains the most energy of the incoming light. Particularly, the enhancement factor of energy density G shows strong ability of localizing light and some regularity as the change of the thickness of the dielectric slab and dielectric constant. At the normal incidence of electromagnetic radiation, the obtained reflection spectra show that the resonance frequencies of the double microcavities operate in the range of 10-30μm. We also calculate the absorption efficiency C, which can reach 95%, 97% and 95% at corresponding frequency by optimizing the structure's geometry parameters. Moreover, the proposed structure will be insensitive to the polarization of the incident wave due to the symmetry of the double cylindrical microcavities. The proposed optical metamaterial is a promising candidate as absorbing elements in scientific and technical applications due to its extreme confinement, multiband absorption and polarization insensitivity.展开更多
Photonic-plasmonic hybrid microcavities,which possess a higher figure of merit Q/V(the ratio of quality factor to mode volume)than that of pure photonic microcavities or pure plasmonic nano-antennas,play key roles in ...Photonic-plasmonic hybrid microcavities,which possess a higher figure of merit Q/V(the ratio of quality factor to mode volume)than that of pure photonic microcavities or pure plasmonic nano-antennas,play key roles in enhancing light–matter interaction.In this review,we summarize the typical photonic-plasmonic hybrid microcavities,such as photonic crystal microcavities combined with plasmonic nano-antenna,whispering gallery mode microcavities combined with plasmonic nano-antenna,and Fabry–Perot microcavities with plasmonic nano-antenna.The physics and applications of each hybrid photonic-plasmonic system are illustrated.The recent developments of topological photonic crystal microcavities and topological hybrid nano-cavities are also introduced,which demonstrates that topological microcavities can provide a robust platform for the realization of nanophotonic devices.This review can bring comprehensive physical insights of the hybrid system,and reveal that the hybrid system is a good platform for realizing strong light–matter interaction.展开更多
By using a Fourier series expansion method combined with Chew's perfectly matched layers (PMLs), we analyze the frequency and quality factor of a micro-cavity on a two-dimensional photonic crystal is analyzed. Comp...By using a Fourier series expansion method combined with Chew's perfectly matched layers (PMLs), we analyze the frequency and quality factor of a micro-cavity on a two-dimensional photonic crystal is analyzed. Compared with the results by the method without PML and finite-difference time-domain (FDTD) based on supercell approximation, it can be shown that by the present method with PMLs, the resonant frequency and the quality factor values can be calculated satisfyingly and the characteristics of the micro-cavity can be obtained by changing the size and permittivity of the point defect in the micro-cavity.展开更多
We numerically study the near field enhancement and absorption properties inside the double cylindrical microcavities based on triple-band metamaterial absorber. The compact single unit cell consists of concentric gol...We numerically study the near field enhancement and absorption properties inside the double cylindrical microcavities based on triple-band metamaterial absorber. The compact single unit cell consists of concentric gold rings each with a gold disk in the center, and a metallic ground plane separated by a dielectric layer. At the normal incidence of electromagnetic radiation, the obtained reflection spectra show that the resonance frequencies of the double microcavities are 16.65 THz, 20.65 THz, and 25.65THz, respectively. We also calculate the values of contrast C (C = 1 - Rmin), which can reach 95%, 97%, and 95% at the corresponding frequencies by optimizing the geometry parameters of structure. Moreover, we demon- strate that the multilayer structure with subwavelength electromagnetic confinement allows 104 -105-fold enhancement of the electromagnetic energy density inside the double cavities, which contains the most energy of the incoming electro- magnetic radiation. Moreover, the proposed structure will be insensitive to the polarization of the incident wave due to the symmetry of the double cylindrical microcavities. The proposed optical metamaterial is a promising candidate as an absorbing element in scientific and technical applications because of its extreme confinement, multiband absorptions, and polarization insensitivity.展开更多
We present the first findings of the new electrically- and optically-detected magnetic resonance technique [ED electron spin resonance (EDESR) and (ODMR)] which reveal single point defects in the ultra-narrow silicon ...We present the first findings of the new electrically- and optically-detected magnetic resonance technique [ED electron spin resonance (EDESR) and (ODMR)] which reveal single point defects in the ultra-narrow silicon quantum wells (Si-QW) confined by the superconductor δ-barriers. This technique allows the ESR identification without the application of the external cavity as well as a high frequency source and recorder, with measuring the only magnetoresistance (EDESR) and transmission (ODMR) spectra within frameworks of the excitonic normal-mode coupling (NMC) caused by the microcavities embedded in the Si-QW plane. The new resonant positive magnetoresistance data are interpreted here in terms of the interference transition in the diffusive transport of free holes respectively between the weak antilocalization regime in the region far from the ESR of a paramagnetic point defect located inside or near the conductive channel and the weak localization regime in the nearest region of the ESR of that defect.展开更多
High-performance optical quantum memories serving as quantum nodes are crucial for the distribution of remote entanglement and the construction of large-scale quantum networks.Notably,quantum systems based on single e...High-performance optical quantum memories serving as quantum nodes are crucial for the distribution of remote entanglement and the construction of large-scale quantum networks.Notably,quantum systems based on single emitters can achieve deterministic spin–photon entanglement,which greatly simplifies the difficulty of constructing quantum network nodes.Among them,optically interfaced spins embedded in solid-state systems,as atomic-like emitters,are important candidate systems for implementing long-lived quantum memory due to their stable physical properties and robustness to decoherence in scalable and compact hardware.To enhance the strength of light-matter interactions,optical microcavities can be exploited as an important tool to generate high-quality spin–photon entanglement for scalable quantum networks.They can enhance the photon collection probability and photon generation rate of specific optical transitions and improve the coherence and spectral purity of emitted photons.For solid-state systems,open Fabry–Pérot cavities can couple single emitters that are not in proximity to the surface,avoiding significant spectral diffusion induced by the interfaces while maintaining the wide tunability,which enables addressing of multiple single emitters in the frequency and spatial domain within a single device.This review described the characteristics of single emitters as quantum memories with a comparison to atomic ensembles,the cavity-enhancement effect for single emitters and the advantages of different cavities,especially fiber Fabry–Pérot microcavities.Finally,recent experimental progress on solid-state single emitters coupled with fiber Fabry–Pérot microcavities was also reviewed,with a focus on color centers in diamond and silicon carbide,as well as rare-earth dopants.展开更多
Whispering gallery modes (WGMs) were first discovered for sound waves in the whispering gallery of St Paul’s Cathedral and explained by Rayleigh [1] in 1878. In 1961, Garrett et al.[2] applied the concept of WGMs to ...Whispering gallery modes (WGMs) were first discovered for sound waves in the whispering gallery of St Paul’s Cathedral and explained by Rayleigh [1] in 1878. In 1961, Garrett et al.[2] applied the concept of WGMs to optical systems and realized stimulated emissions in Sm2+-doped CaF2 spheres.Since then, WGMs have been widely and intensively studied in a range of micro-sized systems, including microdroplets,microspheres, microtoroids, microdisks, and microtubes.展开更多
In this study, we investigate the fabrication of periodically poled lithium niobate(PPLN) microdisk cavities on a chip. These resonators are fabricated from a PPLN film with a 16 μm poling period on insulator using c...In this study, we investigate the fabrication of periodically poled lithium niobate(PPLN) microdisk cavities on a chip. These resonators are fabricated from a PPLN film with a 16 μm poling period on insulator using conventional microfabrication techniques.The quality factor of the PPLN microdisk resonators with a 40-μm radius and a 700-nm thickness is 6.7×10~5. Second harmonic generation(SHG) with an efficiency of 2.2×10^(-6) mW(-1) is demonstrated in the fabricated PPLN microdisks. The nonlinear conversion efficiency could be considerably enhanced by optimizing the period and pattern of the poled structure and by improving the cavity quality factors.展开更多
The coupling between optical and mechanical degrees of freedom has been of broad interest for a long time. However, it is only until recently, with the rapid development of optical mierocavity research, that we are ab...The coupling between optical and mechanical degrees of freedom has been of broad interest for a long time. However, it is only until recently, with the rapid development of optical mierocavity research, that we are able to manipulate and utilize this coupling process. When a high Q microeavity couples to a mechanical resonator, they can consolidate into an optomeehanieal system. Benefitting from the unique characteristics offered by optomeehanical coupling, this hybrid system has become a promising platform for ultrasensitive sensors to detect displacement, mass, force and acceleration. In this review, we introduce the basic physical concepts of cavity optomechanies, and describe some of the most typical experimental cavity optomechanical systems for sensing applications. Finally, we discuss the noise arising from various sources and show the potentiality of optomechanical sensing towards quantum-noise-limited detection.展开更多
It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers. In this paper, two hexagonal microteeth with varied na...It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers. In this paper, two hexagonal microteeth with varied nanoscaled air-gaps of a ZnO microcomb are used to construct coupled whispering-gallery cavities. This is done to achieve a stable single mode lasing based on Vernier effect without requiring any complicated or sophisticated manipulation to achieve positioning with nanoscale precision. Optical gain and the corresponding ultraviolet lasing performance were improved greatly through coupling with localized surface plasmons of Pt nanoparticles. The ZnO/Pt hybrid microcavities achieved a seven-fold enhancement of intensity of single mode lasing with higher side- mode suppression ratio and lower threshold. The mechanism that led to this enhancement has been described in detail.展开更多
Optical microcavities have attracted tremendous interest in both fundamental and applied research in the past few decades, thanks to their small footprint, easy integrability, and high quality factors. Using total int...Optical microcavities have attracted tremendous interest in both fundamental and applied research in the past few decades, thanks to their small footprint, easy integrability, and high quality factors. Using total internal reflection from a dielectric interface or a photonic band gap in a periodic system, these photonic structures do not rely on conventional metal-coated mirrors to confine light in small volumes, which have brought forth new developments in both classical and quantum optics. This focus issue showcases several such developments and related findings, which may pave the way for the next generation of on-chip photonic devices based on microcavities.展开更多
Quantum state transfer in optical microcavities plays an important role in quantum information processing and is essential in many optical devices such as optical frequency converters and diodes.Existing schemes are e...Quantum state transfer in optical microcavities plays an important role in quantum information processing and is essential in many optical devices such as optical frequency converters and diodes.Existing schemes are effective and realized by tuning the coupling strengths between modes.However,such approaches are severely restricted due to the small amount of strength that can be tuned and the difficulty performing the tuning in some situations,such as in an on-chip microcavity system.Here we propose a novel approach that realizes the state transfer between different modes in optical microcavities by tuning the frequency of an intermediate mode.We show that for typical functions of frequency tuning,such as linear and periodic functions,the state transfer can be realized successfully with different features.To optimize the process,we use the gradient descent technique to find an optimal tuning function for a fast and perfect state transfer.We also showed that our approach has significant nonreciprocity with appropriate tuning variables,where one can unidirectionally transfer a state from one mode to another,but the inverse direction transfer is forbidden.This work provides an effective method for controlling the multimode interactions in on-chip optical microcavities via simple operations,and it has practical applications in all-optical devices.展开更多
We fabricate photonic crystal slab microcavities embedded with GaAs quantum dots by electron beam lithography and droplet epitaxy. The Purcell effect of exciton emission of the quantum dots is confirmed by the micro p...We fabricate photonic crystal slab microcavities embedded with GaAs quantum dots by electron beam lithography and droplet epitaxy. The Purcell effect of exciton emission of the quantum dots is confirmed by the micro photoluminescence measurement. The resonance wavelengths, widths, and polarization are consistent with numerical simulation results.展开更多
By overcoming fabrication limitations, we have successfully fabricated silica toroid microcavities with both large diameter(of 1.88 mm) and ultra-high-Q factor(of 3.3 × 10~8) for the first time, to the best of ou...By overcoming fabrication limitations, we have successfully fabricated silica toroid microcavities with both large diameter(of 1.88 mm) and ultra-high-Q factor(of 3.3 × 10~8) for the first time, to the best of our knowledge. By employing these resonators, we have further demonstrated low-threshold Kerr frequency combs on a silicon chip,which allow us to obtain a repetition rate as low as 36 GHz. Such a low repetition rate frequency comb can now bedirectly measured through a commercialized optical-electronic detector.展开更多
Optical whispering gallery microcavities with high-quality factors have shown great potential toward achieveing ultrahigh-sensitivity sensing up to a single molecule or nanoparticle, which raises a huge demand on a de...Optical whispering gallery microcavities with high-quality factors have shown great potential toward achieveing ultrahigh-sensitivity sensing up to a single molecule or nanoparticle, which raises a huge demand on a deep theoretical insight into the crucial phenomena such as the mode shift, mode splitting, and mode broadening in sensing experiments. Here we propose an intuitive model to analyze these phenomena from the viewpoint of the nanoparticle-induced multiple scattering of the azimuthally propagating mode(APM). The model unveils explicit relations between these phenomena and the phase change and energy loss of the APM when scattered at the nanoparticle; the model also explains the observed polarization-dependent preservation of one resonance and the particle-dependent redshift or blueshift. The model indicates that the particle-induced coupling between the pair of unperturbed degenerate whispering gallery modes(WGMs) and the coupling between the WGMs and the free-space radiation modes, which are widely adopted in current theoretical formalisms, are realized via the reflection and scattering-induced free-space radiation of the APM, respectively, and additionally exhibits the contribution of cross coupling between the unperturbed WGMs and other different WGMs to forming the splittingresonant modes, especially for large particles.展开更多
We propose a temperature-insensitive refractive index(RI) fiber sensor based on a Mach–Zehnder interferometer. The sensor with high sensitivity and a robust structure is fabricated by splicing a short photonic crys...We propose a temperature-insensitive refractive index(RI) fiber sensor based on a Mach–Zehnder interferometer. The sensor with high sensitivity and a robust structure is fabricated by splicing a short photonic crystal fiber(PCF) between two single-mode fibers, where two microcavities are formed at both junctions because of the collapse of the PCF air holes. The microcavity with a larger equatorial dimension can excite higher-order cladding modes, so the sensor presents a high RI sensitivity, which can reach 244.16 nm/RIU in the RI range of1.333–1.3778. Meanwhile it has a low temperature sensitivity of 0.005 nm/°C in the range of 33°C–360°C.展开更多
The photoluminescence(PL) properties of porous silicon microcavities(PSMs) in the visible range at room temperature are improved by doping the rare earth ytterbium(Yb) into PSMs prepared by the electrochemical etching...The photoluminescence(PL) properties of porous silicon microcavities(PSMs) in the visible range at room temperature are improved by doping the rare earth ytterbium(Yb) into PSMs prepared by the electrochemical etching method.It is observed that PSMs doped with the rare earth have an emission band around 630 nm.Compared with the single-layer porous silicon(PS) film,the PSMs doped with Yb have narrower and stronger PL spectrum.展开更多
Whispering-gallery-mode(WGM) microcavities with high-quality factors and small volumes have attracted intense interests in the past decades because of their potential applications in various research fields such as qu...Whispering-gallery-mode(WGM) microcavities with high-quality factors and small volumes have attracted intense interests in the past decades because of their potential applications in various research fields such as quantum information, sensing, and optoelectronics. This leads to rapid advance in a variety of processing technologies that can create high-quality WGM micro-cavities. Due to the unique characteristics of femtosecond laser pulses with high peak intensity and ultrashort pulse duration, femtosecond laser shows the ability to carry out ultrahigh precision micromachining of a variety of transparent materials through nonlinear multiphoton absorption and tunneling ionization. This review paper describes the basic principle of femtosecond laser direct writing, and presents an overview of recent progress concerning femtosecond laser three-dimensional(3D) fabrications of optical WGM microcavities, which include the advances in the fabrications of passive and active WGMs microcavities in a variety of materials such as polymer, glass and crystals, as well as in processing the integrated WGM-microcavity device. Lastly, a summary of this dynamic field with a future perspective is given.展开更多
The strong light–matter interaction in ZnO-embedded microcavities has received great attention in recent years,due to its ability to generate the robust bosonic quasiparticles,exciton-polaritons,at or above room temp...The strong light–matter interaction in ZnO-embedded microcavities has received great attention in recent years,due to its ability to generate the robust bosonic quasiparticles,exciton-polaritons,at or above room temperature.This review introduces the strong coupling effect in ZnO-based microcavities and describes the recent progress in this field.In addition,the report contains a systematic analysis of the room-temperature strong-coupling effects from relaxation to polariton lasing.The stable room temperature operation of polaritonic effects in a ZnO microcavity promises a wide range of practical applications in the future,such as ultra-low power consumption coherent light emitters in the ultraviolet region,polaritonic transport,and other fundamental of quantum optics in solid-state systems.展开更多
Optical microcavities have the ability to confne photons in small mode volumes for long periods of time,greatly enhancing light-matter interactions,and have become one of the research hotspots in international academi...Optical microcavities have the ability to confne photons in small mode volumes for long periods of time,greatly enhancing light-matter interactions,and have become one of the research hotspots in international academia.In recent years,sensing applications in complex environments have inspired the development of multimode optical microcavity sensors.These multimode sensors can be used not only for multi-parameter detection but also to improve measurement precision.In this review,we introduce multimode sensing methods based on optical microcavities and present an overview of the multimode single/multi-parameter optical microcavities sensors.Expected further research activities are also put forward.展开更多
基金Supported by the Program of Natural Science Research of Jiangsu Higher Education Institutions of China under Grant No14KJB 140005
文摘We numerically study the enhancement factor of energy density and absorption efficiency inside the double cylindrical microcavities based on a triple-band metamaterial absorber. The compact single unit cell consists of concentric gold rings with a gold disk in the center and a metallic ground plane separated by a dielectric layer. We demonstrate that the multilayer structure with subwavelength electromagnetic confinement allows 104-105-fold enhancement of the electromagnetic energy density inside the double cavities and contains the most energy of the incoming light. Particularly, the enhancement factor of energy density G shows strong ability of localizing light and some regularity as the change of the thickness of the dielectric slab and dielectric constant. At the normal incidence of electromagnetic radiation, the obtained reflection spectra show that the resonance frequencies of the double microcavities operate in the range of 10-30μm. We also calculate the absorption efficiency C, which can reach 95%, 97% and 95% at corresponding frequency by optimizing the structure's geometry parameters. Moreover, the proposed structure will be insensitive to the polarization of the incident wave due to the symmetry of the double cylindrical microcavities. The proposed optical metamaterial is a promising candidate as absorbing elements in scientific and technical applications due to its extreme confinement, multiband absorption and polarization insensitivity.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 91850117 and 11654003)Beijing Institute of Technology Research Fund Program for Young Scholars
文摘Photonic-plasmonic hybrid microcavities,which possess a higher figure of merit Q/V(the ratio of quality factor to mode volume)than that of pure photonic microcavities or pure plasmonic nano-antennas,play key roles in enhancing light–matter interaction.In this review,we summarize the typical photonic-plasmonic hybrid microcavities,such as photonic crystal microcavities combined with plasmonic nano-antenna,whispering gallery mode microcavities combined with plasmonic nano-antenna,and Fabry–Perot microcavities with plasmonic nano-antenna.The physics and applications of each hybrid photonic-plasmonic system are illustrated.The recent developments of topological photonic crystal microcavities and topological hybrid nano-cavities are also introduced,which demonstrates that topological microcavities can provide a robust platform for the realization of nanophotonic devices.This review can bring comprehensive physical insights of the hybrid system,and reveal that the hybrid system is a good platform for realizing strong light–matter interaction.
文摘By using a Fourier series expansion method combined with Chew's perfectly matched layers (PMLs), we analyze the frequency and quality factor of a micro-cavity on a two-dimensional photonic crystal is analyzed. Compared with the results by the method without PML and finite-difference time-domain (FDTD) based on supercell approximation, it can be shown that by the present method with PMLs, the resonant frequency and the quality factor values can be calculated satisfyingly and the characteristics of the micro-cavity can be obtained by changing the size and permittivity of the point defect in the micro-cavity.
文摘We numerically study the near field enhancement and absorption properties inside the double cylindrical microcavities based on triple-band metamaterial absorber. The compact single unit cell consists of concentric gold rings each with a gold disk in the center, and a metallic ground plane separated by a dielectric layer. At the normal incidence of electromagnetic radiation, the obtained reflection spectra show that the resonance frequencies of the double microcavities are 16.65 THz, 20.65 THz, and 25.65THz, respectively. We also calculate the values of contrast C (C = 1 - Rmin), which can reach 95%, 97%, and 95% at the corresponding frequencies by optimizing the geometry parameters of structure. Moreover, we demon- strate that the multilayer structure with subwavelength electromagnetic confinement allows 104 -105-fold enhancement of the electromagnetic energy density inside the double cavities, which contains the most energy of the incoming electro- magnetic radiation. Moreover, the proposed structure will be insensitive to the polarization of the incident wave due to the symmetry of the double cylindrical microcavities. The proposed optical metamaterial is a promising candidate as an absorbing element in scientific and technical applications because of its extreme confinement, multiband absorptions, and polarization insensitivity.
文摘We present the first findings of the new electrically- and optically-detected magnetic resonance technique [ED electron spin resonance (EDESR) and (ODMR)] which reveal single point defects in the ultra-narrow silicon quantum wells (Si-QW) confined by the superconductor δ-barriers. This technique allows the ESR identification without the application of the external cavity as well as a high frequency source and recorder, with measuring the only magnetoresistance (EDESR) and transmission (ODMR) spectra within frameworks of the excitonic normal-mode coupling (NMC) caused by the microcavities embedded in the Si-QW plane. The new resonant positive magnetoresistance data are interpreted here in terms of the interference transition in the diffusive transport of free holes respectively between the weak antilocalization regime in the region far from the ESR of a paramagnetic point defect located inside or near the conductive channel and the weak localization regime in the nearest region of the ESR of that defect.
基金supported by the Innovation Program for Quantum Science and Technology(No.2021ZD0301200)the National Natural Science Foundation of China(Nos.12222411,11821404 and 12204459)Anhui Provincial Natural Science Foundation(No.2108085QA26).
文摘High-performance optical quantum memories serving as quantum nodes are crucial for the distribution of remote entanglement and the construction of large-scale quantum networks.Notably,quantum systems based on single emitters can achieve deterministic spin–photon entanglement,which greatly simplifies the difficulty of constructing quantum network nodes.Among them,optically interfaced spins embedded in solid-state systems,as atomic-like emitters,are important candidate systems for implementing long-lived quantum memory due to their stable physical properties and robustness to decoherence in scalable and compact hardware.To enhance the strength of light-matter interactions,optical microcavities can be exploited as an important tool to generate high-quality spin–photon entanglement for scalable quantum networks.They can enhance the photon collection probability and photon generation rate of specific optical transitions and improve the coherence and spectral purity of emitted photons.For solid-state systems,open Fabry–Pérot cavities can couple single emitters that are not in proximity to the surface,avoiding significant spectral diffusion induced by the interfaces while maintaining the wide tunability,which enables addressing of multiple single emitters in the frequency and spatial domain within a single device.This review described the characteristics of single emitters as quantum memories with a comparison to atomic ensembles,the cavity-enhancement effect for single emitters and the advantages of different cavities,especially fiber Fabry–Pérot microcavities.Finally,recent experimental progress on solid-state single emitters coupled with fiber Fabry–Pérot microcavities was also reviewed,with a focus on color centers in diamond and silicon carbide,as well as rare-earth dopants.
基金supported by the Shenzhen Fundamental Research Projects(Grant No.JCYJ20160427183259083)the National Natural Science Foundation of China(Grant No.91850204)the Shenzhen Engineering Laboratory on Organic-Inorganic Perovskite Devices
文摘Whispering gallery modes (WGMs) were first discovered for sound waves in the whispering gallery of St Paul’s Cathedral and explained by Rayleigh [1] in 1878. In 1961, Garrett et al.[2] applied the concept of WGMs to optical systems and realized stimulated emissions in Sm2+-doped CaF2 spheres.Since then, WGMs have been widely and intensively studied in a range of micro-sized systems, including microdroplets,microspheres, microtoroids, microdisks, and microtubes.
基金supported by the National Natural Science Foundation of China(Grant Nos.11734009,11674181,11774182,and 11674184)the 111 Project(Grant No.B07013)+1 种基金PCSIRT(Grant No.IRT 13R29)CAS Interdisciplinary Innovation Team
文摘In this study, we investigate the fabrication of periodically poled lithium niobate(PPLN) microdisk cavities on a chip. These resonators are fabricated from a PPLN film with a 16 μm poling period on insulator using conventional microfabrication techniques.The quality factor of the PPLN microdisk resonators with a 40-μm radius and a 700-nm thickness is 6.7×10~5. Second harmonic generation(SHG) with an efficiency of 2.2×10^(-6) mW(-1) is demonstrated in the fabricated PPLN microdisks. The nonlinear conversion efficiency could be considerably enhanced by optimizing the period and pattern of the poled structure and by improving the cavity quality factors.
文摘The coupling between optical and mechanical degrees of freedom has been of broad interest for a long time. However, it is only until recently, with the rapid development of optical mierocavity research, that we are able to manipulate and utilize this coupling process. When a high Q microeavity couples to a mechanical resonator, they can consolidate into an optomeehanieal system. Benefitting from the unique characteristics offered by optomeehanical coupling, this hybrid system has become a promising platform for ultrasensitive sensors to detect displacement, mass, force and acceleration. In this review, we introduce the basic physical concepts of cavity optomechanies, and describe some of the most typical experimental cavity optomechanical systems for sensing applications. Finally, we discuss the noise arising from various sources and show the potentiality of optomechanical sensing towards quantum-noise-limited detection.
基金Acknowledgements The authors sincerely appreciate the help of Shufeng Wang and Yu Li at Peking University and Andong Xia at Institute of Chemistry Chinese Academy of Sciences for their technical support on time-resolved PL. This work was supported by the National Basic Research Program (No. 2013CB932903), National Natural Science Foundation (Nos. 61275054, 61475035, and 11404289), Jiangsu Province Science and Technology Support Program (No. BE2016177) and Natural Science Foundation of Zhejiang Province (No. LY17A040011).
文摘It is essential to develop a single mode operation and improve the performance of lasing in order to ensure practical applicability of microlasers and nanolasers. In this paper, two hexagonal microteeth with varied nanoscaled air-gaps of a ZnO microcomb are used to construct coupled whispering-gallery cavities. This is done to achieve a stable single mode lasing based on Vernier effect without requiring any complicated or sophisticated manipulation to achieve positioning with nanoscale precision. Optical gain and the corresponding ultraviolet lasing performance were improved greatly through coupling with localized surface plasmons of Pt nanoparticles. The ZnO/Pt hybrid microcavities achieved a seven-fold enhancement of intensity of single mode lasing with higher side- mode suppression ratio and lower threshold. The mechanism that led to this enhancement has been described in detail.
文摘Optical microcavities have attracted tremendous interest in both fundamental and applied research in the past few decades, thanks to their small footprint, easy integrability, and high quality factors. Using total internal reflection from a dielectric interface or a photonic band gap in a periodic system, these photonic structures do not rely on conventional metal-coated mirrors to confine light in small volumes, which have brought forth new developments in both classical and quantum optics. This focus issue showcases several such developments and related findings, which may pave the way for the next generation of on-chip photonic devices based on microcavities.
基金National Natural Science Foundation of China(61727801)National Key Research and Development Program of China(2017YFA0303700)+2 种基金China Postdoctoral Science Foundation(2019M6506202019M660605)Beijing Innovation Center for Future Chip。
文摘Quantum state transfer in optical microcavities plays an important role in quantum information processing and is essential in many optical devices such as optical frequency converters and diodes.Existing schemes are effective and realized by tuning the coupling strengths between modes.However,such approaches are severely restricted due to the small amount of strength that can be tuned and the difficulty performing the tuning in some situations,such as in an on-chip microcavity system.Here we propose a novel approach that realizes the state transfer between different modes in optical microcavities by tuning the frequency of an intermediate mode.We show that for typical functions of frequency tuning,such as linear and periodic functions,the state transfer can be realized successfully with different features.To optimize the process,we use the gradient descent technique to find an optimal tuning function for a fast and perfect state transfer.We also showed that our approach has significant nonreciprocity with appropriate tuning variables,where one can unidirectionally transfer a state from one mode to another,but the inverse direction transfer is forbidden.This work provides an effective method for controlling the multimode interactions in on-chip optical microcavities via simple operations,and it has practical applications in all-optical devices.
基金supported by a Grant-in-Aid for Scientific Research from the Ministry of Education,Science,Sports,and Culture of Japan under Grant No.20340080.
文摘We fabricate photonic crystal slab microcavities embedded with GaAs quantum dots by electron beam lithography and droplet epitaxy. The Purcell effect of exciton emission of the quantum dots is confirmed by the micro photoluminescence measurement. The resonance wavelengths, widths, and polarization are consistent with numerical simulation results.
基金National Key R&D Program of China(2017YFA0303703,2016YFA0302500)National Natural Science Foundation of China(NSFC)(61435007,11574144,61475099)+1 种基金Natural Science Foundation of Jiangsu Province,China(BK20150015)Fundamental Research Funds for the Central Universities(021314380086)
文摘By overcoming fabrication limitations, we have successfully fabricated silica toroid microcavities with both large diameter(of 1.88 mm) and ultra-high-Q factor(of 3.3 × 10~8) for the first time, to the best of our knowledge. By employing these resonators, we have further demonstrated low-threshold Kerr frequency combs on a silicon chip,which allow us to obtain a repetition rate as low as 36 GHz. Such a low repetition rate frequency comb can now bedirectly measured through a commercialized optical-electronic detector.
基金National Key Basic Research Program of China(2013CB328701)National Natural Science Foundation of China(NSFC)(61322508,11504270)
文摘Optical whispering gallery microcavities with high-quality factors have shown great potential toward achieveing ultrahigh-sensitivity sensing up to a single molecule or nanoparticle, which raises a huge demand on a deep theoretical insight into the crucial phenomena such as the mode shift, mode splitting, and mode broadening in sensing experiments. Here we propose an intuitive model to analyze these phenomena from the viewpoint of the nanoparticle-induced multiple scattering of the azimuthally propagating mode(APM). The model unveils explicit relations between these phenomena and the phase change and energy loss of the APM when scattered at the nanoparticle; the model also explains the observed polarization-dependent preservation of one resonance and the particle-dependent redshift or blueshift. The model indicates that the particle-induced coupling between the pair of unperturbed degenerate whispering gallery modes(WGMs) and the coupling between the WGMs and the free-space radiation modes, which are widely adopted in current theoretical formalisms, are realized via the reflection and scattering-induced free-space radiation of the APM, respectively, and additionally exhibits the contribution of cross coupling between the unperturbed WGMs and other different WGMs to forming the splittingresonant modes, especially for large particles.
基金supported by the Ministry of Science and Technology of China (MOST) (No. 2015AA043504)the National Natural Science Foundation of China (NSFC) (Nos. 91323301 and 51575053)
文摘We propose a temperature-insensitive refractive index(RI) fiber sensor based on a Mach–Zehnder interferometer. The sensor with high sensitivity and a robust structure is fabricated by splicing a short photonic crystal fiber(PCF) between two single-mode fibers, where two microcavities are formed at both junctions because of the collapse of the PCF air holes. The microcavity with a larger equatorial dimension can excite higher-order cladding modes, so the sensor presents a high RI sensitivity, which can reach 244.16 nm/RIU in the RI range of1.333–1.3778. Meanwhile it has a low temperature sensitivity of 0.005 nm/°C in the range of 33°C–360°C.
基金supported by the National Natural Science Foundation of China(Nos.61575168 and 61265009)the Xinjiang Science and Technology Project(No.201412112)
文摘The photoluminescence(PL) properties of porous silicon microcavities(PSMs) in the visible range at room temperature are improved by doping the rare earth ytterbium(Yb) into PSMs prepared by the electrochemical etching method.It is observed that PSMs doped with the rare earth have an emission band around 630 nm.Compared with the single-layer porous silicon(PS) film,the PSMs doped with Yb have narrower and stronger PL spectrum.
基金supported by the National Key Basic Research Program of China(Grant No.2014CB921302)the National Natural Science Foundation of China(Grant Nos.61427816 and 61235003)Research Fund for the Doctoral Program of Higher Education of China,and Fundamental Research Funds of Jilin University
文摘Whispering-gallery-mode(WGM) microcavities with high-quality factors and small volumes have attracted intense interests in the past decades because of their potential applications in various research fields such as quantum information, sensing, and optoelectronics. This leads to rapid advance in a variety of processing technologies that can create high-quality WGM micro-cavities. Due to the unique characteristics of femtosecond laser pulses with high peak intensity and ultrashort pulse duration, femtosecond laser shows the ability to carry out ultrahigh precision micromachining of a variety of transparent materials through nonlinear multiphoton absorption and tunneling ionization. This review paper describes the basic principle of femtosecond laser direct writing, and presents an overview of recent progress concerning femtosecond laser three-dimensional(3D) fabrications of optical WGM microcavities, which include the advances in the fabrications of passive and active WGMs microcavities in a variety of materials such as polymer, glass and crystals, as well as in processing the integrated WGM-microcavity device. Lastly, a summary of this dynamic field with a future perspective is given.
基金This work has been supported by the NSC in Taiwan under contract NSC 100-2628-E-009-013-MY3.
文摘The strong light–matter interaction in ZnO-embedded microcavities has received great attention in recent years,due to its ability to generate the robust bosonic quasiparticles,exciton-polaritons,at or above room temperature.This review introduces the strong coupling effect in ZnO-based microcavities and describes the recent progress in this field.In addition,the report contains a systematic analysis of the room-temperature strong-coupling effects from relaxation to polariton lasing.The stable room temperature operation of polaritonic effects in a ZnO microcavity promises a wide range of practical applications in the future,such as ultra-low power consumption coherent light emitters in the ultraviolet region,polaritonic transport,and other fundamental of quantum optics in solid-state systems.
基金the National Natural Science Foundation of China(Grant Nos.11974058,61307050,and 61701271)the Beijing Nova Program(No.Z201100006820125)+2 种基金Beijing Municipal Science and Technology Commission,in part by the Beijing Natural Science Foundation(No.Z210004)the Shandong Natural Science Foundation(No.ZR2016AM27)the State Key Laboratory of Information Photonics and Optical Communications(No.IPOC2021ZT01),BUPT,China.
文摘Optical microcavities have the ability to confne photons in small mode volumes for long periods of time,greatly enhancing light-matter interactions,and have become one of the research hotspots in international academia.In recent years,sensing applications in complex environments have inspired the development of multimode optical microcavity sensors.These multimode sensors can be used not only for multi-parameter detection but also to improve measurement precision.In this review,we introduce multimode sensing methods based on optical microcavities and present an overview of the multimode single/multi-parameter optical microcavities sensors.Expected further research activities are also put forward.