Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and...Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and metastasis.However,conventional two-dimensional cell culture and animal models have limitations in studying the influence of tumor microenvironment on cancer cell migration.Fortunately,the further development of microfluidic technology has provided solutions for the study of such questions.We utilize microfluidic chip to build a random collagen fiber microenvironment(RFM)model and an oriented collagen fiber microenvironment(OFM)model that resemble early stage and late stage breast cancer microenvironments,respectively.By combining cell culture,biochemical concentration gradient construction,and microscopic imaging techniques,we investigate the impact of different collagen fiber biochemical microenvironments on the migration of breast cancer MDA-MB-231-RFP cells.The results show that MDA-MB-231-RFP cells migrate further in the OFM model compared to the RFM model,with significant differences observed.Furthermore,we establish concentration gradients of the anticancer drug paclitaxel in both the RFM and OFM models and find that paclitaxel significantly inhibits the migration of MDA-MB-231-RFP cells in the RFM model,with stronger inhibition on the high concentration side compared to the low concentration side.However,the inhibitory effect of paclitaxel on the migration of MDA-MB-231-RFP cells in the OFM model is weak.These findings suggest that the oriented collagen fiber microenvironment resembling the late-stage tumor microenvironment is more favorable for cancer cell migration and that the effectiveness of anticancer drugs is diminished.The RFM and OFM models constructed in this study not only provide a platform for studying the mechanism of cancer development,but also serve as a tool for the initial measurement of drug screening.展开更多
Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells a...Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells and/or biomaterials as major modulators of the spinal cord injury microenvironment.Here,we aimed to investigate the role of microenvironment modulation by cell graft on functional recovery after spinal cord injury.Induced neural stem cells reprogrammed from human peripheral blood mononuclear cells,and/or thrombin plus fibrinogen,were transplanted into the lesion site of an immunosuppressed rat spinal cord injury model.Basso,Beattie and Bresnahan score,electrophysiological function,and immunofluorescence/histological analyses showed that transplantation facilitates motor and electrophysiological function,reduces lesion volume,and promotes axonal neurofilament expression at the lesion core.Examination of the graft and niche components revealed that although the graft only survived for a relatively short period(up to 15 days),it still had a crucial impact on the microenvironment.Altogether,induced neural stem cells and human fibrin reduced the number of infiltrated immune cells,biased microglia towards a regenerative M2 phenotype,and changed the cytokine expression profile at the lesion site.Graft-induced changes of the microenvironment during the acute and subacute stages might have disrupted the inflammatory cascade chain reactions,which may have exerted a long-term impact on the functional recovery of spinal cord injury rats.展开更多
Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic enviro...Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-βexpression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy.展开更多
Hepatocellular carcinoma(HCC)is the most common primary tumor of the liver and has a high mortality rate.The Barcelona Clinic Liver Cancer staging system in addition to tumor staging also links the modality of treatme...Hepatocellular carcinoma(HCC)is the most common primary tumor of the liver and has a high mortality rate.The Barcelona Clinic Liver Cancer staging system in addition to tumor staging also links the modality of treatment available to a particular stage.The recent description of the tumor microenvironment(TME)in HCC has provided a new concept of immunogenicity within the HCC.Virusrelated HCC has been shown to be more immunogenic with higher expression of cytotoxic T lymphocytes and decreased elements for immunosuppression such as regulatory T cells.This immunogenic milieu provides a better response to immunotherapy especially immune checkpoint inhibitors(ICIs).In addition,the recent data on combining locoregional therapies and other strategies may convert the less immunogenic state of the TME towards higher immunogenicity.Therefore,data are emerging on the use of combinations of locoregional therapy and ICIs in unresectable or advanced HCC and has shown better survival outcomes in this difficult population.展开更多
Throughout tumorigenesis, the co-evolution of tumor cells and their surrounding microenvironment leads to the development of malignant phenotypes. Cellular communication within the tumor microenvironment(TME) plays a ...Throughout tumorigenesis, the co-evolution of tumor cells and their surrounding microenvironment leads to the development of malignant phenotypes. Cellular communication within the tumor microenvironment(TME) plays a critical role in influencing various aspects of tumor progression, including invasion and metastasis. The release of exosomes, a type of extracellular vesicle, by most cell types in the body, is an essential mediator of intercellular communication. A growing body of research indicates that tumor-derived exosomes(TDEs) significantly expedite tumor progression through multiple mechanisms, inducing epithelial-mesenchymal transition and macrophage polarization, enhancing angiogenesis, and aiding in the immune evasion of tumor cells. Herein, we describe the formation and characteristics of the TME, and summarize the contents of TDEs and their diverse functions in modulating tumor development. Furthermore, we explore potential applications of TDEs in tumor diagnosis and treatment.展开更多
As a highly invasive malignancy,esophageal cancer(EC)is a global health issue,and was the eighth most prevalent cancer and the sixth leading cause of cancerrelated death worldwide in 2020.Due to its highly immunogenic...As a highly invasive malignancy,esophageal cancer(EC)is a global health issue,and was the eighth most prevalent cancer and the sixth leading cause of cancerrelated death worldwide in 2020.Due to its highly immunogenic nature,emerging immunotherapy approaches,such as immune checkpoint blockade,have demonstrated promising efficacy in treating EC;however,certain limitations and challenges still exist.In addition,tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment(TIME);thus,understanding the TIME is urgent and crucial,especially given the importance of an immunosuppressive microenvironment in tumor progression.The aim of this review was to better elucidate the mechanisms of the suppressive TIME,including cell infiltration,immune cell subsets,cytokines and signaling pathways in the tumor microenvironment of EC patients,as well as the downregulated expression of major histocompatibility complex molecules in tumor cells,to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies.Therefore,personalized treatments could be developed to maximize the advantages of immunotherapy.展开更多
The Tongbai Mountains is an ecologically sensi-tive region and the northern boundary of Pinus massoniana Lamb.To analyze the effect of different microenvironments on tree growth response to climate factors,we develope...The Tongbai Mountains is an ecologically sensi-tive region and the northern boundary of Pinus massoniana Lamb.To analyze the effect of different microenvironments on tree growth response to climate factors,we developed standard chronologies for earlywood width(EWW),late-wood width(LWW),and total ring width(TRW)of P.massoniana at two sampling sites on slopes with different orientations,then analyzed characteristics of the chronolo-gies and their correlations with climate variables from five stations in the region and with a regional normalized differ-ence vegetation index(NDVI).Statistical results showed that the TRW/EWW/LWW chronology consistency and charac-teristics(mean sensitivity,signal to noise ratio,expressed population signal)for trees growing on the southeastern slope were much higher than for trees on the northeastern slope.Correlations indicated that temperature in current March and August has a significant positive effect on TRW/EWW/LWW formation,and the effect on the northeastern slope was weaker than on the southeastern slope.Compared to temperature,precipitation has more complicated effects on tree growth,but the effect on the northeastern slope was also generally weaker than on the southeastern slope.Step-wise linear regression analyses showed that temperature in August was the main limiting factor at the two sampling sites.Similarly,the response of tree growth on the southeast-ern slope as determined by the NDVI is better than on the northeastern slope,and the TRW/EWW/LWW chronologies for the southeastern slope explained over 50%of the total NDVI variances in June.Overall,the results indicate that the difference in the climate response of P.massoniana at two sampling sites is clearly caused by differences in the microenvironment,and such differences should be properly considered in future studies of forest dynamics and climate reconstructions.展开更多
Precise control of the local environment and electronic state of the guest is an important method of controlling catalytic activity and reaction pathways.In this paper,guest Pd NPs were introduced into a series of hos...Precise control of the local environment and electronic state of the guest is an important method of controlling catalytic activity and reaction pathways.In this paper,guest Pd NPs were introduced into a series of host UiO-67 MOFs with different functional ligands and metal nodes,the microenvironment and local electronic structure of Pd is modulated by introducing bipyridine groups and changing metal nodes(Ce_(6)O_(6) or Zr_(6)O_(6)).The bipyridine groups not only promoted the dispersion Pd NPs,but also facilitated electron transfer between Pd and UiO-67 MOFs through the formation of Pd-N bridges.Compared with Zr6 clusters,the tunability and orbital hybridisation of the 4f electronic structure in the Ce_(6) clusters modulate the electronic structure of Pd through the construction of the Ce-O-Pd interfaces.The optimal catalyst Pd/UiO-67(Ce)-bpy presented excellent low-temperature activity towards dicyclopentadiene hydrogenation with a conversion of>99% and a selectivity of>99%(50℃,10 bar).The results show that the synergy of Ce-O-Pd and Pd-N promotes the formation of active Pd^(δ+),which not only enhances the adsorption of H_(2) and electron-rich C=C bonds,but also contributes to the reduction of proton migration distance and improves proton utilization efficiency.These results provide valuable insights for investigating the regulatory role of the host MOFs,the nature of host-guest interactions,and their correlation with catalytic performance.展开更多
Au sites supported on Ti-containing materials(Au/Ti-containing catalyst)are currently considered as a promising catalyst for the propylene epoxidation owing to the synergistic effect that hydrogen peroxide species for...Au sites supported on Ti-containing materials(Au/Ti-containing catalyst)are currently considered as a promising catalyst for the propylene epoxidation owing to the synergistic effect that hydrogen peroxide species formed on Au sites diffuses to the Ti sites to form the Ti-hydroperoxo intermedi-ates and contributes to the formation of propylene oxide(PO).In principle,thermal treatment will significantly affect the chemical and physical structures of Ti-containing materials.Consequently,the synergy between tailored Ti sites with different surface properties and Au sites is highly expected to enhance the catalytic performance for the reaction.Herein,we systematically studied the intrinsic effects of different microenvironments around Ti sites on the PO adsorption/desorption and conversion,and then effectively improved the catalytic performance by tailoring the number of surface hydroxyl groups.The Ti^(Ⅵ) material with fewer hydroxyls stimulates a remarkable enhancement in PO selectivity and H_(2) efficiency compared to the Ti^(Ⅵ) material that possessed more hydroxyls,offering a 7-fold and 4-fold increase,respectively.As expected,the Ti^(Ⅵ+Ⅳ) and Ti^(Ⅳ) materials also exhibit a similar phenomenon to the Ti^(Ⅵ) materials through the same thermal treatment,which strongly supports that the Ti sites microenvironment is an important factor in suppressing PO con-version and enhancing catalytic performance.These insights could provide guidance for the rational preparation and optimization of Ti-containing materials synergizing with Au catalysts for propylene epoxidation.展开更多
Objective:Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents,with a poor prognosis.Anchorage-dependent cell death(anoikis)has been proven to be indispensable in ...Objective:Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents,with a poor prognosis.Anchorage-dependent cell death(anoikis)has been proven to be indispensable in tumor metastasis,regulating the migration and adhesion of tumor cells at the primary site.However,as a type of programmed cell death,anoikis is rarely studied in osteosarcoma,especially in the tumor immune microenvironment.This study aims to clarify prognostic value of anoikis and tumor immune microenvironment-related gene in the treatment of osteosarcoma.Methods:Anoikis-related genes(ANRGs)were obtained from GeneCards.Clinical information and ANRGs expression profiles of osteosarcoma patients were sourced from the therapeutically applicable research to generate effective therapies and Gene Expression Omnibus(GEO)databases.ANRGs highly associated with tumor immune microenvironment were identified by the estimate package and the weighted gene coexpression network analysis(WGCNA)algorithm.Machine learning algorithms were performed to construct long-term survival predictive strategy,each sample was divided into high-risk and low-risk subgroups,which was further verified in the GEO cohort.Finally,based on single-cell RNA-seq from the GEO database,analysis was done on the function of signature genes in the osteosarcoma tumor microenvironment.Results:A total of 51 hub ANRGs closely associated with the tumor microenvironment were identified,from which 3 genes(MERTK,BNIP3,S100A8)were selected to construct the prognostic model.Significant differences in immune cell activation and immune-related signaling pathways were observed between the high-risk and low-risk groups based on tumor microenvironment analysis(all P<0.05).Additionally,characteristic genes within the osteosarcoma microenvironment were identified in regulation of intercellular crosstalk through the GAS6-MERTK signaling pathway.Conclusion:The prognostic model based on ANRGs and tumor microenvironment demonstrate good predictive power and provide more personalized treatment options for patients with osteosarcoma.展开更多
In recent years, immunotherapy has made remarkable progress in treating certain tumors and hematological malignancies. However, the efficacy of natural killer(NK) cells, which are an important subset of innate lymphoc...In recent years, immunotherapy has made remarkable progress in treating certain tumors and hematological malignancies. However, the efficacy of natural killer(NK) cells, which are an important subset of innate lymphocytes used in anticancer immunotherapy, remains limited. Hypoxia, a critical characteristic of the tumor microenvironment(TME), is involved in tumor development and resistance to radiotherapy, chemotherapy, and immunotherapy. Moreover, hypoxia contributes to the impairment of NK cell function and may be a significant factor that limits their therapeutic effects. Targeted hypoxia therapy has emerged as a promising research area for enhancing the efficacy of NK cell therapy. Therefore, understanding how the hypoxic TME influences NK cell function is crucial for improving antitumor treatment outcomes.展开更多
BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,ofte...BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,often failing to capture the complexity of the disease.The hypoxic tumor microenvironment has been recognized as a significant factor influencing cancer progression and resistance to treatment.This study aims to develop a prognostic model based on key hypoxia-related molecules to enhance prediction accuracy for patient outcomes and to guide more effective treatment strategies in pancreatic cancer.AIM To develop and validate a prognostic model for predicting outcomes in patients with pancreatic cancer using key hypoxia-related molecules.METHODS This pancreatic cancer prognostic model was developed based on the expression levels of the hypoxia-associated genes CAPN2,PLAU,and CCNA2.The results were validated in an independent dataset.This study also examined the correlations between the model risk score and various clinical features,components of the immune microenvironment,chemotherapeutic drug sensitivity,and metabolism-related pathways.Real-time quantitative PCR verification was conducted to confirm the differential expression of the target genes in hypoxic and normal pancreatic cancer cell lines.RESULTS The prognostic model demonstrated significant predictive value,with the risk score showing a strong correlation with clinical features:It was significantly associated with tumor grade(G)(bP<0.01),moderately associated with tumor stage(T)(aP<0.05),and significantly correlated with residual tumor(R)status(bP<0.01).There was also a significant negative correlation between the risk score and the half-maximal inhibitory concentration of some chemotherapeutic drugs.Furthermore,the risk score was linked to the enrichment of metabolism-related pathways in pancreatic cancer.CONCLUSION The prognostic model based on hypoxia-related genes effectively predicts pancreatic cancer outcomes with improved accuracy over traditional factors and can guide treatment selection based on risk assessment.展开更多
Pancreatic cancer(PC),a highly lethal tumor with nearly identical incidence and mortality rates,has become the sixth leading cause of cancer-related deaths.Hypoxia is an important malignant factor in PC,as it regulate...Pancreatic cancer(PC),a highly lethal tumor with nearly identical incidence and mortality rates,has become the sixth leading cause of cancer-related deaths.Hypoxia is an important malignant factor in PC,as it regulates angiogenesis,metabolic reprogramming,tumor progression,and metastasis.Disrupting the hypoxic microenvironment can enhance the efficacy of antitumor therapy and improve the prognosis of patients with PC.With the advent of bioinformatics,hypoxia-related PC models have emerged in recent years.They provide a reference for estimating the prognosis and immune microenvironment of patients with PC and identify potential biomarkers for targeting hypoxic microenvironment.However,these findings based on bioinformatic analysis may not be completely reliable without further experimental evidence and clinical cohort validation.The application of these models and biomarkers in clinical practice to predict survival time and develop anti hypoxic therapeutic strategies for patients with PC remains in its infancy.In this editorial,we review the current status of hypoxia-related prognostic models in PC,analyze their similarities and differences,discuss several existing challenges,and provide potential solutions and directions for further studies.This editorial will facilitate the optimization,validation,and determination of the molecular mechanisms of related models.展开更多
Glycogen metabolism plays a key role in the development of hepatoellular carcinoma(HCC),but the function of glycogen metabolism genes in the tumor microenvironment(TME)is still to be elucidated.Single cell RNA-seq dat...Glycogen metabolism plays a key role in the development of hepatoellular carcinoma(HCC),but the function of glycogen metabolism genes in the tumor microenvironment(TME)is still to be elucidated.Single cell RNA-seq data were obtained from ten HCC tumor samples totaling 64,545 cells and 65 glycogen metabolism genes were analyzed bya nonnegative matrix factorization(NMF).The prognosis and immune response of new glycogen TME cell dusters were predicted by using HCC and immunotherapy cohorts from public databases.HOC single cell analysis was divided into fibroblasts,NT T cells,macrophages,endothelial clls,and B cells,which were separately divided into new cell clusters by glycogen metabolism gene annotation.Pseudo temporal trajectory analysis demonstrated the temporal differentiation trajectory of different glycogen subtype cell dusters.Cellular communication analysis revealed extensive interactions between endothelial cells with glycogen metabolizing TME cell.related subtypes and diferent glycogen subtype cell clusters.SCENIC analysis of transcription factors upstream of TME cell clusters with different glycogen metabolism.In addition,TME cell dusters of glycogen metabolism were found to be enriched in expression in CAF subtypes,CD8 depleted,M1,and M2 types.Bulk seq analysis showed the prognostic signifcance of glycogen metabolism.mediated TME cell dusters in HCC,while a significant immune response was found in the immunotherapy cohort in patients treated with immune checkpoint blockade(ICB),especially for CAFs,T cells,and macrophages In summary,our study reveals for the first time that glycogen metabolism mediates intercellular communication in the hepatocellular carcinoma microenvironment while elucidating the anti-tumor mechanisms and immune prognostic responses of different subtypes of cell dusters.展开更多
The interplay between DNA replication stress and immune microenvironment alterations is known to play a crucial role in colorectal tumorigenesis,but a comprehensive understanding of their association with and relevant...The interplay between DNA replication stress and immune microenvironment alterations is known to play a crucial role in colorectal tumorigenesis,but a comprehensive understanding of their association with and relevant biomarkers involved in colorectal tumorigenesis is lacking.To address this gap,we conducted a study aiming to investigate this association and identify relevant biomarkers.We analyzed transcriptomic and proteomic profiles of 904 colorectal tumor tissues and 342 normal tissues to examine pathway enrichment,biological activity,and the immune microenvironment.Additionally,we evaluated genetic effects of single variants and genes on colorectal cancer susceptibility using data from genome-wide association studies(GWASs)involving both East Asian(7062 cases and 195745 controls)and European(24476 cases and 23073 controls)populations.We employed mediation analysis to infer the causal pathway,and applied multiplex immunofluorescence to visualize colocalized biomarkers in colorectal tumors and immune cells.Our findings revealed that both DNA replication activity and the flap structure-specific endonuclease 1(FEN1)gene were significantly enriched in colorectal tumor tissues,compared with normal tissues.Moreover,a genetic variant rs4246215 G>T in FEN1 was associated with a decreased risk of colorectal cancer(odds ratio=0.94,95%confidence interval:0.90–0.97,P_(meta)=4.70×10^(-9)).Importantly,we identified basophils and eosinophils that both exhibited a significantly decreased infiltration in colorectal tumors,and were regulated by rs4246215 through causal pathways involving both FEN1 and DNA replication.In conclusion,this trans-omics incorporating GWAS data provides insights into a plausible pathway connecting DNA replication and immunity,expanding biological knowledge of colorectal tumorigenesis and therapeutic targets.展开更多
Powered by clean energy, the hydrogen fuel production from seawater electrolysis is a sustainable green hydrogen technology, however, chlorine corrosion and correlative oxidation reactions severely erode the catalysts...Powered by clean energy, the hydrogen fuel production from seawater electrolysis is a sustainable green hydrogen technology, however, chlorine corrosion and correlative oxidation reactions severely erode the catalysts. Our previous work demonstrates that direct seawater electrolysis without a desalination process and strong alkali addition can be realized by introducing a hard Lewis acid oxide on the catalyst surface to capture OH−. However, the criteria for selecting Lewis acid oxides and the origin of OH− enrichment in chlorine chemistry inhibition on the catalyst surface remain unexplored. Here, we compare the ability of a series of Lewis acid oxides with different acidity constants (pKa), including MnO_(2), Fe_(2)O_(3), and Cr_(2)O_(3), to enrich OH− on the Co3O4 anode catalyst surface. Comprehensive analyses suggest that the lower pKa value of the Lewis acid oxide, the higher concentration of OH− enriched on Co3O4 surface, and the lower Cl− concentration. As established correlation among pKa of Lewis acid oxide, OH− enrichment and Cl− repulsion provide direct guidance for future design of highly active, selective and durable catalysts for natural seawater electrolysis.展开更多
DNA damage occurs across tumorigenesis and tumor development.Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orch...DNA damage occurs across tumorigenesis and tumor development.Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment(TIME)and dominate tumor progression.Accumulating evidence documents that multiple signaling pathways,including cyclic GMP-AMP synthase-stimulator of interferon genes(cGAS-STING)and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein(ATM/ATR),are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines.These cytokines possess multifaced functions in the anti-tumor immune response.Thus,it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines,critical for the development of effective tumor therapies.This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines.We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.展开更多
Background:Protein lactylation is a new way for the“metabolic waste”lactic acid to perform novel functions.Nevertheless,our understanding of the contribution of protein lactylation to both tumor progression and ther...Background:Protein lactylation is a new way for the“metabolic waste”lactic acid to perform novel functions.Nevertheless,our understanding of the contribution of protein lactylation to both tumor progression and therapeutic interventions remains imited.The construction of a scoring system for lactylation to predict the prognosis of pancancer patients and to evaluate the tumor immune microenvironment(TIME)would improve our understanding of the clinical significance of lactylation.Methods:Consensus clustering analysis of lactylation-related genes was used to cluster 177 pancreatic adenocarcinoma(PAAD)patients.Subsequently,a scoring system was developed using the least absolute shrinkage and selection operator(LASSO)regression.Internal validation and external validation were both conducted to assess and confirm the predictive accuracy of the scoring system.Finally,leucine rich repeat containing 1(LRRC1),a newly discovered lactylation-related gene,was analyzed in PAAD in vitro.Results:Utilizing the profiles of 332 lactylation-related genes,a total of 177 patients with PAAD were segregated into two distinct groups.LacCluster^(high) patients had a poorer prognosis than LacCluster^(low) patients.Through the differential analysis between the LacCluster^(high) and LacCluster^(low) groups,we identified additional genes associated with lactylation.These genes were then integrated to construct the LacCluster-enhanced system,which enabled more accurate prognosis prediction for patients with PAAD.Then,a lactylation index containing three genes(LacI-3)was constructed using LASSO regression.This was done to enhance the usability of the LacCluster-enhanced system in the clinic.Compared to those in the LacI-3^(high) subgroup,patients in the LacI-3^(low) subgroup exhibited increased expression of immune checkpoint-related genes,more immune cell infiltration,lower tumor mutation burdens,and better prognoses,indicating a“hot tumor”phenotype.Moreover,knocking down the expression of LRRC1,the hub gene in the LacI-3 scoring system,inhibited PAAD cell invasion,migration,and proliferation in vitro.Ultimately,the significance of LacI-3 across cancers was confirmed.Conclusion:Our findings strongly imply that protein lactylation may represent a new approach to diagnosing and treating malignant tumors.展开更多
Dear Editor,Physical exercise has been shown to be associated with reduced cancer incidence and cancer-associated mortality[1,2],but the underlying mechanisms are obscure.Immunometabolic regulation has emerged as one ...Dear Editor,Physical exercise has been shown to be associated with reduced cancer incidence and cancer-associated mortality[1,2],but the underlying mechanisms are obscure.Immunometabolic regulation has emerged as one of the most prominent mechanisms explaining the effects of exercise on cancer[1,2].Physical exercise primarily lowers blood cholesterol and triglycerides,and protects against cardiovascular diseases[3].However,whether physical exercise can modulate cholesterol metabolism in tumor cells is currently unknown.展开更多
In this editorial we comment on the article published“Clinical significance of programmed cell death-ligand expression in small bowel adenocarcinoma is determined by the tumor microenvironment”.Small bowel adenocarc...In this editorial we comment on the article published“Clinical significance of programmed cell death-ligand expression in small bowel adenocarcinoma is determined by the tumor microenvironment”.Small bowel adenocarcinoma(SBA)is a rare gastrointestinal neoplasm and despite the small intestine's significant surface area,SBA accounts for less than 3%of such tumors.Early detection is challenging and the reason arises from its asymptomatic nature,often leading to late-stage discovery and poor prognosis.Treatment involves platinum-based chemotherapy with a 5-fluorouracil combination,but the lack of effective chemotherapy contributes to a generally poor prognosis.SBAs are linked to genetic disorders and risk factors,including chronic inflammatory conditions.The unique characteristics of the small bowel,such as rapid cell renewal and an active immune system,contributes to the rarity of these tumors as well as the high intratumoral infiltration of immune cells is associated with a favorable prognosis.Programmed cell death-ligand 1(PD-L1)expression varies across different cancers,with potential discrepancies in its prognostic value.Microsatellite instability(MSI)in SBA is associated with a high tumor mutational burden,affecting the prognosis and response to immunotherapy.The presence of PD-L1 and programmed cell death 1,along with tumor-infiltrating lymphocytes,plays a crucial role in the complex microenvironment of SBA and contributes to a more favorable prognosis,especially in the context of high MSI tumors.Stromal tumor-infiltrating lymphocytes are identified as independent prognostic indicators and the association between MSI status and a favorable prognosis,emphasizes the importance of evaluating the immune status of tumors for treatment decisions.展开更多
基金support from the National Natural Science Foundation of China(Grant Nos.11974066,12174041,12104134,T2350007,and 12347178)the Fundamental and Advanced Research Program of Chongqing(Grant No.cstc2019jcyj-msxm X0477)+3 种基金the Natural Science Foundation of Chongqing(Grant No.CSTB2022NSCQMSX1260)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202301333)the Scientific Research Fund of Chongqing University of Arts and Sciences(Grant Nos.R2023HH03 and P2022HH05)College Students’Innovation and Entrepreneurship Training Program of Chongqing Municipal(Grant No.S202310642002)。
文摘Increasing data indicate that cancer cell migration is regulated by extracellular matrixes and their surrounding biochemical microenvironment,playing a crucial role in pathological processes such as tumor invasion and metastasis.However,conventional two-dimensional cell culture and animal models have limitations in studying the influence of tumor microenvironment on cancer cell migration.Fortunately,the further development of microfluidic technology has provided solutions for the study of such questions.We utilize microfluidic chip to build a random collagen fiber microenvironment(RFM)model and an oriented collagen fiber microenvironment(OFM)model that resemble early stage and late stage breast cancer microenvironments,respectively.By combining cell culture,biochemical concentration gradient construction,and microscopic imaging techniques,we investigate the impact of different collagen fiber biochemical microenvironments on the migration of breast cancer MDA-MB-231-RFP cells.The results show that MDA-MB-231-RFP cells migrate further in the OFM model compared to the RFM model,with significant differences observed.Furthermore,we establish concentration gradients of the anticancer drug paclitaxel in both the RFM and OFM models and find that paclitaxel significantly inhibits the migration of MDA-MB-231-RFP cells in the RFM model,with stronger inhibition on the high concentration side compared to the low concentration side.However,the inhibitory effect of paclitaxel on the migration of MDA-MB-231-RFP cells in the OFM model is weak.These findings suggest that the oriented collagen fiber microenvironment resembling the late-stage tumor microenvironment is more favorable for cancer cell migration and that the effectiveness of anticancer drugs is diminished.The RFM and OFM models constructed in this study not only provide a platform for studying the mechanism of cancer development,but also serve as a tool for the initial measurement of drug screening.
基金supported by the Stem Cell and Translation National Key Project,No.2016YFA0101403(to ZC)the National Natural Science Foundation of China,Nos.82171250 and 81973351(to ZC)+6 种基金the Natural Science Foundation of Beijing,No.5142005(to ZC)Beijing Talents Foundation,No.2017000021223TD03(to ZC)Support Project of High-level Teachers in Beijing Municipal Universities in the Period of 13th Five-year Plan,No.CIT&TCD20180333(to ZC)Beijing Municipal Health Commission Fund,No.PXM2020_026283_000005(to ZC)Beijing One Hundred,Thousand,and Ten Thousand Talents Fund,No.2018A03(to ZC)the Royal Society-Newton Advanced Fellowship,No.NA150482(to ZC)the National Natural Science Foundation of China for Young Scientists,No.31900740(to SL)。
文摘Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord,with the expectation that differentiated neurons facilitate recovery.Only a few studies have attempted to use transplanted cells and/or biomaterials as major modulators of the spinal cord injury microenvironment.Here,we aimed to investigate the role of microenvironment modulation by cell graft on functional recovery after spinal cord injury.Induced neural stem cells reprogrammed from human peripheral blood mononuclear cells,and/or thrombin plus fibrinogen,were transplanted into the lesion site of an immunosuppressed rat spinal cord injury model.Basso,Beattie and Bresnahan score,electrophysiological function,and immunofluorescence/histological analyses showed that transplantation facilitates motor and electrophysiological function,reduces lesion volume,and promotes axonal neurofilament expression at the lesion core.Examination of the graft and niche components revealed that although the graft only survived for a relatively short period(up to 15 days),it still had a crucial impact on the microenvironment.Altogether,induced neural stem cells and human fibrin reduced the number of infiltrated immune cells,biased microglia towards a regenerative M2 phenotype,and changed the cytokine expression profile at the lesion site.Graft-induced changes of the microenvironment during the acute and subacute stages might have disrupted the inflammatory cascade chain reactions,which may have exerted a long-term impact on the functional recovery of spinal cord injury rats.
基金supported by the Natural Science Foundation of China (82002851)funding of postdoctoral of Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine+2 种基金fundamental research program funding of Ninth People’s Hospital affiliated to Shanghai Jiao Tong University School of Medicine (JYZZ180)funding of academician workstation in HainanShanghai Anticancer Association EYAS PROJECT (SACA-CY21A01)。
文摘Tumor progression is closely related to tumor tissue metabolism and reshaping of the microenvironment. Oral squamous cell carcinoma (OSCC), a representative hypoxic tumor, has a heterogeneous internal metabolic environment. To clarify the relationship between different metabolic regions and the tumor immune microenvironment (TME) in OSCC, Single cell (SC) and spatial transcriptomics (ST) sequencing of OSCC tissues were performed. The proportion of TME in the ST data was obtained through SPOTlight deconvolution using SC and GSE103322 data. The metabolic activity of each spot was calculated using scMetabolism,and k-means clustering was used to classify all spots into hyper-, normal-, or hypometabolic regions. CD4T cell infiltration and TGF-βexpression is higher in the hypermetabolic regions than in the others. Through CellPhoneDB and NicheNet cell-cell communication analysis, it was found that in the hypermetabolic region, fibroblasts can utilize the lactate produced by glycolysis of epithelial cells to transform into inflammatory cancer-associated fibroblasts (iCAFs), and the increased expression of HIF1A in iCAFs promotes the transcriptional expression of CXCL12. The secretion of CXCL12 recruits regulatory T cells (Tregs), leading to Treg infiltration and increased TGF-β secretion in the microenvironment and promotes the formation of a tumor immunosuppressive microenvironment. This study delineates the coordinate work axis of epithelial cells-iCAFs-Tregs in OSCC using SC, ST and TCGA bulk data, and highlights potential targets for therapy.
文摘Hepatocellular carcinoma(HCC)is the most common primary tumor of the liver and has a high mortality rate.The Barcelona Clinic Liver Cancer staging system in addition to tumor staging also links the modality of treatment available to a particular stage.The recent description of the tumor microenvironment(TME)in HCC has provided a new concept of immunogenicity within the HCC.Virusrelated HCC has been shown to be more immunogenic with higher expression of cytotoxic T lymphocytes and decreased elements for immunosuppression such as regulatory T cells.This immunogenic milieu provides a better response to immunotherapy especially immune checkpoint inhibitors(ICIs).In addition,the recent data on combining locoregional therapies and other strategies may convert the less immunogenic state of the TME towards higher immunogenicity.Therefore,data are emerging on the use of combinations of locoregional therapy and ICIs in unresectable or advanced HCC and has shown better survival outcomes in this difficult population.
基金supported by the National Natural Science Foundation of China (No. 82203056)Natural Science Foundation of Liaoning Province (No. 2023-BS-167)+1 种基金Science and Technology Talent Innovation Support Plan of Dalian (No. 2022RQ091)“1+X” program for Clinical Competency Enhancement–Clinical Research Incubation Project of the Second Hospital of Dalian Medical University (No. 2022LCYJYB01)。
文摘Throughout tumorigenesis, the co-evolution of tumor cells and their surrounding microenvironment leads to the development of malignant phenotypes. Cellular communication within the tumor microenvironment(TME) plays a critical role in influencing various aspects of tumor progression, including invasion and metastasis. The release of exosomes, a type of extracellular vesicle, by most cell types in the body, is an essential mediator of intercellular communication. A growing body of research indicates that tumor-derived exosomes(TDEs) significantly expedite tumor progression through multiple mechanisms, inducing epithelial-mesenchymal transition and macrophage polarization, enhancing angiogenesis, and aiding in the immune evasion of tumor cells. Herein, we describe the formation and characteristics of the TME, and summarize the contents of TDEs and their diverse functions in modulating tumor development. Furthermore, we explore potential applications of TDEs in tumor diagnosis and treatment.
基金Supported by Xi’an Municipal Health Commission of China,No.2022qn07 and No.2023ms11.
文摘As a highly invasive malignancy,esophageal cancer(EC)is a global health issue,and was the eighth most prevalent cancer and the sixth leading cause of cancerrelated death worldwide in 2020.Due to its highly immunogenic nature,emerging immunotherapy approaches,such as immune checkpoint blockade,have demonstrated promising efficacy in treating EC;however,certain limitations and challenges still exist.In addition,tumors may exhibit primary or acquired resistance to immunotherapy in the tumor immune microenvironment(TIME);thus,understanding the TIME is urgent and crucial,especially given the importance of an immunosuppressive microenvironment in tumor progression.The aim of this review was to better elucidate the mechanisms of the suppressive TIME,including cell infiltration,immune cell subsets,cytokines and signaling pathways in the tumor microenvironment of EC patients,as well as the downregulated expression of major histocompatibility complex molecules in tumor cells,to obtain a better understanding of the differences in EC patient responses to immunotherapeutic strategies and accurately predict the efficacy of immunotherapies.Therefore,personalized treatments could be developed to maximize the advantages of immunotherapy.
基金This study was supported by National Key Research and Development Program of China(No.2018YFA0605601)National Natural Science Foundation of China(No.42077417 and41671042).
文摘The Tongbai Mountains is an ecologically sensi-tive region and the northern boundary of Pinus massoniana Lamb.To analyze the effect of different microenvironments on tree growth response to climate factors,we developed standard chronologies for earlywood width(EWW),late-wood width(LWW),and total ring width(TRW)of P.massoniana at two sampling sites on slopes with different orientations,then analyzed characteristics of the chronolo-gies and their correlations with climate variables from five stations in the region and with a regional normalized differ-ence vegetation index(NDVI).Statistical results showed that the TRW/EWW/LWW chronology consistency and charac-teristics(mean sensitivity,signal to noise ratio,expressed population signal)for trees growing on the southeastern slope were much higher than for trees on the northeastern slope.Correlations indicated that temperature in current March and August has a significant positive effect on TRW/EWW/LWW formation,and the effect on the northeastern slope was weaker than on the southeastern slope.Compared to temperature,precipitation has more complicated effects on tree growth,but the effect on the northeastern slope was also generally weaker than on the southeastern slope.Step-wise linear regression analyses showed that temperature in August was the main limiting factor at the two sampling sites.Similarly,the response of tree growth on the southeast-ern slope as determined by the NDVI is better than on the northeastern slope,and the TRW/EWW/LWW chronologies for the southeastern slope explained over 50%of the total NDVI variances in June.Overall,the results indicate that the difference in the climate response of P.massoniana at two sampling sites is clearly caused by differences in the microenvironment,and such differences should be properly considered in future studies of forest dynamics and climate reconstructions.
文摘Precise control of the local environment and electronic state of the guest is an important method of controlling catalytic activity and reaction pathways.In this paper,guest Pd NPs were introduced into a series of host UiO-67 MOFs with different functional ligands and metal nodes,the microenvironment and local electronic structure of Pd is modulated by introducing bipyridine groups and changing metal nodes(Ce_(6)O_(6) or Zr_(6)O_(6)).The bipyridine groups not only promoted the dispersion Pd NPs,but also facilitated electron transfer between Pd and UiO-67 MOFs through the formation of Pd-N bridges.Compared with Zr6 clusters,the tunability and orbital hybridisation of the 4f electronic structure in the Ce_(6) clusters modulate the electronic structure of Pd through the construction of the Ce-O-Pd interfaces.The optimal catalyst Pd/UiO-67(Ce)-bpy presented excellent low-temperature activity towards dicyclopentadiene hydrogenation with a conversion of>99% and a selectivity of>99%(50℃,10 bar).The results show that the synergy of Ce-O-Pd and Pd-N promotes the formation of active Pd^(δ+),which not only enhances the adsorption of H_(2) and electron-rich C=C bonds,but also contributes to the reduction of proton migration distance and improves proton utilization efficiency.These results provide valuable insights for investigating the regulatory role of the host MOFs,the nature of host-guest interactions,and their correlation with catalytic performance.
文摘Au sites supported on Ti-containing materials(Au/Ti-containing catalyst)are currently considered as a promising catalyst for the propylene epoxidation owing to the synergistic effect that hydrogen peroxide species formed on Au sites diffuses to the Ti sites to form the Ti-hydroperoxo intermedi-ates and contributes to the formation of propylene oxide(PO).In principle,thermal treatment will significantly affect the chemical and physical structures of Ti-containing materials.Consequently,the synergy between tailored Ti sites with different surface properties and Au sites is highly expected to enhance the catalytic performance for the reaction.Herein,we systematically studied the intrinsic effects of different microenvironments around Ti sites on the PO adsorption/desorption and conversion,and then effectively improved the catalytic performance by tailoring the number of surface hydroxyl groups.The Ti^(Ⅵ) material with fewer hydroxyls stimulates a remarkable enhancement in PO selectivity and H_(2) efficiency compared to the Ti^(Ⅵ) material that possessed more hydroxyls,offering a 7-fold and 4-fold increase,respectively.As expected,the Ti^(Ⅵ+Ⅳ) and Ti^(Ⅳ) materials also exhibit a similar phenomenon to the Ti^(Ⅵ) materials through the same thermal treatment,which strongly supports that the Ti sites microenvironment is an important factor in suppressing PO con-version and enhancing catalytic performance.These insights could provide guidance for the rational preparation and optimization of Ti-containing materials synergizing with Au catalysts for propylene epoxidation.
基金This work was supported by the National Natural Science Foundation(82172594 and 82373046)the Hunan Graduate Research Innovation Project(CX20230318),China.
文摘Objective:Osteosarcoma is a highly aggressive primary malignant bone tumor commonly seen in children and adolescents,with a poor prognosis.Anchorage-dependent cell death(anoikis)has been proven to be indispensable in tumor metastasis,regulating the migration and adhesion of tumor cells at the primary site.However,as a type of programmed cell death,anoikis is rarely studied in osteosarcoma,especially in the tumor immune microenvironment.This study aims to clarify prognostic value of anoikis and tumor immune microenvironment-related gene in the treatment of osteosarcoma.Methods:Anoikis-related genes(ANRGs)were obtained from GeneCards.Clinical information and ANRGs expression profiles of osteosarcoma patients were sourced from the therapeutically applicable research to generate effective therapies and Gene Expression Omnibus(GEO)databases.ANRGs highly associated with tumor immune microenvironment were identified by the estimate package and the weighted gene coexpression network analysis(WGCNA)algorithm.Machine learning algorithms were performed to construct long-term survival predictive strategy,each sample was divided into high-risk and low-risk subgroups,which was further verified in the GEO cohort.Finally,based on single-cell RNA-seq from the GEO database,analysis was done on the function of signature genes in the osteosarcoma tumor microenvironment.Results:A total of 51 hub ANRGs closely associated with the tumor microenvironment were identified,from which 3 genes(MERTK,BNIP3,S100A8)were selected to construct the prognostic model.Significant differences in immune cell activation and immune-related signaling pathways were observed between the high-risk and low-risk groups based on tumor microenvironment analysis(all P<0.05).Additionally,characteristic genes within the osteosarcoma microenvironment were identified in regulation of intercellular crosstalk through the GAS6-MERTK signaling pathway.Conclusion:The prognostic model based on ANRGs and tumor microenvironment demonstrate good predictive power and provide more personalized treatment options for patients with osteosarcoma.
文摘In recent years, immunotherapy has made remarkable progress in treating certain tumors and hematological malignancies. However, the efficacy of natural killer(NK) cells, which are an important subset of innate lymphocytes used in anticancer immunotherapy, remains limited. Hypoxia, a critical characteristic of the tumor microenvironment(TME), is involved in tumor development and resistance to radiotherapy, chemotherapy, and immunotherapy. Moreover, hypoxia contributes to the impairment of NK cell function and may be a significant factor that limits their therapeutic effects. Targeted hypoxia therapy has emerged as a promising research area for enhancing the efficacy of NK cell therapy. Therefore, understanding how the hypoxic TME influences NK cell function is crucial for improving antitumor treatment outcomes.
基金Supported by National Natural Science Foundation of China,No.82100581。
文摘BACKGROUND Pancreatic cancer is one of the most lethal malignancies,characterized by poor prognosis and low survival rates.Traditional prognostic factors for pancreatic cancer offer inadequate predictive accuracy,often failing to capture the complexity of the disease.The hypoxic tumor microenvironment has been recognized as a significant factor influencing cancer progression and resistance to treatment.This study aims to develop a prognostic model based on key hypoxia-related molecules to enhance prediction accuracy for patient outcomes and to guide more effective treatment strategies in pancreatic cancer.AIM To develop and validate a prognostic model for predicting outcomes in patients with pancreatic cancer using key hypoxia-related molecules.METHODS This pancreatic cancer prognostic model was developed based on the expression levels of the hypoxia-associated genes CAPN2,PLAU,and CCNA2.The results were validated in an independent dataset.This study also examined the correlations between the model risk score and various clinical features,components of the immune microenvironment,chemotherapeutic drug sensitivity,and metabolism-related pathways.Real-time quantitative PCR verification was conducted to confirm the differential expression of the target genes in hypoxic and normal pancreatic cancer cell lines.RESULTS The prognostic model demonstrated significant predictive value,with the risk score showing a strong correlation with clinical features:It was significantly associated with tumor grade(G)(bP<0.01),moderately associated with tumor stage(T)(aP<0.05),and significantly correlated with residual tumor(R)status(bP<0.01).There was also a significant negative correlation between the risk score and the half-maximal inhibitory concentration of some chemotherapeutic drugs.Furthermore,the risk score was linked to the enrichment of metabolism-related pathways in pancreatic cancer.CONCLUSION The prognostic model based on hypoxia-related genes effectively predicts pancreatic cancer outcomes with improved accuracy over traditional factors and can guide treatment selection based on risk assessment.
基金Supported by National Natural Science Foundation of China,No.82373664Scientific and Technological Development Program of Jilin Province,No.20240402015GH.
文摘Pancreatic cancer(PC),a highly lethal tumor with nearly identical incidence and mortality rates,has become the sixth leading cause of cancer-related deaths.Hypoxia is an important malignant factor in PC,as it regulates angiogenesis,metabolic reprogramming,tumor progression,and metastasis.Disrupting the hypoxic microenvironment can enhance the efficacy of antitumor therapy and improve the prognosis of patients with PC.With the advent of bioinformatics,hypoxia-related PC models have emerged in recent years.They provide a reference for estimating the prognosis and immune microenvironment of patients with PC and identify potential biomarkers for targeting hypoxic microenvironment.However,these findings based on bioinformatic analysis may not be completely reliable without further experimental evidence and clinical cohort validation.The application of these models and biomarkers in clinical practice to predict survival time and develop anti hypoxic therapeutic strategies for patients with PC remains in its infancy.In this editorial,we review the current status of hypoxia-related prognostic models in PC,analyze their similarities and differences,discuss several existing challenges,and provide potential solutions and directions for further studies.This editorial will facilitate the optimization,validation,and determination of the molecular mechanisms of related models.
基金Liuzhou City's Top Ten Hundred Talents Project,Liuzhou Science and Technology Project(Grant Nos.2021CBC0126 and 2021CBC0123)Guangxi Zhuang Autonomous Region Health and Family Planning Commission Projects(Z20210561,Z20210903)+1 种基金liuzhou Scienceand Technology Plan Projects(2021CBC0121,2021CBC0128).
文摘Glycogen metabolism plays a key role in the development of hepatoellular carcinoma(HCC),but the function of glycogen metabolism genes in the tumor microenvironment(TME)is still to be elucidated.Single cell RNA-seq data were obtained from ten HCC tumor samples totaling 64,545 cells and 65 glycogen metabolism genes were analyzed bya nonnegative matrix factorization(NMF).The prognosis and immune response of new glycogen TME cell dusters were predicted by using HCC and immunotherapy cohorts from public databases.HOC single cell analysis was divided into fibroblasts,NT T cells,macrophages,endothelial clls,and B cells,which were separately divided into new cell clusters by glycogen metabolism gene annotation.Pseudo temporal trajectory analysis demonstrated the temporal differentiation trajectory of different glycogen subtype cell dusters.Cellular communication analysis revealed extensive interactions between endothelial cells with glycogen metabolizing TME cell.related subtypes and diferent glycogen subtype cell clusters.SCENIC analysis of transcription factors upstream of TME cell clusters with different glycogen metabolism.In addition,TME cell dusters of glycogen metabolism were found to be enriched in expression in CAF subtypes,CD8 depleted,M1,and M2 types.Bulk seq analysis showed the prognostic signifcance of glycogen metabolism.mediated TME cell dusters in HCC,while a significant immune response was found in the immunotherapy cohort in patients treated with immune checkpoint blockade(ICB),especially for CAFs,T cells,and macrophages In summary,our study reveals for the first time that glycogen metabolism mediates intercellular communication in the hepatocellular carcinoma microenvironment while elucidating the anti-tumor mechanisms and immune prognostic responses of different subtypes of cell dusters.
基金supported by the National Natural Science Foundation of China(Grant No.82173601)Yili&Jiangsu Joint Institute of Health(Grant No.yl2021ms02).
文摘The interplay between DNA replication stress and immune microenvironment alterations is known to play a crucial role in colorectal tumorigenesis,but a comprehensive understanding of their association with and relevant biomarkers involved in colorectal tumorigenesis is lacking.To address this gap,we conducted a study aiming to investigate this association and identify relevant biomarkers.We analyzed transcriptomic and proteomic profiles of 904 colorectal tumor tissues and 342 normal tissues to examine pathway enrichment,biological activity,and the immune microenvironment.Additionally,we evaluated genetic effects of single variants and genes on colorectal cancer susceptibility using data from genome-wide association studies(GWASs)involving both East Asian(7062 cases and 195745 controls)and European(24476 cases and 23073 controls)populations.We employed mediation analysis to infer the causal pathway,and applied multiplex immunofluorescence to visualize colocalized biomarkers in colorectal tumors and immune cells.Our findings revealed that both DNA replication activity and the flap structure-specific endonuclease 1(FEN1)gene were significantly enriched in colorectal tumor tissues,compared with normal tissues.Moreover,a genetic variant rs4246215 G>T in FEN1 was associated with a decreased risk of colorectal cancer(odds ratio=0.94,95%confidence interval:0.90–0.97,P_(meta)=4.70×10^(-9)).Importantly,we identified basophils and eosinophils that both exhibited a significantly decreased infiltration in colorectal tumors,and were regulated by rs4246215 through causal pathways involving both FEN1 and DNA replication.In conclusion,this trans-omics incorporating GWAS data provides insights into a plausible pathway connecting DNA replication and immunity,expanding biological knowledge of colorectal tumorigenesis and therapeutic targets.
基金supported by the National Natural Science Foundation of China(Nos.52071231 and 51722103)the Natural Science Foundation of Tianjin city(No.19JCJQJC61900).
文摘Powered by clean energy, the hydrogen fuel production from seawater electrolysis is a sustainable green hydrogen technology, however, chlorine corrosion and correlative oxidation reactions severely erode the catalysts. Our previous work demonstrates that direct seawater electrolysis without a desalination process and strong alkali addition can be realized by introducing a hard Lewis acid oxide on the catalyst surface to capture OH−. However, the criteria for selecting Lewis acid oxides and the origin of OH− enrichment in chlorine chemistry inhibition on the catalyst surface remain unexplored. Here, we compare the ability of a series of Lewis acid oxides with different acidity constants (pKa), including MnO_(2), Fe_(2)O_(3), and Cr_(2)O_(3), to enrich OH− on the Co3O4 anode catalyst surface. Comprehensive analyses suggest that the lower pKa value of the Lewis acid oxide, the higher concentration of OH− enriched on Co3O4 surface, and the lower Cl− concentration. As established correlation among pKa of Lewis acid oxide, OH− enrichment and Cl− repulsion provide direct guidance for future design of highly active, selective and durable catalysts for natural seawater electrolysis.
文摘DNA damage occurs across tumorigenesis and tumor development.Tumor intrinsic DNA damage can not only increase the risk of mutations responsible for tumor generation but also initiate a cellular stress response to orchestrate the tumor immune microenvironment(TIME)and dominate tumor progression.Accumulating evidence documents that multiple signaling pathways,including cyclic GMP-AMP synthase-stimulator of interferon genes(cGAS-STING)and ataxia telangiectasia-mutated protein/ataxia telangiectasia and Rad3-related protein(ATM/ATR),are activated downstream of DNA damage and they are associated with the secretion of diverse cytokines.These cytokines possess multifaced functions in the anti-tumor immune response.Thus,it is necessary to deeply interpret the complex TIME reshaped by damaged DNA and tumor-derived cytokines,critical for the development of effective tumor therapies.This manuscript comprehensively reviews the relationship between the DNA damage response and related cytokines in tumors and depicts the dual immunoregulatory roles of these cytokines.We also summarize clinical trials targeting signaling pathways and cytokines associated with DNA damage and provide future perspectives on emerging technologies.
基金supported by the National Key Research and Development Program of China(Grant Number 2022YFA1205003)Major Research Projects of the National Natural Science Foundation of China(Grant Number 92059204)+1 种基金General Research Projects of the National Natural Science Foundation of China(Grant Number 82273419)Major Projects of Technological Innovation and Application Development Foundation in Chongqing(Grant Number CSTB2022TIAD-STX0012).
文摘Background:Protein lactylation is a new way for the“metabolic waste”lactic acid to perform novel functions.Nevertheless,our understanding of the contribution of protein lactylation to both tumor progression and therapeutic interventions remains imited.The construction of a scoring system for lactylation to predict the prognosis of pancancer patients and to evaluate the tumor immune microenvironment(TIME)would improve our understanding of the clinical significance of lactylation.Methods:Consensus clustering analysis of lactylation-related genes was used to cluster 177 pancreatic adenocarcinoma(PAAD)patients.Subsequently,a scoring system was developed using the least absolute shrinkage and selection operator(LASSO)regression.Internal validation and external validation were both conducted to assess and confirm the predictive accuracy of the scoring system.Finally,leucine rich repeat containing 1(LRRC1),a newly discovered lactylation-related gene,was analyzed in PAAD in vitro.Results:Utilizing the profiles of 332 lactylation-related genes,a total of 177 patients with PAAD were segregated into two distinct groups.LacCluster^(high) patients had a poorer prognosis than LacCluster^(low) patients.Through the differential analysis between the LacCluster^(high) and LacCluster^(low) groups,we identified additional genes associated with lactylation.These genes were then integrated to construct the LacCluster-enhanced system,which enabled more accurate prognosis prediction for patients with PAAD.Then,a lactylation index containing three genes(LacI-3)was constructed using LASSO regression.This was done to enhance the usability of the LacCluster-enhanced system in the clinic.Compared to those in the LacI-3^(high) subgroup,patients in the LacI-3^(low) subgroup exhibited increased expression of immune checkpoint-related genes,more immune cell infiltration,lower tumor mutation burdens,and better prognoses,indicating a“hot tumor”phenotype.Moreover,knocking down the expression of LRRC1,the hub gene in the LacI-3 scoring system,inhibited PAAD cell invasion,migration,and proliferation in vitro.Ultimately,the significance of LacI-3 across cancers was confirmed.Conclusion:Our findings strongly imply that protein lactylation may represent a new approach to diagnosing and treating malignant tumors.
基金This work was supported by the National Natural Science Foundation of China(82172511)the Natural Science Foundation of Jiangsu Province(BK20210068)+4 种基金the Sanming Project of Medicine in Shenzhen(SZSM201612078)the Health Shanghai Initiative Special Fund[Medical-Sports Integration(JKSHZX-2022-02)]the Top Talent Support Program for Young-and Middle-aged People of Wuxi Municipal Health Commission(HB2020003)the Mega-project of Wuxi Commission of Health(Z202216)the High-end Medical Expert Team of the 2019 Taihu Talent Plan(2019-THRCTD-1)
文摘Dear Editor,Physical exercise has been shown to be associated with reduced cancer incidence and cancer-associated mortality[1,2],but the underlying mechanisms are obscure.Immunometabolic regulation has emerged as one of the most prominent mechanisms explaining the effects of exercise on cancer[1,2].Physical exercise primarily lowers blood cholesterol and triglycerides,and protects against cardiovascular diseases[3].However,whether physical exercise can modulate cholesterol metabolism in tumor cells is currently unknown.
文摘In this editorial we comment on the article published“Clinical significance of programmed cell death-ligand expression in small bowel adenocarcinoma is determined by the tumor microenvironment”.Small bowel adenocarcinoma(SBA)is a rare gastrointestinal neoplasm and despite the small intestine's significant surface area,SBA accounts for less than 3%of such tumors.Early detection is challenging and the reason arises from its asymptomatic nature,often leading to late-stage discovery and poor prognosis.Treatment involves platinum-based chemotherapy with a 5-fluorouracil combination,but the lack of effective chemotherapy contributes to a generally poor prognosis.SBAs are linked to genetic disorders and risk factors,including chronic inflammatory conditions.The unique characteristics of the small bowel,such as rapid cell renewal and an active immune system,contributes to the rarity of these tumors as well as the high intratumoral infiltration of immune cells is associated with a favorable prognosis.Programmed cell death-ligand 1(PD-L1)expression varies across different cancers,with potential discrepancies in its prognostic value.Microsatellite instability(MSI)in SBA is associated with a high tumor mutational burden,affecting the prognosis and response to immunotherapy.The presence of PD-L1 and programmed cell death 1,along with tumor-infiltrating lymphocytes,plays a crucial role in the complex microenvironment of SBA and contributes to a more favorable prognosis,especially in the context of high MSI tumors.Stromal tumor-infiltrating lymphocytes are identified as independent prognostic indicators and the association between MSI status and a favorable prognosis,emphasizes the importance of evaluating the immune status of tumors for treatment decisions.