The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling ...The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.展开更多
A non-linear HIV-TB co-infection has been formulated and analyzed. The positivity and invariant region has been established. The disease free equilibrium and its stability has been determined. The local stability was ...A non-linear HIV-TB co-infection has been formulated and analyzed. The positivity and invariant region has been established. The disease free equilibrium and its stability has been determined. The local stability was determined and found to be stable under given conditions. The basic reproduction number was obtained and according to findings, co-infection diminishes when this number is less than unity, and persists when the number is greater than unity. The global stability of the endemic equilibrium was calculated. The impact of HIV on TB was established as well as the impact of TB on HIV. Numerical solution was also done and the findings indicate that when the rate of HIV treatment increases the latent TB increases while the co-infected population decreases. When the rate of HIV treatment decreases the latent TB population decreases and the co-infected population increases. Encouraging communities to prioritize the consistent treatment of HIV infected individuals must be emphasized in order to reduce the scourge of HIV-TB co-infection.展开更多
HIV is a retrovirus that infects and impairs the cells and functions of the immune system. It has caused a great challenge to global public health systems and leads to Acquired Immunodeficiency Syndrome (AIDS), if not...HIV is a retrovirus that infects and impairs the cells and functions of the immune system. It has caused a great challenge to global public health systems and leads to Acquired Immunodeficiency Syndrome (AIDS), if not attended to in good time. Antiretroviral therapy is used for managing the virus in a patient’s lifetime. Some of the symptoms of the disease include lean body mass and many opportunistic infections. This study has developed a SIAT mathematical model to investigate the impact of inconsistency in treatment of the disease. The arising non-linear differential equations have been obtained and analyzed. The DFE and its stability have been obtained and the study found that it is locally asymptotically stable when the basic reproduction number is less than unity. The endemic equilibrium has been obtained and found to be globally asymptotically stable when the basic reproduction number is greater than unity. Numerical solutions have been obtained and analyzed to give the trends in the spread dynamics. The inconsistency in treatment uptake has been analyzed through the numerical solutions. The study found that when the treatment rate of those infected increases, it leads to an increase in treatment population, which slows down the spread of HIV and vice versa. An increase in the rate of treatment of those with AIDS leads to a decrease in the AIDS population, the reverse happens when this rate decreases. The study recommends that the community involvement in advocating for consistent treatment of HIV to curb the spread of the disease.展开更多
BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling techn...BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.展开更多
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of...Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.展开更多
Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a...Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects.展开更多
We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensiti...We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.展开更多
Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but t...Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but they do require sufficient on-site data for accurate training,and lack interpretability to the physical processes within the data.In this paper,we provide a physics and equalityconstrained artificial neural network(PECANN),to derive unsaturated infiltration solutions with a small amount of initial and boundary data.PECANN takes the physics-informed neural network(PINN)as a foundation,encodes the unsaturated infiltration physical laws(i.e.Richards equation,RE)into the loss function,and uses the augmented Lagrangian method to constrain the learning process of the solutions of RE by adding stronger penalty for the initial and boundary conditions.Four unsaturated infiltration cases are designed to test the training performance of PECANN,i.e.one-dimensional(1D)steady-state unsaturated infiltration,1D transient-state infiltration,two-dimensional(2D)transient-state infiltration,and 1D coupled unsaturated infiltration and deformation.The predicted results of PECANN are compared with the finite difference solutions or analytical solutions.The results indicate that PECANN can accurately capture the variations of pressure head during the unsaturated infiltration,and present higher precision and robustness than DNN and PINN.It is also revealed that PECANN can achieve the same accuracy as the finite difference method with fewer initial and boundary training data.Additionally,we investigate the effect of the hyperparameters of PECANN on solving RE problem.PECANN provides an effective tool for simulating unsaturated infiltration.展开更多
Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but...Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.展开更多
Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This st...Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.展开更多
Variations in ice mass deform the Earth and modify its gravity field,a process known as Glacial Isostatic Adjustment(GIA).GIA in Antarctica remains poorly constrained due to the cumulative effect of past and present i...Variations in ice mass deform the Earth and modify its gravity field,a process known as Glacial Isostatic Adjustment(GIA).GIA in Antarctica remains poorly constrained due to the cumulative effect of past and present ice-mass changes,the unknown history of the past ice-mass change,and the uncertainties on the mechanical properties of the Earth.This paper investigates the effect of using Andrade and Burgers viscoelastic rheologies,rather than the commonly used Maxwell rheology,to model GIA-induced deformation in Antarctica.The Love number and Green's function formalism are used to compute the radial surface displacements and the gravity changes induced by the past and present ice-mass changes.We consider an Earth model whose elastic properties and radial structure are averaged from the Preliminary Reference Earth Model and two viscosity profiles to account for the recently published results on the present ice-mass changes.Using the three rheological laws affects the temporal response of the Earth differently,leading to smaller discrepancies than those induced by the two viscosity structures.The differences are the largest between Maxwell and Burgers rheologies during the 100-1000 years following the beginning of the surface-mass change.Results show that using the Andrade and Burgers rheologies allows the Earth to respond on decennial to centennial time scales,up to 10 m more than Maxwell.Considering only the recent ice-mass changes,the deformation rates derived from Burgers and Andrade rheologies are several times larger than those estimated by Maxwell rheology.展开更多
Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic ...Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic coupling to synthesize dimethyl oxalate(DMO)is a crucial process in the syngas-to-EG route,whereby the composition of the reactor outlet exerts influence on the ultimate quality of the EG product and the energy consumption during the subsequent separation process.However,measuring product quality in real time or establishing accurate dynamic mechanism models is challenging.To effectively model the DMO synthesis process,this study proposes a hybrid modeling strategy that integrates process mechanisms and data-driven approaches.The CO gas-phase catalytic coupling mechanism model is developed based on intrinsic kinetics and material balance,while a long short-term memory(LSTM)neural network is employed to predict the macroscopic reaction rate by leveraging temporal relationships derived from archived measurements.The proposed model is trained semi-supervised to accommodate limited-label data scenarios,leveraging historical data.By integrating these predictions with the mechanism model,the hybrid modeling approach provides reliable and interpretable forecasts of mass fractions.Empirical investigations unequivocally validate the superiority of the proposed hybrid modeling approach over conventional data-driven models(DDMs)and other hybrid modeling techniques.展开更多
Native grasslands in the Pampas of South America are increasingly being replaced by Eucalyptus and Pinus stands.The short rotation regimes used for the stands require high nutrient levels,with litterfall being a major...Native grasslands in the Pampas of South America are increasingly being replaced by Eucalyptus and Pinus stands.The short rotation regimes used for the stands require high nutrient levels,with litterfall being a major source of nutrient return.To model the litterfall production using climatic variables and assess the nutrient return in 14-year-old Eucalyptus grandis and Pinus taeda stands,we measured litter production over 2 years,using conical litter traps,and monitored climatic variables.Mean temperature,accumulated precipitation,and mean maximum vapor pres-sure deficit at the seasonal level influenced litterfall produc-tion by E.grandis;seasonal accumulated precipitation and mean maximum temperature affected litterfall by P.taeda.The regression tree modeling based on these climatic vari-ables had great accuracy and predictive power for E.grandis(N=33;MAE(mean absolute error)=0.65;RMSE(root mean square error)=0.91;R^(2)=0.71)and P.taeda(N=108;MAE=1.50;RMSE=1.59;R^(2)=0.72).The nutrient return followed a similar pattern to litterfall deposition,as well as the order of importance of macronutrients(E.grandis:Ca>N>K>Mg>P;P.taeda:N>Ca>K>Mg>P)and micronutrients(E.grandis and P.taeda:Mn>Fe>Zn>Cu)in both species.This study constitutes a first approximation of factors that affect litterfall and nutrient return in these systems.展开更多
As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical sys...As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical systems.The foundation of a diamagnetic levitation system is mathematical modeling,which is essential for operating performance optimization and stability prediction.However,few studies on systematic mathematical modeling have been reported.In this study,a systematic mathematical model for a disc-shaped diamagnetically levitated rotor on a permanent magnet array is proposed.Based on the proposed model,the magnetic field distribution characteristics,diamagnetic levitation force characteristics(i.e.,levitation height and stiffness),and optimized theoretical conditions for realizing stable levitation are determined.Experiments are conducted to verify the feasibility of the proposed mathematical model.Theoretical predictions and experimental results indicate that increasing the levitation height enlarges the stable region.Moreover,with a further increase in the rotor radius,the stable regions of the rotor gradually diminish and even vanish.Thus,when the levitation height is fixed,a moderate rotor radius permits stable levitation.This study proposes a mathematical modeling method for a diamagnetic levitation system that has potential applications in miniaturized mechanical systems.展开更多
Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable...Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.展开更多
The equilibrium solubility of Rebaudioside A(Reb A)FormⅡin binary mixtures of methanol/ethanol and ethyl acetate was quantitatively determined within the temperature range of 283.15—328.15 K at ambient pressure.The ...The equilibrium solubility of Rebaudioside A(Reb A)FormⅡin binary mixtures of methanol/ethanol and ethyl acetate was quantitatively determined within the temperature range of 283.15—328.15 K at ambient pressure.The experimental findings indicate a positive correlation between the solubility of Reb A(FormⅡ)and both the temperature and the methanol/ethanol content in the solvent system.To describe the solubility data,six distinct models were employed:the modified Apelblat equation,theλh model,the combined nearly ideal binary solvent/Redlich—Kister(CNIBS/R—K)model,the van't HoffJouyban-Acree(VJA)model,the Apelblat-Jouyban-Acree(AJA)model,and the non-random two-liquid(NRTL)model.The combined nearly ideal binary solvent/Redlich—Kister model exhibited the most precise fit for solubility in methanol+ethyl acetate mixtures,reflected by an average relative deviation(ARD)of 0.0011 and a root mean square deviation(RMSD)of 12×10^(-7).Conversely,for ethanol+ethyl acetate mixtures,the modified Apelblat equation provided a superior correlation(ARD=0.0014,RMSD=4×10^(-7)).Furthermore,thermodynamic parameters associated with the dissolution of Reb A(FormⅡ),including enthalpy,entropy,and the Gibbs energy change,were inferred from the data.The findings underscore that the dissolution process is predominantly endothermic across the solvent systems examined.Notably,the entropy changes appear to have a significant influence on the Gibbs free energy associated with the dissolution of Reb A(FormⅡ),suggesting that entropic factors may play a pivotal role in the studied systems.展开更多
We used field experimental data to evaluate the ability of the agricultural production system model (APSIM) to simulate soil P availability,maize biomass and grain yield in response to P fertilizer applications on a f...We used field experimental data to evaluate the ability of the agricultural production system model (APSIM) to simulate soil P availability,maize biomass and grain yield in response to P fertilizer applications on a fluvo-aquic soil in the North China Plain.Crop and soil data from a 2-year experiment with three P fertilizer application rates(0,75 and 300 kg P_(2)O_(5) ha^(–1)) were used to calibrate the model.Sensitivity analysis was carried out to investigate the influence of APSIM SoilP parameters on the simulated P availability in soil and maize growth.Crop and soil P parameters were then derived by matching or relating the simulation results to observed crop biomass,yield,P uptake and Olsen-P in soil.The re-parameterized model was further validated against 2 years of independent data at the same sites.The re-parameterized model enabled good simulation of the maize leaf area index (LAI),biomass,grain yield,P uptake,and grain P content in response to different levels of P additions against both the calibration and validation datasets.Our results showed that APSIM needs to be re-parameterized for simulation of maize LAI dynamics through modification of leaf size curve and a reduction in the rate of leaf senescence for modern staygreen maize cultivars in China.The P concentration limits (maximum and minimum P concentrations in organs)at different stages also need to be adjusted.Our results further showed a curvilinear relationship between the measured Olsen-P concentration and simulated labile P content,which could facilitate the initialization of APSIM P pools in the NCP with Olsen-P measurements in future studies.It remains difficult to parameterize the APSIM SoilP module due to the conceptual nature of the pools and simplified conceptualization of key P transformation processes.A fundamental understanding still needs to be developed for modelling and predicting the fate of applied P fertilizers in soils with contrasting physical and chemical characteristics.展开更多
We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived ...We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability.展开更多
The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A se...The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.展开更多
The global populationhas beenandwill continue to be severely impacted by theCOVID-19 epidemic.The primary objective of this research is to demonstrate the future impact of COVID-19 on those who suffer from other fatal...The global populationhas beenandwill continue to be severely impacted by theCOVID-19 epidemic.The primary objective of this research is to demonstrate the future impact of COVID-19 on those who suffer from other fatal conditions such as cancer,heart disease,and diabetes.Here,using ordinary differential equations(ODEs),two mathematical models are developed to explain the association between COVID-19 and cancer and between COVID-19 and diabetes and heart disease.After that,we highlight the stability assessments that can be applied to these models.Sensitivity analysis is used to examine how changes in certain factors impact different aspects of disease.The sensitivity analysis showed that many people are still nervous about seeing a doctor due to COVID-19,which could result in a dramatic increase in the diagnosis of various ailments in the years to come.The correlation between diabetes and cardiovascular illness is also illustrated graphically.The effects of smoking and obesity are also found to be significant in disease compartments.Model fitting is also provided for interpreting the relationship between real data and the results of thiswork.Diabetic people,in particular,need tomonitor their health conditions closely and practice heart health maintenance.People with heart diseases should undergo regular checks so that they can protect themselves from diabetes and take some precautions including suitable diets.The main purpose of this study is to emphasize the importance of regular checks,to warn people about the effects of COVID-19(including avoiding healthcare centers and doctors because of the spread of infectious diseases)and to indicate the importance of family history of cancer,heart diseases and diabetes.The provision of the recommendations requires an increase in public consciousness.展开更多
基金The Construction S&T Project of the Department of Transportation of Sichuan Province(Grant No.2023A02)the National Natural Science Foundation of China(No.52109135).
文摘The surrounding geological conditions and supporting structures of underground engineering are often updated during construction,and these updates require repeated numerical modeling.To improve the numerical modeling efficiency of underground engineering,a modularized and parametric modeling cloud server is developed by using Python codes.The basic framework of the cloud server is as follows:input the modeling parameters into the web platform,implement Rhino software and FLAC3D software to model and run simulations in the cloud server,and return the simulation results to the web platform.The modeling program can automatically generate instructions that can run the modeling process in Rhino based on the input modeling parameters.The main modules of the modeling program include modeling the 3D geological structures,the underground engineering structures,and the supporting structures as well as meshing the geometric models.In particular,various cross-sections of underground caverns are crafted as parametricmodules in themodeling program.Themodularized and parametric modeling program is used for a finite element simulation of the underground powerhouse of the Shuangjiangkou Hydropower Station.This complicatedmodel is rapidly generated for the simulation,and the simulation results are reasonable.Thus,this modularized and parametric modeling program is applicable for three-dimensional finite element simulations and analyses.
文摘A non-linear HIV-TB co-infection has been formulated and analyzed. The positivity and invariant region has been established. The disease free equilibrium and its stability has been determined. The local stability was determined and found to be stable under given conditions. The basic reproduction number was obtained and according to findings, co-infection diminishes when this number is less than unity, and persists when the number is greater than unity. The global stability of the endemic equilibrium was calculated. The impact of HIV on TB was established as well as the impact of TB on HIV. Numerical solution was also done and the findings indicate that when the rate of HIV treatment increases the latent TB increases while the co-infected population decreases. When the rate of HIV treatment decreases the latent TB population decreases and the co-infected population increases. Encouraging communities to prioritize the consistent treatment of HIV infected individuals must be emphasized in order to reduce the scourge of HIV-TB co-infection.
文摘HIV is a retrovirus that infects and impairs the cells and functions of the immune system. It has caused a great challenge to global public health systems and leads to Acquired Immunodeficiency Syndrome (AIDS), if not attended to in good time. Antiretroviral therapy is used for managing the virus in a patient’s lifetime. Some of the symptoms of the disease include lean body mass and many opportunistic infections. This study has developed a SIAT mathematical model to investigate the impact of inconsistency in treatment of the disease. The arising non-linear differential equations have been obtained and analyzed. The DFE and its stability have been obtained and the study found that it is locally asymptotically stable when the basic reproduction number is less than unity. The endemic equilibrium has been obtained and found to be globally asymptotically stable when the basic reproduction number is greater than unity. Numerical solutions have been obtained and analyzed to give the trends in the spread dynamics. The inconsistency in treatment uptake has been analyzed through the numerical solutions. The study found that when the treatment rate of those infected increases, it leads to an increase in treatment population, which slows down the spread of HIV and vice versa. An increase in the rate of treatment of those with AIDS leads to a decrease in the AIDS population, the reverse happens when this rate decreases. The study recommends that the community involvement in advocating for consistent treatment of HIV to curb the spread of the disease.
基金Supported by Discipline Advancement Program of Shanghai Fourth People’s Hospital,No.SY-XKZT-2020-2013.
文摘BACKGROUND Postoperative delirium,particularly prevalent in elderly patients after abdominal cancer surgery,presents significant challenges in clinical management.AIM To develop a synthetic minority oversampling technique(SMOTE)-based model for predicting postoperative delirium in elderly abdominal cancer patients.METHODS In this retrospective cohort study,we analyzed data from 611 elderly patients who underwent abdominal malignant tumor surgery at our hospital between September 2020 and October 2022.The incidence of postoperative delirium was recorded for 7 d post-surgery.Patients were divided into delirium and non-delirium groups based on the occurrence of postoperative delirium or not.A multivariate logistic regression model was used to identify risk factors and develop a predictive model for postoperative delirium.The SMOTE technique was applied to enhance the model by oversampling the delirium cases.The model’s predictive accuracy was then validated.RESULTS In our study involving 611 elderly patients with abdominal malignant tumors,multivariate logistic regression analysis identified significant risk factors for postoperative delirium.These included the Charlson comorbidity index,American Society of Anesthesiologists classification,history of cerebrovascular disease,surgical duration,perioperative blood transfusion,and postoperative pain score.The incidence rate of postoperative delirium in our study was 22.91%.The original predictive model(P1)exhibited an area under the receiver operating characteristic curve of 0.862.In comparison,the SMOTE-based logistic early warning model(P2),which utilized the SMOTE oversampling algorithm,showed a slightly lower but comparable area under the curve of 0.856,suggesting no significant difference in performance between the two predictive approaches.CONCLUSION This study confirms that the SMOTE-enhanced predictive model for postoperative delirium in elderly abdominal tumor patients shows performance equivalent to that of traditional methods,effectively addressing data imbalance.
基金supported in part by the National Natural Science Foundation of China(82072019)the Shenzhen Basic Research Program(JCYJ20210324130209023)+5 种基金the Shenzhen-Hong Kong-Macao S&T Program(Category C)(SGDX20201103095002019)the Mainland-Hong Kong Joint Funding Scheme(MHKJFS)(MHP/005/20),the Project of Strategic Importance Fund(P0035421)the Projects of RISA(P0043001)from the Hong Kong Polytechnic University,the Natural Science Foundation of Jiangsu Province(BK20201441)the Provincial and Ministry Co-constructed Project of Henan Province Medical Science and Technology Research(SBGJ202103038,SBGJ202102056)the Henan Province Key R&D and Promotion Project(Science and Technology Research)(222102310015)the Natural Science Foundation of Henan Province(222300420575),and the Henan Province Science and Technology Research(222102310322).
文摘Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients’anatomy.However,the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians.Moreover,some potentially useful quantitative information in medical images,especially that which is not visible to the naked eye,is often ignored during clinical practice.In contrast,radiomics performs high-throughput feature extraction from medical images,which enables quantitative analysis of medical images and prediction of various clinical endpoints.Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis,demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine.However,radiomics remains in a developmental phase as numerous technical challenges have yet to be solved,especially in feature engineering and statistical modeling.In this review,we introduce the current utility of radiomics by summarizing research on its application in the diagnosis,prognosis,and prediction of treatment responses in patients with cancer.We focus on machine learning approaches,for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling.Furthermore,we introduce the stability,reproducibility,and interpretability of features,and the generalizability and interpretability of models.Finally,we offer possible solutions to current challenges in radiomics research.
基金the National Natural Science Foundation of China(Grant No.42020104006).
文摘Deformation analysis is fundamental in geotechnical modeling.Nevertheless,there is still a lack of an effective method to obtain the deformation field under various experimental conditions.In this study,we introduce a processebased physical modeling of a pileereinforced reservoir landslide and present an improved deformation analysis involving large strains and water effects.We collect multieperiod point clouds using a terrain laser scanner and reconstruct its deformation field through a point cloud processing workflow.The results show that this method can accurately describe the landslide surface deformation at any time and area by both scalar and vector fields.The deformation fields in different profiles of the physical model and different stages of the evolutionary process provide adequate and detailed landslide information.We analyze the large strain upstream of the pile caused by the pile installation and the consequent violent deformation during the evolutionary process.Furthermore,our method effectively overcomes the challenges of identifying targets commonly encountered in geotechnical modeling where water effects are considered and targets are polluted,which facilitates the deformation analysis at the wading area in a reservoir landslide.Eventually,combining subsurface deformation as well as numerical modeling,we comprehensively analyze the kinematics and failure mechanisms of this complicated object involving landslides and pile foundations as well as water effects.This method is of great significance for any geotechnical modeling concerning large-strain analysis and water effects.
基金funding received by a grant from the Natural Sciences and Engineering Research Council of Canada(NSERC)(Grant No.CRDPJ 469057e14).
文摘We have proposed a methodology to assess the robustness of underground tunnels against potential failure.This involves developing vulnerability functions for various qualities of rock mass and static loading intensities.To account for these variations,we utilized a Monte Carlo Simulation(MCS)technique coupled with the finite difference code FLAC^(3D),to conduct two thousand seven hundred numerical simulations of a horseshoe tunnel located within a rock mass with different geological strength index system(GSIs)and subjected to different states of static loading.To quantify the severity of damage within the rock mass,we selected one stress-based(brittle shear ratio(BSR))and one strain-based failure criterion(plastic damage index(PDI)).Based on these criteria,we then developed fragility curves.Additionally,we used mathematical approximation techniques to produce vulnerability functions that relate the probabilities of various damage states to loading intensities for different quality classes of blocky rock mass.The results indicated that the fragility curves we obtained could accurately depict the evolution of the inner and outer shell damage around the tunnel.Therefore,we have provided engineers with a tool that can predict levels of damages associated with different failure mechanisms based on variations in rock mass quality and in situ stress state.Our method is a numerically developed,multi-variate approach that can aid engineers in making informed decisions about the robustness of underground tunnels.
基金funding support from the science and technology innovation Program of Hunan Province(Grant No.2023RC1017)Hunan Provincial Postgraduate Research and Innovation Project(Grant No.CX20220109)National Natural Science Foundation of China Youth Fund(Grant No.52208378).
文摘Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but they do require sufficient on-site data for accurate training,and lack interpretability to the physical processes within the data.In this paper,we provide a physics and equalityconstrained artificial neural network(PECANN),to derive unsaturated infiltration solutions with a small amount of initial and boundary data.PECANN takes the physics-informed neural network(PINN)as a foundation,encodes the unsaturated infiltration physical laws(i.e.Richards equation,RE)into the loss function,and uses the augmented Lagrangian method to constrain the learning process of the solutions of RE by adding stronger penalty for the initial and boundary conditions.Four unsaturated infiltration cases are designed to test the training performance of PECANN,i.e.one-dimensional(1D)steady-state unsaturated infiltration,1D transient-state infiltration,two-dimensional(2D)transient-state infiltration,and 1D coupled unsaturated infiltration and deformation.The predicted results of PECANN are compared with the finite difference solutions or analytical solutions.The results indicate that PECANN can accurately capture the variations of pressure head during the unsaturated infiltration,and present higher precision and robustness than DNN and PINN.It is also revealed that PECANN can achieve the same accuracy as the finite difference method with fewer initial and boundary training data.Additionally,we investigate the effect of the hyperparameters of PECANN on solving RE problem.PECANN provides an effective tool for simulating unsaturated infiltration.
基金supported by the Research Council of Norway under contracts 223252/F50 and 300844/F50the Trond Mohn Foundation。
文摘Global images of auroras obtained by cameras on spacecraft are a key tool for studying the near-Earth environment.However,the cameras are sensitive not only to auroral emissions produced by precipitating particles,but also to dayglow emissions produced by photoelectrons induced by sunlight.Nightglow emissions and scattered sunlight can contribute to the background signal.To fully utilize such images in space science,background contamination must be removed to isolate the auroral signal.Here we outline a data-driven approach to modeling the background intensity in multiple images by formulating linear inverse problems based on B-splines and spherical harmonics.The approach is robust,flexible,and iteratively deselects outliers,such as auroral emissions.The final model is smooth across the terminator and accounts for slow temporal variations and large-scale asymmetries in the dayglow.We demonstrate the model by using the three far ultraviolet cameras on the Imager for Magnetopause-to-Aurora Global Exploration(IMAGE)mission.The method can be applied to historical missions and is relevant for upcoming missions,such as the Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)mission.
基金supported by the National Key Research and Development Program of China(Grant No.2022YFC3080200)the National Natural Science Foundation of China(Grant No.42022053)the China Postdoctoral Science Foundation(Grant No.2023M731264).
文摘Natural slopes usually display complicated exposed rock surfaces that are characterized by complex and substantial terrain undulation and ubiquitous undesirable phenomena such as vegetation cover and rockfalls.This study presents a systematic outcrop research of fracture pattern variations in a complicated rock slope,and the qualitative and quantitative study of the complex phenomena impact on threedimensional(3D)discrete fracture network(DFN)modeling.As the studies of the outcrop fracture pattern have been so far focused on local variations,thus,we put forward a statistical analysis of global variations.The entire outcrop is partitioned into several subzones,and the subzone-scale variability of fracture geometric properties is analyzed(including the orientation,the density,and the trace length).The results reveal significant variations in fracture characteristics(such as the concentrative degree,the average orientation,the density,and the trace length)among different subzones.Moreover,the density of fracture sets,which is approximately parallel to the slope surface,exhibits a notably higher value compared to other fracture sets across all subzones.To improve the accuracy of the DFN modeling,the effects of three common phenomena resulting from vegetation and rockfalls are qualitatively analyzed and the corresponding quantitative data processing solutions are proposed.Subsequently,the 3D fracture geometric parameters are determined for different areas of the high-steep rock slope in terms of the subzone dimensions.The results show significant variations in the same set of 3D fracture parameters across different regions with density differing by up to tenfold and mean trace length exhibiting differences of 3e4 times.The study results present precise geological structural information,improve modeling accuracy,and provide practical solutions for addressing complex outcrop issues.
基金partly funded by the Centre National d'Etudes Spatiales(CNES)through the TOSCA program。
文摘Variations in ice mass deform the Earth and modify its gravity field,a process known as Glacial Isostatic Adjustment(GIA).GIA in Antarctica remains poorly constrained due to the cumulative effect of past and present ice-mass changes,the unknown history of the past ice-mass change,and the uncertainties on the mechanical properties of the Earth.This paper investigates the effect of using Andrade and Burgers viscoelastic rheologies,rather than the commonly used Maxwell rheology,to model GIA-induced deformation in Antarctica.The Love number and Green's function formalism are used to compute the radial surface displacements and the gravity changes induced by the past and present ice-mass changes.We consider an Earth model whose elastic properties and radial structure are averaged from the Preliminary Reference Earth Model and two viscosity profiles to account for the recently published results on the present ice-mass changes.Using the three rheological laws affects the temporal response of the Earth differently,leading to smaller discrepancies than those induced by the two viscosity structures.The differences are the largest between Maxwell and Burgers rheologies during the 100-1000 years following the beginning of the surface-mass change.Results show that using the Andrade and Burgers rheologies allows the Earth to respond on decennial to centennial time scales,up to 10 m more than Maxwell.Considering only the recent ice-mass changes,the deformation rates derived from Burgers and Andrade rheologies are several times larger than those estimated by Maxwell rheology.
基金supported in part by the National Key Research and Development Program of China(2022YFB3305300)the National Natural Science Foundation of China(62173178).
文摘Ethylene glycol(EG)plays a pivotal role as a primary raw material in the polyester industry,and the syngas-to-EG route has become a significant technical route in production.The carbon monoxide(CO)gas-phase catalytic coupling to synthesize dimethyl oxalate(DMO)is a crucial process in the syngas-to-EG route,whereby the composition of the reactor outlet exerts influence on the ultimate quality of the EG product and the energy consumption during the subsequent separation process.However,measuring product quality in real time or establishing accurate dynamic mechanism models is challenging.To effectively model the DMO synthesis process,this study proposes a hybrid modeling strategy that integrates process mechanisms and data-driven approaches.The CO gas-phase catalytic coupling mechanism model is developed based on intrinsic kinetics and material balance,while a long short-term memory(LSTM)neural network is employed to predict the macroscopic reaction rate by leveraging temporal relationships derived from archived measurements.The proposed model is trained semi-supervised to accommodate limited-label data scenarios,leveraging historical data.By integrating these predictions with the mechanism model,the hybrid modeling approach provides reliable and interpretable forecasts of mass fractions.Empirical investigations unequivocally validate the superiority of the proposed hybrid modeling approach over conventional data-driven models(DDMs)and other hybrid modeling techniques.
基金funded by Lumin S.A. and the Agencia Nacional de Investigación e Innovación (ANII)[POS_NAC_2016_1_130479]
文摘Native grasslands in the Pampas of South America are increasingly being replaced by Eucalyptus and Pinus stands.The short rotation regimes used for the stands require high nutrient levels,with litterfall being a major source of nutrient return.To model the litterfall production using climatic variables and assess the nutrient return in 14-year-old Eucalyptus grandis and Pinus taeda stands,we measured litter production over 2 years,using conical litter traps,and monitored climatic variables.Mean temperature,accumulated precipitation,and mean maximum vapor pres-sure deficit at the seasonal level influenced litterfall produc-tion by E.grandis;seasonal accumulated precipitation and mean maximum temperature affected litterfall by P.taeda.The regression tree modeling based on these climatic vari-ables had great accuracy and predictive power for E.grandis(N=33;MAE(mean absolute error)=0.65;RMSE(root mean square error)=0.91;R^(2)=0.71)and P.taeda(N=108;MAE=1.50;RMSE=1.59;R^(2)=0.72).The nutrient return followed a similar pattern to litterfall deposition,as well as the order of importance of macronutrients(E.grandis:Ca>N>K>Mg>P;P.taeda:N>Ca>K>Mg>P)and micronutrients(E.grandis and P.taeda:Mn>Fe>Zn>Cu)in both species.This study constitutes a first approximation of factors that affect litterfall and nutrient return in these systems.
基金Supported by National Natural Science Foundation of China (Grant No.52275537)Nanjing Major Scientific and Technological Project of China (Grant No.202209011)。
文摘As an innovative,low-power consuming,and low-stiffness suspension approach,the diamagnetic levitation technique has attracted considerable interest because of its potential applicability in miniaturized mechanical systems.The foundation of a diamagnetic levitation system is mathematical modeling,which is essential for operating performance optimization and stability prediction.However,few studies on systematic mathematical modeling have been reported.In this study,a systematic mathematical model for a disc-shaped diamagnetically levitated rotor on a permanent magnet array is proposed.Based on the proposed model,the magnetic field distribution characteristics,diamagnetic levitation force characteristics(i.e.,levitation height and stiffness),and optimized theoretical conditions for realizing stable levitation are determined.Experiments are conducted to verify the feasibility of the proposed mathematical model.Theoretical predictions and experimental results indicate that increasing the levitation height enlarges the stable region.Moreover,with a further increase in the rotor radius,the stable regions of the rotor gradually diminish and even vanish.Thus,when the levitation height is fixed,a moderate rotor radius permits stable levitation.This study proposes a mathematical modeling method for a diamagnetic levitation system that has potential applications in miniaturized mechanical systems.
基金the Guangdong Planning Office of Philosophy and Social Science(Grant No.GD22XYS04).
文摘Background:As the market demands change,SMEs(small and medium-sized enterprises)have long faced many design issues,including high costs,lengthy cycles,and insufficient innovation.These issues are especially noticeable in the domain of cosmetic packaging design.Objective:To explore innovative product family modeling methods and configuration design processes to improve the efficiency of enterprise cosmetic packaging design and develop the design for mass customization.Methods:To accomplish this objective,the basic-element theory has been introduced and applied to the design and development system of the product family.Results:By examining the mapping relationships between the demand domain,functional domain,technology domain,and structure domain,four interrelated models have been developed,including the demand model,functional model,technology model,and structure model.Together,these models form the mechanism and methodology of product family modeling,specifically for cosmetic packaging design.Through an analysis of a case study on men’s cosmetic packaging design,the feasibility of the proposed product family modeling technology has been demonstrated in terms of customized cosmetic packaging design,and the design efficiency has been enhanced.Conclusion:The product family modeling technology employs a formalized element as a module configuration design language,permeating throughout the entire development cycle of cosmetic packaging design,thus facilitating a structured and modularized configuration design process for the product family system.The application of the basic-element principle in product family modeling technology contributes to the enrichment of the research field surrounding cosmetic packaging product family configuration design,while also providing valuable methods and references for enterprises aiming to elevate the efficiency of cosmetic packaging design for the mass customization product model.
基金supported by the National Key Research and Development Program of China(2021YFC2103800)the National Natural Science Foundation of China(U21A20301)the Research Funds of Institute of Zhejiang University-Quzhou(IZQ2022RCZX004 and IZQ2021RCZX015)。
文摘The equilibrium solubility of Rebaudioside A(Reb A)FormⅡin binary mixtures of methanol/ethanol and ethyl acetate was quantitatively determined within the temperature range of 283.15—328.15 K at ambient pressure.The experimental findings indicate a positive correlation between the solubility of Reb A(FormⅡ)and both the temperature and the methanol/ethanol content in the solvent system.To describe the solubility data,six distinct models were employed:the modified Apelblat equation,theλh model,the combined nearly ideal binary solvent/Redlich—Kister(CNIBS/R—K)model,the van't HoffJouyban-Acree(VJA)model,the Apelblat-Jouyban-Acree(AJA)model,and the non-random two-liquid(NRTL)model.The combined nearly ideal binary solvent/Redlich—Kister model exhibited the most precise fit for solubility in methanol+ethyl acetate mixtures,reflected by an average relative deviation(ARD)of 0.0011 and a root mean square deviation(RMSD)of 12×10^(-7).Conversely,for ethanol+ethyl acetate mixtures,the modified Apelblat equation provided a superior correlation(ARD=0.0014,RMSD=4×10^(-7)).Furthermore,thermodynamic parameters associated with the dissolution of Reb A(FormⅡ),including enthalpy,entropy,and the Gibbs energy change,were inferred from the data.The findings underscore that the dissolution process is predominantly endothermic across the solvent systems examined.Notably,the entropy changes appear to have a significant influence on the Gibbs free energy associated with the dissolution of Reb A(FormⅡ),suggesting that entropic factors may play a pivotal role in the studied systems.
基金funded by the National Natural Science Program of China(2022YFD1900300)the China Scholarship Council(CSC)through the CSC-CSIRO(Commonwealth Scientific and Industrial Research Organisation)Joint Ph D Program,the Zhumadian Major Scientific and Technological Innovation Project,China(170109564016)the Huanghuai University Scientific Research Foundation,China(502310020017)。
文摘We used field experimental data to evaluate the ability of the agricultural production system model (APSIM) to simulate soil P availability,maize biomass and grain yield in response to P fertilizer applications on a fluvo-aquic soil in the North China Plain.Crop and soil data from a 2-year experiment with three P fertilizer application rates(0,75 and 300 kg P_(2)O_(5) ha^(–1)) were used to calibrate the model.Sensitivity analysis was carried out to investigate the influence of APSIM SoilP parameters on the simulated P availability in soil and maize growth.Crop and soil P parameters were then derived by matching or relating the simulation results to observed crop biomass,yield,P uptake and Olsen-P in soil.The re-parameterized model was further validated against 2 years of independent data at the same sites.The re-parameterized model enabled good simulation of the maize leaf area index (LAI),biomass,grain yield,P uptake,and grain P content in response to different levels of P additions against both the calibration and validation datasets.Our results showed that APSIM needs to be re-parameterized for simulation of maize LAI dynamics through modification of leaf size curve and a reduction in the rate of leaf senescence for modern staygreen maize cultivars in China.The P concentration limits (maximum and minimum P concentrations in organs)at different stages also need to be adjusted.Our results further showed a curvilinear relationship between the measured Olsen-P concentration and simulated labile P content,which could facilitate the initialization of APSIM P pools in the NCP with Olsen-P measurements in future studies.It remains difficult to parameterize the APSIM SoilP module due to the conceptual nature of the pools and simplified conceptualization of key P transformation processes.A fundamental understanding still needs to be developed for modelling and predicting the fate of applied P fertilizers in soils with contrasting physical and chemical characteristics.
基金Equinor for financing the R&D projectthe Institute of Science and Technology of Petroleum Geophysics of Brazil for supporting this research。
文摘We apply stochastic seismic inversion and Bayesian facies classification for porosity modeling and igneous rock identification in the presalt interval of the Santos Basin. This integration of seismic and well-derived information enhances reservoir characterization. Stochastic inversion and Bayesian classification are powerful tools because they permit addressing the uncertainties in the model. We used the ES-MDA algorithm to achieve the realizations equivalent to the percentiles P10, P50, and P90 of acoustic impedance, a novel method for acoustic inversion in presalt. The facies were divided into five: reservoir 1,reservoir 2, tight carbonates, clayey rocks, and igneous rocks. To deal with the overlaps in acoustic impedance values of facies, we included geological information using a priori probability, indicating that structural highs are reservoir-dominated. To illustrate our approach, we conducted porosity modeling using facies-related rock-physics models for rock-physics inversion in an area with a well drilled in a coquina bank and evaluated the thickness and extension of an igneous intrusion near the carbonate-salt interface. The modeled porosity and the classified seismic facies are in good agreement with the ones observed in the wells. Notably, the coquinas bank presents an improvement in the porosity towards the top. The a priori probability model was crucial for limiting the clayey rocks to the structural lows. In Well B, the hit rate of the igneous rock in the three scenarios is higher than 60%, showing an excellent thickness-prediction capability.
基金supported by the National Natural Science Foundation of China(21908234)the National Key Research&Development Program of China(2020YFB0606404)+1 种基金the Inner Mongolia Science and Technology Agency Program(2019CG058)Shanxi Province Natural Science Foundation(202103021223063).
文摘The influences of particle size,shape,and catalyst distribution on the reactivity and hydrocarbon product selectivity of a cobalt-based catalyst for Fischer-Tropsch synthesis were investigated in the present work.A self-consistent kinetic model for Fischer-Tropsch reaction proposed here was found to correlate experimental data well and hence was used to describe the consumption rates of reactants and formation rates of hydrocarbon products.The perturbed-chain statistical associating fluid theory equation of state was used to describe vapor-liquid equilibrium behavior associated with Fischer-Tropsch reaction.Local interaction between intraparticle diffusion and Fischer-Tropsch reaction was investigated in detail.Results showed that in order to avoid the adverse influence of intraparticle diffusional limitations on catalyst reactivity and product selectivity,the use of small particles is necessary.Large eggshell spherical particles are shown to keep the original catalyst reactivity and enhance the selectivity of heavy hydrocarbon products.The suitable layer thickness for a spherical particle with a diameter of 2 mm is nearly 0.15 mm.With the same outer diameter of 2 mm,the catalyst reactivity and heavy product selectivity of hollow cylindrical particles with a layer thickness of 0.25 mm are found to be larger than eggshell spherical particles.From the viewpoint of catalytic performance,hollow cylindrical particles are a better choice for industrial applications.
文摘The global populationhas beenandwill continue to be severely impacted by theCOVID-19 epidemic.The primary objective of this research is to demonstrate the future impact of COVID-19 on those who suffer from other fatal conditions such as cancer,heart disease,and diabetes.Here,using ordinary differential equations(ODEs),two mathematical models are developed to explain the association between COVID-19 and cancer and between COVID-19 and diabetes and heart disease.After that,we highlight the stability assessments that can be applied to these models.Sensitivity analysis is used to examine how changes in certain factors impact different aspects of disease.The sensitivity analysis showed that many people are still nervous about seeing a doctor due to COVID-19,which could result in a dramatic increase in the diagnosis of various ailments in the years to come.The correlation between diabetes and cardiovascular illness is also illustrated graphically.The effects of smoking and obesity are also found to be significant in disease compartments.Model fitting is also provided for interpreting the relationship between real data and the results of thiswork.Diabetic people,in particular,need tomonitor their health conditions closely and practice heart health maintenance.People with heart diseases should undergo regular checks so that they can protect themselves from diabetes and take some precautions including suitable diets.The main purpose of this study is to emphasize the importance of regular checks,to warn people about the effects of COVID-19(including avoiding healthcare centers and doctors because of the spread of infectious diseases)and to indicate the importance of family history of cancer,heart diseases and diabetes.The provision of the recommendations requires an increase in public consciousness.