A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the mol...A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability.展开更多
The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kine...The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications.展开更多
We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it ...We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results.展开更多
The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electro...The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electrolyte,Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3),utilizing cyclic voltammetry and square wave voltammetry techniques.The results show that Fe(Ⅲ)reduction occurs in two steps:Fe(Ⅲ)+e^(−)→Fe(Ⅱ),Fe(Ⅱ)+2e^(−)→Fe,and that the redox process of Fe(Ⅲ)/Fe(Ⅱ)at the tungsten electrode is an irreversible reaction controlled by diffusion.The diffusion coefficients of Fe(Ⅲ)in the molten Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3)in the temperature range of 1248–1278 K are between 1.86×10^(−6)cm^(2)/s and 1.58×10^(−4)cm^(2)/s.The diffusion activation energy of Fe(Ⅲ)in the molten salt is 1825.41 kJ/mol.As confirmed by XRD analysis,potentiostatic electrolysis at−0.857 V(vs.O_(2)/O_(complex)^(2-))for 6 h produces metallic iron on the cathode.展开更多
The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel....The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel.Issues arising from graphite in traditional molten salt reactors,including the positive temperature coefficient and management of highly radio-active spent graphite waste,can be addressed using the HWMSR.Until now,research on the HWMSR has been centered on the core design and nuclear fuel cycle to explore the viability of the HWMSR and its advantages in fuel utilization.However,the core safety of the HWMSR has not been extensively studied.Therefore,we evaluate typical accidents in a small modular HWMSR,including fuel salt inlet temperature overcooling and overheating accidents,fuel salt inlet flow rate decrease,heavy water inlet temperature overcooling accidents,and heavy water inlet mass flow rate decrease accidents,based on a neutronics and thermal-hydraulics coupled code.The results demonstrated that the core maintained safety during the investigated accidents.展开更多
Molten carbonate is an excellent electrolyte for the electrochemical reduction of CO_(2)to carbonaceous materials.However,the electrolyte–electrode-reaction relationship has not been well understood.Herein,we propose...Molten carbonate is an excellent electrolyte for the electrochemical reduction of CO_(2)to carbonaceous materials.However,the electrolyte–electrode-reaction relationship has not been well understood.Herein,we propose a general descriptor,the CO_(2)activity,to reveal the electrolyte–electrode-reaction relationship by thermodynamic calculations and experimental studies.Experimental studies agree well with theoretical predictions that both cations(Li^(+),Ca^(2+),Sr^(2+)and Ba^(2+))and anions(BO_(2)^(-),Ti_(5)O_(14)^(8-),SiO_(3)^(2-))can modulate the CO_(2)activity to control both cathode and anode reactions in a typical molten carbonate electrolyzer in terms of tuning reaction products and overpotentials.In this regard,the reduction of CO_(3)^(2-)can be interpreted as the direct reduction of CO_(2)generated from the dissociated CO_(3)^(2-),and the CO_(2)activity can be used as a general descriptor to predict the electrode reaction in molten carbonate.Overall,the CO_(2)activity descriptor unlocks the electrolyte–electrode-reaction relationship,thereby providing fundamental insights into guiding molten carbonate CO_(2)electrolysis.展开更多
This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction betwee...This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.展开更多
A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at th...A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at the current stage,thus it is difficult for MSR to achieve a pure thorium-uranium fuel cycle.Therefore,using plutonium or enriched uranium as the initial fuel for MSR is more practical.In this study,we aim to verify the feasibility of a small modular MSR that utilizes plutonium as the starting fuel(SM-MSR-Pu),and highlight its advantages and disadvantages.First,the structural design and fuel management scheme of the SM-MSR-Pu were presented.Second,the neutronic characteristics,such as the graphite-irradiation lifetime,burn-up performance,and coefficient of temperature reactivity were calculated to analyze the physical characteristics of the SM-MSR-Pu.The results indicate that plutonium is a feasible and advantageous starting fuel for a SM-MSR;however,there are certain shortcomings that need to be solved.In a 250 MWth SM-MSR-Pu,approximately 288.64 kg^(233)U of plutonium with a purity of greater than 90% is produced while 978.00 kg is burned every ten years.The temperature reactivity coefficient decreases from -4.0 to -6.5 pcm K^(-1) over the 50-year operating time,which ensures a long-term safe operation.However,the amount of plutonium and accumulation of minor actinides(MAs)would increase as the burn-up time increases,and the annual production and purity of^(233)U will decrease.To achieve an optimal burn-up performance,setting the entire operation time to 30 years is advisable.Regardless,more than 3600 kg of plutonium eventually accumulate in the core.Further research is required to effectively utilize this accumulated plutonium.展开更多
To reduce the production cost of titanium,a new method for direct preparation of low-oxygen titanium powder by the magnesiothermic reduction of TiO_(2) with the assistance of a MgCl_(2)−HoCl_(3) molten salt was propos...To reduce the production cost of titanium,a new method for direct preparation of low-oxygen titanium powder by the magnesiothermic reduction of TiO_(2) with the assistance of a MgCl_(2)−HoCl_(3) molten salt was proposed.Thermodynamic calculations showed that the magnesiothermic reduction of TiO_(2) was feasible.However,hindrance of the reduction reaction by the reduction by-product of MgO resulted in a considerably high O concentration in the titanium powder.The addition of HoCl_(3) to the system significantly reduces the activity of MgO to produce low-oxygen titanium powder.Thermochemical deoxidation and reduction experiments were conducted with MgCl_(2)−HoCl_(3) molten salt in the temperature range of 1023−1273 K.The results showed that titanium powder with oxygen concentration(mass fraction)below 5.00×10^(-4) can be prepared at the Mg−MgCl_(2)−HoOCl−HoCl_(3) equilibrium.展开更多
Accurate prediction of molten steel temperature in the ladle furnace(LF)refining process has an important influence on the quality of molten steel and the control of steelmaking cost.Extensive research on establishing...Accurate prediction of molten steel temperature in the ladle furnace(LF)refining process has an important influence on the quality of molten steel and the control of steelmaking cost.Extensive research on establishing models to predict molten steel temperature has been conducted.However,most researchers focus solely on improving the accuracy of the model,neglecting its explainability.The present study aims to develop a high-precision and explainable model with improved reliability and transparency.The eXtreme gradient boosting(XGBoost)and light gradient boosting machine(LGBM)were utilized,along with bayesian optimization and grey wolf optimiz-ation(GWO),to establish the prediction model.Different performance evaluation metrics and graphical representations were applied to compare the optimal XGBoost and LGBM models obtained through varying hyperparameter optimization methods with the other models.The findings indicated that the GWO-LGBM model outperformed other methods in predicting molten steel temperature,with a high pre-diction accuracy of 89.35%within the error range of±5°C.The model’s learning/decision process was revealed,and the influence degree of different variables on the molten steel temperature was clarified using the tree structure visualization and SHapley Additive exPlana-tions(SHAP)analysis.Consequently,the explainability of the optimal GWO-LGBM model was enhanced,providing reliable support for prediction results.展开更多
Weak redox ability and severe charge recombination pose significant obstacles to the advancement of CO_(2) photoreduction.To tackle this challenge and enhance the CO_(2) photoconversion efficiency,fabricating well-mat...Weak redox ability and severe charge recombination pose significant obstacles to the advancement of CO_(2) photoreduction.To tackle this challenge and enhance the CO_(2) photoconversion efficiency,fabricating well-matched S-scheme heterostructure and establishing a robust built-in electric field emerge as pivotal strategies.In pursuit of this goal,a core-shell structured CuInS_(2)@CoS_(2)S-scheme heterojunction was meticulously engineered through a two-step molten salt method.This approach over the CuInS_(2)-based composites produced an internal electric field owing to the disparity be-tween the Fermi levels of CoS_(2) and CuInS_(2) at their interface.Consequently,the electric field facili-tated the directed migration of charges and the proficient separation of photoinduced carriers.The resulting CuInS_(2)@CoS_(2) heterostructure exhibited remarkable CO_(2) photoreduction performance,which was 21.7 and 26.5 times that of pure CuInS_(2) and CoS_(2),respectively.The S-scheme heterojunc-tion photogenerated charge transfer mechanism was validated through a series of rigorous anal-yses,including in situ irradiation X-ray photoelectron spectroscopy,work function calculations,and differential charge density examinations.Furthermore,in situ infrared spectroscopy and density functional theory calculations corroborated the fact that the CuInS_(2)@CoS_(2) heterojunction substan-tially lowered the formation energy of *COOH and *CO.This study demonstrates the application potential of S-scheme heterojunctions fabricated via the molten salt method in the realm of ad-dressing carbon-related environmental issues.展开更多
Molten aluminum is among the most common causes of burns in the metal industry.However,only few reports are available on molten aluminum injuries.Herein,we report an unusual case of molten aluminum burn.The patient ha...Molten aluminum is among the most common causes of burns in the metal industry.However,only few reports are available on molten aluminum injuries.Herein,we report an unusual case of molten aluminum burn.The patient had burns not only on the body surface but also in the respiratory tract and esophagus,adding to the difficulty of treatment.Multidisciplinary consultation and cooperation led to the development of a treatment plan for the patient,which included tracheotomy,respiratory management,endoscopic therapy,infection control,and psychological support.To our knowledge,this is the first report of molten aluminum-induced burns involving the face,neck,respiratory tract,esophagus,and eyes.We also describe our experience with multidisciplinary treatment for the management of molten aluminum burns.展开更多
The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side w...The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side walls and free surface of the channel have been taken from the literature. For each geometry, the volumetric flow rate, mean residence time and temperature drop as a function of the channel inclination angle were determined. The rectangular and trapezoidal geometries present the smallest temperature drops, while the triangular geometry presents the greatest temperature drop. The factors that most affect this drop are the value of the free surface area of the channel, and the average residence time of the molten metal in the channel.展开更多
In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through...In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through open channels. The transient and steady-state flow of a molten slag in a rectangular open channel is numerically analyzed here. For the transient flow, the Saint-Venant equations were numerically solved. For the steady-state flow, the derivatives in time and space in the Saint-Venant equations were set equal to zero and a polynomial of degree 3 is obtained whose roots are the slag height values. It was assumed that the viscosity of the slag has an Arrhenius-type behavior with temperature. Four values of temperature values, namely 1723.15, 1773.15, 1823.15, 18873.15 ˚K, and five values of the angle of inclination of the channel, namely 1, 2, 3, 4, 5 degrees, are considered. Numerical results show that the steady-state values of the height and velocity of the molten slag depend strongly on the temperature of the slag and the angle of inclination of the channel. As the slag temperature and channel angle increase, the value of the steady-state slag height decreases. The value of the steady-state slag velocity increases as the slag temperature and channel inclination angle increase.展开更多
Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular ...Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular open channel is numerically studied by solving the Saint-Venant equations by means of an explicit backwards finite difference scheme. An Arrhenius-type dependence of the viscosity of the slag on temperature is assumed. To calculate that viscosity, four temperatures are considered, namely 1450˚C, 1500˚C, 1550˚C and 1600˚C. To study the dynamic response of the system, a half-sinusoidal pulse with duration of 5 s is imposed at the channel entrance. According to the numerical simulations, for all the temperatures considered, the slag flow in the channel for an angle of 5 degrees is supercritical in nature. However, for an angle of 1 degree, the flow is transcritical, that is, it presents a transition from subcritical to supercritical.展开更多
In this work the influence of the density of the molten metal on the emergence of the raining phenomenon in the horizontal centrifugal casting process is numerically studied. Transient 2D numerical simulations were ca...In this work the influence of the density of the molten metal on the emergence of the raining phenomenon in the horizontal centrifugal casting process is numerically studied. Transient 2D numerical simulations were carried out using Computational Fluid Dynamics software. Three molten metals with different density, namely aluminum, iron and lead, and three angular frequencies, namely 50, 66 and 77 rad/s were considered. It is found that the density of the molten metal significantly affects the emergence, transient or permanent, of the rain phenomenon. However, the magnitude and duration of the rain phenomenon depend on the angular frequency of the rotating mold. Likewise, since gravitational forces affect the metal according to its density, the value of the critical rotation speed of the mold is also affected.展开更多
The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology ...The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology and constitution of Ir film were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the reduction mechanism of Ir(III) is a three-electron step and electro reaction is a reversible diffusion controlled process; the diffusion coefficients of Ir(III) at 1083, 1113, 1143 and 1183 K are 1.56×10-4, 2.23×10-4, 2.77×10-4 and 4.40×10-4 cm2/s, respectively, while the activation energy of the electrode reaction is 102.95 kJ/mol. The compacted Ir film reveals that the applied potential greatly affects the deposition of Ir, the thickness of Ir film deposited at the potential of reduction peak is the highest, the temperature of the molten salt also exerts an influence on deposition, the film formed at a lower temperature is thinner, but more micropores would occur on film when the temperature went too high.展开更多
Molten transport is an important link in the iron and steel enterprise production,involves many complex factors,artificial management is difficult.Therefore,puts forward a kind of molten iron transport wisdom control ...Molten transport is an important link in the iron and steel enterprise production,involves many complex factors,artificial management is difficult.Therefore,puts forward a kind of molten iron transport wisdom control system based on 5G technology,which mainly contains the intelligent identification tracking system,equipment status collection information acquisition system,locomotive vehicle terminal system,etc.Combined with the analysis of the actual application situation,the system could integrate all the processes and elements of molten iron produc-tion and transportation,realize the integration of operation and management,and also promote the improvement of the turnover efficiency of molten iron tank,reduce the demand for personnel,and reduce the labor cost.展开更多
Due to their limitations in conductivity and shape stability,molten salt phase change materials have encountered obstacles to effectively integrating into electric heating conversion technologies,which are crucial in ...Due to their limitations in conductivity and shape stability,molten salt phase change materials have encountered obstacles to effectively integrating into electric heating conversion technologies,which are crucial in energy storage and conversion fields.In this study,we synthesized an inorganic molten salt composite phase change material(CPCM)with enhanced conductivity and shape stability using a gasphase silica adsorption method.Our findings revealed the regularities in thermal properties modulation by expanded graphite(EG)within CPCM and delved into its characteristics of electric heating conversion.The study elucidated that a conductive network is essentially formed when the EG content exceeds 3 wt%.Following the fabrication of CPCM into electric heating conversion modules,we observed a correlation between the uniformity of module temperature and the quantity of EG,as well as the distribution of electrode resistance and external voltage magnitude.Building upon this observation,we proposed a strategy to adjust the module temperature field with an electric field.Comparing the proposed direct electrical heating energy storage method with traditional indirect electrical heating methods,the energy storage rate increases by 93.8%,with an improved temperature uniformity.This research offers valuable insights for the application of molten salt electric heating conversion CPCMs.展开更多
A novel process of vanadium extraction from vanadium slag in its molten state was conducted at the laboratory scale by oxidation with pure oxygen in the presence of CaO. The effect of mass ratio of CaO to V2O5 on the ...A novel process of vanadium extraction from vanadium slag in its molten state was conducted at the laboratory scale by oxidation with pure oxygen in the presence of CaO. The effect of mass ratio of CaO to V2O5 on the recovery of vanadium was studied. The sintered samples were leached by H2SO4 solution and characterized by XRD, XPS, SEM and EDS techniques. Compared with the roasting process, the energy saving effect of the proposed process was also discussed. The results showed that vanadium-rich phases were formed and vanadium mainly existed in the forms of CaV2O5 and Ca2V2O7. The formation mechanism of calcium vanadates in the molten vanadium bearing slag was explained. The XRD and XPS results implied that there was a limit to the oxidation reaction of V(IV) to V(V) under the high temperatures even though oxygen-supply was sufficient. An increase in the CaO content led to an increase in the formation of Ca2V2O7. About 90%of the vanadium recovery was obtained under optimal experiment conditions (mass ratio of CaO to V2O5 of 0.6, particle size 120 to 150μm, leaching temperature 90 °C, leaching time 2 h, H2SO4 concentration 20%, liquid to solid ratio 5:1 mL/g, stirring speed 500 r/min). The energy of 1.85×106 kJ could be saved in every 1000 kg of vanadium bearing slag using the proposed process from the theoretical calculation results. Recovery of vanadium from the molten vanadium bearing slag and utilisation of its heat energy are important not only for saving metal resources, but also for energy saving and emission reduction.展开更多
基金This work was supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010300).
文摘A nonlinear dynamic simulation model based on coordinated control of speed and flow rate for the molten salt reactor and combined cycle systems is proposed here to ensure the coordination and stability between the molten salt reactor and power system.This model considers the impact of thermal properties of fluid variation on accuracy and has been validated with Simulink.This study reveals the capability of the control system to compensate for anomalous situations and maintain shaft stability in the event of perturbations occurring in high-temperature molten salt tank outlet parameters.Meanwhile,the control system’s impact on the system’s dynamic characteristics under molten salt disturbance is also analyzed.The results reveal that after the disturbance occurs,the controlled system benefits from the action of the control,and the overshoot and disturbance amplitude are positively correlated,while the system power and frequency eventually return to the initial values.This simulation model provides a basis for utilizing molten salt reactors for power generation and maintaining grid stability.
基金This work was financially supported by the National Natural Science Foundation of China(No.52171144)the Fundamental Research Special Zone Program of Shanghai Jiao Tong University(No.21TQ1400215).
文摘The synthesis of carbide coatings on graphite substrates using molten salt synthesis(MSS),has garnered significant interest due to its cost-effective nature.This study investigates the reaction process and growth kinetics involved in MSS,shedding light on key aspects of the process.The involvement of Ti powder through liquid-phase mass transfer is revealed,where the diffusion distance and quantity of Ti powder play a crucial role in determining the reaction rate by influencing the C content gradient on both sides of the carbide.Furthermore,the growth kinetics of the carbide coating are predominantly governed by the diffusion behavior of C within the carbide layer,rather than the chemical reaction rate.To analyze the kinetics,the thickness of the carbide layer is measured with respect to heat treatment time and temperature,unveiling a parabolic relationship within the temperature range of 700-1300℃.The estimated activation energy for the reaction is determined to be 179283 J·mol^(-1).These findings offer valuable insights into the synthesis of carbide coatings via MSS,facilitating their optimization and enhancing our understanding of their growth mechanisms and properties for various applications.
基金Funded by the National Natural Science Foundation for Young Scholars of China(No.51302073)the Hubei Provincial Key Laboratory of Green Materials for Light IndustryHubei University of Technology(No.202307B07)。
文摘We described a method for obtaining fluorine-free Ti_(3)C_(2)Cl_(2)MXene phases by melting copper in CuCl_(2)instead of aluminum in Ti_(3)AlC_(2).XRD results show that when molten salt CuCl_(2)etches Ti_(3)AlC_(2),it forms an intermediate product Ti_(3)CuC_(2),and then reacts with Ti_(3)CuC_(2)to obtain Ti_(3)C_(2)Cl_(2).The reaction of Ti_(3)AlC_(2)and CuCl_(2)at a temperature of 800℃for 2 h to obtain Ti_(3)C_(2)Cl_(2)with an optimal lamellar structure is shown in SEM results.The pseudopotential plane-wave(PP-PW)method is used to calculate on the electronic structure.The etching mechanism is investigated by the total energies of each substance.The chemical reaction of Ti_(3)AlC_(2)and CuCl_(2)will first become Ti_(3)CuC_(2)and Cu,and then become Ti_(3)C_(2)Cl_(2)during the Lewis acid etching process,which are consistent with the experimental results.
基金Project(52074084)supported by the National Natural Science Foundation of China。
文摘The high-temperature requirement for liquid iron smelting via molten oxide electrolysis presents significant challenges.This study investigates the electrochemical reduction of Fe(Ⅲ)in a novel low-temperature electrolyte,Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3),utilizing cyclic voltammetry and square wave voltammetry techniques.The results show that Fe(Ⅲ)reduction occurs in two steps:Fe(Ⅲ)+e^(−)→Fe(Ⅱ),Fe(Ⅱ)+2e^(−)→Fe,and that the redox process of Fe(Ⅲ)/Fe(Ⅱ)at the tungsten electrode is an irreversible reaction controlled by diffusion.The diffusion coefficients of Fe(Ⅲ)in the molten Na_(2)SiO_(3)-SiO_(2)-Fe_(2)O_(3)in the temperature range of 1248–1278 K are between 1.86×10^(−6)cm^(2)/s and 1.58×10^(−4)cm^(2)/s.The diffusion activation energy of Fe(Ⅲ)in the molten salt is 1825.41 kJ/mol.As confirmed by XRD analysis,potentiostatic electrolysis at−0.857 V(vs.O_(2)/O_(complex)^(2-))for 6 h produces metallic iron on the cathode.
基金the National Natural Science Foundation of China(No.11905285)the Shanghai Natural Science Foundation(No.20ZR1468700)the Youth Innovation Promotion Association CAS(No.2022258).
文摘The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel.Issues arising from graphite in traditional molten salt reactors,including the positive temperature coefficient and management of highly radio-active spent graphite waste,can be addressed using the HWMSR.Until now,research on the HWMSR has been centered on the core design and nuclear fuel cycle to explore the viability of the HWMSR and its advantages in fuel utilization.However,the core safety of the HWMSR has not been extensively studied.Therefore,we evaluate typical accidents in a small modular HWMSR,including fuel salt inlet temperature overcooling and overheating accidents,fuel salt inlet flow rate decrease,heavy water inlet temperature overcooling accidents,and heavy water inlet mass flow rate decrease accidents,based on a neutronics and thermal-hydraulics coupled code.The results demonstrated that the core maintained safety during the investigated accidents.
基金funded by National Natural Science Foun-dation of China(No.52031008,21673162).
文摘Molten carbonate is an excellent electrolyte for the electrochemical reduction of CO_(2)to carbonaceous materials.However,the electrolyte–electrode-reaction relationship has not been well understood.Herein,we propose a general descriptor,the CO_(2)activity,to reveal the electrolyte–electrode-reaction relationship by thermodynamic calculations and experimental studies.Experimental studies agree well with theoretical predictions that both cations(Li^(+),Ca^(2+),Sr^(2+)and Ba^(2+))and anions(BO_(2)^(-),Ti_(5)O_(14)^(8-),SiO_(3)^(2-))can modulate the CO_(2)activity to control both cathode and anode reactions in a typical molten carbonate electrolyzer in terms of tuning reaction products and overpotentials.In this regard,the reduction of CO_(3)^(2-)can be interpreted as the direct reduction of CO_(2)generated from the dissociated CO_(3)^(2-),and the CO_(2)activity can be used as a general descriptor to predict the electrode reaction in molten carbonate.Overall,the CO_(2)activity descriptor unlocks the electrolyte–electrode-reaction relationship,thereby providing fundamental insights into guiding molten carbonate CO_(2)electrolysis.
基金CAS Photon Science Research Center for Carbon DioxideCAS President’s International Fellowship Initiative(2024PVA0097)+1 种基金National Key Research and Development Program of China(2017YFA0403000,2017YFA0402800)National Natural Science Foundation of China(U1932201,U1732121)。
文摘This study demonstrates the design and application of a novel high temperature rotatory apparatus for insitu synchrotron X-ray diffraction studies of molten salts,facilitating investigation into the interaction between various structural materials and molten salts.The apparatus enables accurate detection of every phase change during hightemperature experiments,including strong reaction processes like corrosion.Molten salts,such as chlorides or fluo⁃rides,together with the structure materials,are inserted into either quartz or boron nitride capillaries,where X-ray diffraction pattern can be continuously collected,as the samples are heated to high temperature.The replacement re⁃action,when molten ZnCl2 are etching Ti3AlC2,can be clearly observed through changes in diffraction peak intensity as well as expansion in c-axis lattice parameter of the hexagonal matrix,due to the larger atomic number and ionic ra⁃dius of Zn2+.Furthermore,we investigated the high-temperature corrosion process when GH3535 alloy is in FLiNaK molten salt,and can help to optimize its stability for potential applications in molten salt reactor.Additionally,this high temperature apparatus is fully compatible with the combined usage of X-ray diffraction and Raman technique,providing both bulk and surface structural information.This high temperature apparatus has been open to users and is extensively used at BL14B1 beamline of the Shanghai Synchrotron Radiation Facility.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)Chinese Academy of Sciences Talent Introduction Youth Program(No.SINAP-YCJH-202303)Chinese Academy of Sciences Special Research Assistant Funding Project and Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(JCYJ-SHFY-2021-003)。
文摘A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at the current stage,thus it is difficult for MSR to achieve a pure thorium-uranium fuel cycle.Therefore,using plutonium or enriched uranium as the initial fuel for MSR is more practical.In this study,we aim to verify the feasibility of a small modular MSR that utilizes plutonium as the starting fuel(SM-MSR-Pu),and highlight its advantages and disadvantages.First,the structural design and fuel management scheme of the SM-MSR-Pu were presented.Second,the neutronic characteristics,such as the graphite-irradiation lifetime,burn-up performance,and coefficient of temperature reactivity were calculated to analyze the physical characteristics of the SM-MSR-Pu.The results indicate that plutonium is a feasible and advantageous starting fuel for a SM-MSR;however,there are certain shortcomings that need to be solved.In a 250 MWth SM-MSR-Pu,approximately 288.64 kg^(233)U of plutonium with a purity of greater than 90% is produced while 978.00 kg is burned every ten years.The temperature reactivity coefficient decreases from -4.0 to -6.5 pcm K^(-1) over the 50-year operating time,which ensures a long-term safe operation.However,the amount of plutonium and accumulation of minor actinides(MAs)would increase as the burn-up time increases,and the annual production and purity of^(233)U will decrease.To achieve an optimal burn-up performance,setting the entire operation time to 30 years is advisable.Regardless,more than 3600 kg of plutonium eventually accumulate in the core.Further research is required to effectively utilize this accumulated plutonium.
基金financially supported by the National Natural Science Foundation of China (No.21968013)。
文摘To reduce the production cost of titanium,a new method for direct preparation of low-oxygen titanium powder by the magnesiothermic reduction of TiO_(2) with the assistance of a MgCl_(2)−HoCl_(3) molten salt was proposed.Thermodynamic calculations showed that the magnesiothermic reduction of TiO_(2) was feasible.However,hindrance of the reduction reaction by the reduction by-product of MgO resulted in a considerably high O concentration in the titanium powder.The addition of HoCl_(3) to the system significantly reduces the activity of MgO to produce low-oxygen titanium powder.Thermochemical deoxidation and reduction experiments were conducted with MgCl_(2)−HoCl_(3) molten salt in the temperature range of 1023−1273 K.The results showed that titanium powder with oxygen concentration(mass fraction)below 5.00×10^(-4) can be prepared at the Mg−MgCl_(2)−HoOCl−HoCl_(3) equilibrium.
基金financially supported by the National Natural Science Foundation of China(Nos.51974023 and 52374321)the funding of State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing(No.41621005)the Youth Science and Technology Innovation Fund of Jianlong Group-University of Science and Technology Beijing(No.20231235).
文摘Accurate prediction of molten steel temperature in the ladle furnace(LF)refining process has an important influence on the quality of molten steel and the control of steelmaking cost.Extensive research on establishing models to predict molten steel temperature has been conducted.However,most researchers focus solely on improving the accuracy of the model,neglecting its explainability.The present study aims to develop a high-precision and explainable model with improved reliability and transparency.The eXtreme gradient boosting(XGBoost)and light gradient boosting machine(LGBM)were utilized,along with bayesian optimization and grey wolf optimiz-ation(GWO),to establish the prediction model.Different performance evaluation metrics and graphical representations were applied to compare the optimal XGBoost and LGBM models obtained through varying hyperparameter optimization methods with the other models.The findings indicated that the GWO-LGBM model outperformed other methods in predicting molten steel temperature,with a high pre-diction accuracy of 89.35%within the error range of±5°C.The model’s learning/decision process was revealed,and the influence degree of different variables on the molten steel temperature was clarified using the tree structure visualization and SHapley Additive exPlana-tions(SHAP)analysis.Consequently,the explainability of the optimal GWO-LGBM model was enhanced,providing reliable support for prediction results.
文摘Weak redox ability and severe charge recombination pose significant obstacles to the advancement of CO_(2) photoreduction.To tackle this challenge and enhance the CO_(2) photoconversion efficiency,fabricating well-matched S-scheme heterostructure and establishing a robust built-in electric field emerge as pivotal strategies.In pursuit of this goal,a core-shell structured CuInS_(2)@CoS_(2)S-scheme heterojunction was meticulously engineered through a two-step molten salt method.This approach over the CuInS_(2)-based composites produced an internal electric field owing to the disparity be-tween the Fermi levels of CoS_(2) and CuInS_(2) at their interface.Consequently,the electric field facili-tated the directed migration of charges and the proficient separation of photoinduced carriers.The resulting CuInS_(2)@CoS_(2) heterostructure exhibited remarkable CO_(2) photoreduction performance,which was 21.7 and 26.5 times that of pure CuInS_(2) and CoS_(2),respectively.The S-scheme heterojunc-tion photogenerated charge transfer mechanism was validated through a series of rigorous anal-yses,including in situ irradiation X-ray photoelectron spectroscopy,work function calculations,and differential charge density examinations.Furthermore,in situ infrared spectroscopy and density functional theory calculations corroborated the fact that the CuInS_(2)@CoS_(2) heterojunction substan-tially lowered the formation energy of *COOH and *CO.This study demonstrates the application potential of S-scheme heterojunctions fabricated via the molten salt method in the realm of ad-dressing carbon-related environmental issues.
基金supported by the Biomaterials and Regenerative Medicine Institute Cooperative Research Project at Shanghai Jiao Tong University School of Medicine(grant no.2022LHA05)the Shanghai Clinical Research Center of Plastic and Reconstructive Surgery funded by the Science and Technology Commission of Shanghai Municipality(grant no.22Mc1940300).
文摘Molten aluminum is among the most common causes of burns in the metal industry.However,only few reports are available on molten aluminum injuries.Herein,we report an unusual case of molten aluminum burn.The patient had burns not only on the body surface but also in the respiratory tract and esophagus,adding to the difficulty of treatment.Multidisciplinary consultation and cooperation led to the development of a treatment plan for the patient,which included tracheotomy,respiratory management,endoscopic therapy,infection control,and psychological support.To our knowledge,this is the first report of molten aluminum-induced burns involving the face,neck,respiratory tract,esophagus,and eyes.We also describe our experience with multidisciplinary treatment for the management of molten aluminum burns.
文摘The temperature drop of molten metal flowing in open channels is numerically determined. Rectangular, trapezoidal and triangular geometries are considered. The overall heat transfer coefficients for the bottom, side walls and free surface of the channel have been taken from the literature. For each geometry, the volumetric flow rate, mean residence time and temperature drop as a function of the channel inclination angle were determined. The rectangular and trapezoidal geometries present the smallest temperature drops, while the triangular geometry presents the greatest temperature drop. The factors that most affect this drop are the value of the free surface area of the channel, and the average residence time of the molten metal in the channel.
文摘In recent years, metallurgical slags have been increasingly used as materials for the manufacture of cement, pavement and filling material. The transport of the molten slag to the receiving pots is carried out through open channels. The transient and steady-state flow of a molten slag in a rectangular open channel is numerically analyzed here. For the transient flow, the Saint-Venant equations were numerically solved. For the steady-state flow, the derivatives in time and space in the Saint-Venant equations were set equal to zero and a polynomial of degree 3 is obtained whose roots are the slag height values. It was assumed that the viscosity of the slag has an Arrhenius-type behavior with temperature. Four values of temperature values, namely 1723.15, 1773.15, 1823.15, 18873.15 ˚K, and five values of the angle of inclination of the channel, namely 1, 2, 3, 4, 5 degrees, are considered. Numerical results show that the steady-state values of the height and velocity of the molten slag depend strongly on the temperature of the slag and the angle of inclination of the channel. As the slag temperature and channel angle increase, the value of the steady-state slag height decreases. The value of the steady-state slag velocity increases as the slag temperature and channel inclination angle increase.
文摘Despite its industrial importance, the flow of molten blast furnace slag in open channels has not been sufficiently studied. In this work, the unsteady non-uniform flow of a molten blast furnace slag in a rectangular open channel is numerically studied by solving the Saint-Venant equations by means of an explicit backwards finite difference scheme. An Arrhenius-type dependence of the viscosity of the slag on temperature is assumed. To calculate that viscosity, four temperatures are considered, namely 1450˚C, 1500˚C, 1550˚C and 1600˚C. To study the dynamic response of the system, a half-sinusoidal pulse with duration of 5 s is imposed at the channel entrance. According to the numerical simulations, for all the temperatures considered, the slag flow in the channel for an angle of 5 degrees is supercritical in nature. However, for an angle of 1 degree, the flow is transcritical, that is, it presents a transition from subcritical to supercritical.
文摘In this work the influence of the density of the molten metal on the emergence of the raining phenomenon in the horizontal centrifugal casting process is numerically studied. Transient 2D numerical simulations were carried out using Computational Fluid Dynamics software. Three molten metals with different density, namely aluminum, iron and lead, and three angular frequencies, namely 50, 66 and 77 rad/s were considered. It is found that the density of the molten metal significantly affects the emergence, transient or permanent, of the rain phenomenon. However, the magnitude and duration of the rain phenomenon depend on the angular frequency of the rotating mold. Likewise, since gravitational forces affect the metal according to its density, the value of the critical rotation speed of the mold is also affected.
文摘The reduction mechanism of Ir in the NaCl-KCl-IrCl3 molten salt was investigated by cyclic voltammetry and chronopotentiometry, and Ir film was deposited effectively on platinum in potentiostatic mode. The morphology and constitution of Ir film were examined by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction (XRD). It is found that the reduction mechanism of Ir(III) is a three-electron step and electro reaction is a reversible diffusion controlled process; the diffusion coefficients of Ir(III) at 1083, 1113, 1143 and 1183 K are 1.56×10-4, 2.23×10-4, 2.77×10-4 and 4.40×10-4 cm2/s, respectively, while the activation energy of the electrode reaction is 102.95 kJ/mol. The compacted Ir film reveals that the applied potential greatly affects the deposition of Ir, the thickness of Ir film deposited at the potential of reduction peak is the highest, the temperature of the molten salt also exerts an influence on deposition, the film formed at a lower temperature is thinner, but more micropores would occur on film when the temperature went too high.
文摘Molten transport is an important link in the iron and steel enterprise production,involves many complex factors,artificial management is difficult.Therefore,puts forward a kind of molten iron transport wisdom control system based on 5G technology,which mainly contains the intelligent identification tracking system,equipment status collection information acquisition system,locomotive vehicle terminal system,etc.Combined with the analysis of the actual application situation,the system could integrate all the processes and elements of molten iron produc-tion and transportation,realize the integration of operation and management,and also promote the improvement of the turnover efficiency of molten iron tank,reduce the demand for personnel,and reduce the labor cost.
基金This work is supported by National Key R&D Program of China(No.2022YFB2405204).
文摘Due to their limitations in conductivity and shape stability,molten salt phase change materials have encountered obstacles to effectively integrating into electric heating conversion technologies,which are crucial in energy storage and conversion fields.In this study,we synthesized an inorganic molten salt composite phase change material(CPCM)with enhanced conductivity and shape stability using a gasphase silica adsorption method.Our findings revealed the regularities in thermal properties modulation by expanded graphite(EG)within CPCM and delved into its characteristics of electric heating conversion.The study elucidated that a conductive network is essentially formed when the EG content exceeds 3 wt%.Following the fabrication of CPCM into electric heating conversion modules,we observed a correlation between the uniformity of module temperature and the quantity of EG,as well as the distribution of electrode resistance and external voltage magnitude.Building upon this observation,we proposed a strategy to adjust the module temperature field with an electric field.Comparing the proposed direct electrical heating energy storage method with traditional indirect electrical heating methods,the energy storage rate increases by 93.8%,with an improved temperature uniformity.This research offers valuable insights for the application of molten salt electric heating conversion CPCMs.
基金Project(2013CB632600)supported by the National Basic Research and Development Program of China
文摘A novel process of vanadium extraction from vanadium slag in its molten state was conducted at the laboratory scale by oxidation with pure oxygen in the presence of CaO. The effect of mass ratio of CaO to V2O5 on the recovery of vanadium was studied. The sintered samples were leached by H2SO4 solution and characterized by XRD, XPS, SEM and EDS techniques. Compared with the roasting process, the energy saving effect of the proposed process was also discussed. The results showed that vanadium-rich phases were formed and vanadium mainly existed in the forms of CaV2O5 and Ca2V2O7. The formation mechanism of calcium vanadates in the molten vanadium bearing slag was explained. The XRD and XPS results implied that there was a limit to the oxidation reaction of V(IV) to V(V) under the high temperatures even though oxygen-supply was sufficient. An increase in the CaO content led to an increase in the formation of Ca2V2O7. About 90%of the vanadium recovery was obtained under optimal experiment conditions (mass ratio of CaO to V2O5 of 0.6, particle size 120 to 150μm, leaching temperature 90 °C, leaching time 2 h, H2SO4 concentration 20%, liquid to solid ratio 5:1 mL/g, stirring speed 500 r/min). The energy of 1.85×106 kJ could be saved in every 1000 kg of vanadium bearing slag using the proposed process from the theoretical calculation results. Recovery of vanadium from the molten vanadium bearing slag and utilisation of its heat energy are important not only for saving metal resources, but also for energy saving and emission reduction.