An innovative monochromator shielding is designed and implemented for the cold neutron spectrometers XINGZHI and BOYA operated by Renmin University of China at China Advanced Research Reactor.Via Monte Carlo simulatio...An innovative monochromator shielding is designed and implemented for the cold neutron spectrometers XINGZHI and BOYA operated by Renmin University of China at China Advanced Research Reactor.Via Monte Carlo simulations and careful mechanical designs,a shielding configuration has been successfully developed to satisfy safety requirements of below 3μSv/h dose rate at its exterior,meanwhile fulfilling space,floor load and nonmagnetic requirements.Composite materials are utilized to form the sandwich-type shielding walls:the inner layer of boron carbide rubber,the middle layer of steel-encased lead and the outer layer of borated polyethylene.Special-shaped liftable shielding blocks are incorporated to facilitate a continuous adjustment of the neutron energy while preventing radiation leakage.Our work has demonstrated that by utilizing composite shielding materials,along with the sandwich structure and liftable shielding blocks,a compact and lightweight shielding solution can be achieved.This enables the realization of advanced neutron scattering instruments that provide expanded space of measurement,larger energy and momentum coverage,and higher flux on the sample.This shielding represents the first of its kind in neutron scattering instruments in China.Following its successful operation,it has been subsequently employed by other neutron instruments across the country.展开更多
This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal latt...This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.展开更多
The high energy resolution monochromator (HRM) is widely used in inelastic scattering programs to detect phonons with energy resolution, down to the meV level. Although the large amount of heat from insertion device...The high energy resolution monochromator (HRM) is widely used in inelastic scattering programs to detect phonons with energy resolution, down to the meV level. Although the large amount of heat from insertion devices can be reduced by a high heat-load monochromator, the unbalanced heat load on the inner pair of crystals in a nested HRM can affect its overall performance. Here, a theoretical analysis of the unbalanced heat load using dynamical diffraction theory and finite element analysis is presented. By utilizing the ray-tracing method, the performance of different HRM nesting configurations is simulated. It is suggested that the heat balance ratio, energy resolution, and overall spectral transmission efficiency are the figures of merit for evaluating the performance of nested HRMs. Although the present study is mainly focused on nested HRMs working at 57Fe nuclear resonant energy at 14.4 keV, it is feasible to extend this to other nested HRMs working at different energies.展开更多
A WSi2/Si multilayer, with 300 bi-layers and a 2.18-nm d-spacing, is designed for X-ray monochroma- tor application. The nmltilayer is deposited using direct current magnetron sputtering technology. The reflectivity o...A WSi2/Si multilayer, with 300 bi-layers and a 2.18-nm d-spacing, is designed for X-ray monochroma- tor application. The nmltilayer is deposited using direct current magnetron sputtering technology. The reflectivity of the 1st-order Bragg peak measured at E = 8.05 keV is 38%, and the angular resolution (△θ/θ) is less than 1.0%. Fitting results of the reflectivity curve indicate a layer thickness drift of 1.6%, mainly accounting for the broadening of the Bragg peaks. The layer morphology is further characterized by transmission electron microscopy, and a well-ordered multilayer structure with sharp interfaces is observed from the substrate to the surface. The material combination of WSi2/Si is a promising candidate for the fabrication of a high-resolution nmltilayer monochromator in the hard X-ray region.展开更多
The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility(CAEP THz FEL,CTFEL)is the only high-average power free electron laser terahertz source based on superconducting accelerators in China.T...The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility(CAEP THz FEL,CTFEL)is the only high-average power free electron laser terahertz source based on superconducting accelerators in China.The update of the CTFEL is now undergoing and will expand the frequency range from 0.1–4.2 THz to 0.1–125 THz.Two experimental stations for material spectroscopy and biomedicine will be built.A high harmonic generation(HHG)lightsource based beamline at the material spectroscopy experimental station for time-resolved angle-resolved photoemission spectroscopy(ARPES)research will be constructed and the optical design is presented.The HHG lightsource covers the extreme ultraviolet(XUV)photon energy range of 20–50 eV.A Czerny–Turner monochromator with two plane gratings worked in conical diffraction configuration is employed to maintain the transmission efficiency and preserve the pulse time duration.The calculated beamline transmission efficiency is better than 5%in the whole photon energy range.To our knowledge,this is the first time in China to combine THz-infrared FEL with HHG light source,and this experimental station will be a powerful and effective instrument that will give new research opportunities in the future for users doing research on the dynamic evolution of the excited electron band structure of a material’s surface.展开更多
It has been more than half a century since the release of the first Shimadzu UV-VIS (UV-visible) spectrophotometer QB-50 in 1952, and during this time more than 160,000 UV-VIS spectrometers have been produced and in...It has been more than half a century since the release of the first Shimadzu UV-VIS (UV-visible) spectrophotometer QB-50 in 1952, and during this time more than 160,000 UV-VIS spectrometers have been produced and installed in a wide variety of different applications. A lot of technical innovations have been implemented to improve the performance and significantly reduce the stray light levels. The latest innovation during development of sophisticated spectrophotometers is based on a new holographic exposure method and optimized etching process which has made it possible to produce both high-efficient and exceptionally low stray light gratings. These LO-RAY-LIGH~ gratings have guaranteed values of stray light at the intermediate position between zero-order and first-order lights. The values are measured by Shimadzu's laser stray-light-measuring system. The latest development in the series of UV-VIS spectrophotometers is the UV-2700 which is a true double beam double monochromator system in a compact design for high-precision spectral analysis of a wide range of samples including organic and inorganic compounds, biological samples, optical materials and photovoltaics. The high performance optical system is designed with "LO-RAY-LIGH" diffraction gratings, featuring highest efficiency and exceptionally low stray light. The spectrophotometer operates in the wavelength range from 185 nm to 900 nm and allows highly sophisticated applications such as direct measurement of high density samples up to 8 absorbance units without dilution.展开更多
Space scientific exploration is rapidly becoming the primary battlefield for humankind to explore the universe.Countries worldwide have launched numerous space exploration satellites.Accurate calibration of the detect...Space scientific exploration is rapidly becoming the primary battlefield for humankind to explore the universe.Countries worldwide have launched numerous space exploration satellites.Accurate calibration of the detectors on the ground is a crucial element for space science satellites to obtain observational results.For the purpose of providing calibration for various satellite-borne detectors,multiple monochromatic X-rays facilities have been built at the National Institute of Metrology,P.R.China(NIM).These facilities mainly pertain to grating diffraction and Bragg diffraction,and the energy range of the produced monochromatic X-rays is 0.218–301 ke V.These facilities have a high performance in terms of energy stability,monochromaticity,and flux stability.The monochromaticity was greater than 3.0%.The energy stability of the facility is 0.02%at 25 ke V over 8 h,and the flux stability was within 1.0%at 25 ke V over 8 h.Calibration experiments on the properties of satellite-borne detectors,such as energy linearity,energy resolution,detection efficiency,and temperature response,can be conducted at the facilities.Thus far,the calibration of two satellites has been completed by the authors,and the work on three other satellites is in progress.This study will contribute to the advancement of X-ray astronomy the development of Chinese space science.展开更多
The high reflectance orders are used to improve the spectral resolution of Mo/Si multilayers. The multilayers for the first-, second- and third-order reflectance are designed and optimized, respectively. These multila...The high reflectance orders are used to improve the spectral resolution of Mo/Si multilayers. The multilayers for the first-, second- and third-order reflectance are designed and optimized, respectively. These multilayers are fabricated by using a directed current magnetron sputtering system, and the reflectivity is measured in an extreme ultraviolet range by synchrotron radiation. The experimental results show that the spectral resolution λ/Δλ(λ= 14 nm) increases from 24.6 for the first order to 66.6 for the third order.展开更多
A 20 cm focal length normal incidence vacuum ultraviolet (VUV_20 cm) monochromator with a fast time response has been developed for measuring edge impurity line emission in the wavelength range of 300-2000 A on an H...A 20 cm focal length normal incidence vacuum ultraviolet (VUV_20 cm) monochromator with a fast time response has been developed for measuring edge impurity line emission in the wavelength range of 300-2000 A on an HL-2A tokamak. An aberration corrected concave holographic grating with 1200 grooves/mm is adopted in the monochromator, which provides a wavelength dispersion of 40 A mm-1. The aperture is f/4.5. A channel electron multiplier is used as a detector. The time resolution of the system is 17 μs. Wavelength calibration of the system has been done by using a hollow cathode light source in the laboratory with helium and argon gases. The obtained signals of helium and argon spectra are very strong since the inner surface of the monochromator vacuum chamber is blackened and the stray light level is then significantly reduced. The optical property of the system has been examined by scanning the width of the entrance and exit slits. The system is then installed at the mid-port of the HL-2A tokamak and typical line emissions from the HL-2A plasma are measured. Time behaviors of edge impurity line emissions are observed with the fast time response system in different plasma confinement regimes, especially in the H-mode discharges. The result shows that the VUV_20 cm system works very well to measure the edge impurity line emissions in the edge localized modes phase of H-mode discharges.展开更多
We accomplish a laboratory facility for producing a femtosecond XUV coherent monochromatic radiation with a broad tunable spectral range of 20 eV-75 eV. It is based on spectral selected single-order harmonics from int...We accomplish a laboratory facility for producing a femtosecond XUV coherent monochromatic radiation with a broad tunable spectral range of 20 eV-75 eV. It is based on spectral selected single-order harmonics from intense laser driven high harmonic generation in gas phase. The time preserving for the selected harmonic radiation is achieved by a Czerny-Turner type monochromator designed with a conical diffraction grating mount for minimizing the time broadening caused by grating diffraction and keeping a relatively high diffraction efficiency. Our measurement shows that the photon flux of the 23-order harmonic(H23) centered at 35.7 eV is 1×10~9 photons/s approximately with a resolving power E/?E ≈ 36.This source provides an ultrashort tunable monochromatic XUV beam for ultrafast studies of electronic and structural dynamics in a large variety of matters.展开更多
The extreme ultraviolet and soft x-ray sources are widely used in various domains. Suppressing higher order harmonics and improving spectral purity are significant. This paper describes a novel method of higher order ...The extreme ultraviolet and soft x-ray sources are widely used in various domains. Suppressing higher order harmonics and improving spectral purity are significant. This paper describes a novel method of higher order harmonics suppression with single order diffraction gratings in extreme ultraviolet and soft x-ray. The principle of harmonic suppression with single order diffraction grating is described, and an extreme ultraviolet and soft x-ray non-harmonics grating monochromator is designed based on the single order diffraction grating. The performance is simulated by an optical design software. The emergent beams of a monochromator with different gratings are measured by a transmission grating spectrometer. The results show that the single order diffraction grating can suppress higher order harmonics effectively, and it is expected to be widely used in synchrotron radiation, diagnostics of laser induced plasma, and astrophysics.展开更多
CuKβ radiation with a wavelength of λ = 1.3923 ? is recommended for crystal structure determination from X-ray powder diffraction using the Rietfeld method. A highly sensitive image plate detector is able to collect...CuKβ radiation with a wavelength of λ = 1.3923 ? is recommended for crystal structure determination from X-ray powder diffraction using the Rietfeld method. A highly sensitive image plate detector is able to collect enough intensity to record a brilliant X-ray powder pattern in a reasonable time, compared to CuKα1 radiation used today. Especially atomic displacement coefficients could be determined more precisely with the much greater number of reflections recorded. A double-radius Guinier camera attached to a micro-focus rotating anode tube ensures increased brilliance besides high resolution. A simple construction specification is presented to make smart cylindrically bent Ge(111) or Si(111) X-ray monochromators that deliver focused CuKβ radiation. The highly linear response of image plate detectors allows removing of fluorescence radiation simply as background of the pattern. The proposed equipment is a cost-efficient alternative to a liquid gallium-metal-jet X-ray source with maximum power load and a similar wavelength of λ(GaKα1) = 1.34013 ?.展开更多
This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati o...This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object’s images in the measurement process: First, the color CCD camera ta kes the color picture of the object to be used for texture mapping in post proce ssing. Secondly, the monochrome data of the object is taken. The laser light emi tter is started; the light plane and the surface of the object intersect to form an undulate line, which forms an image on the CCD sensor. After the optic- electronics transformation, the electronic signals are captured and send to the computer. A new color 3D measurement model was derived, and a rapid calibra ting method to measure the system parameters was proposed--optical plane equat ion calibrating method. A calibrating drone was designed and built. 3D color sca nning system not only provides an object’s individual point information in the 3D coordinate, in the mean time, it provides the color information of each indiv idual point. This paper also advances a multi-frame auto-merging method, i.e. several frames of color 3D digital images measured are merged quickly according to their curvature characteristics and RGB information. Initial matching and fin e tune of the registration are completely performed by the computer; initial mat ching is via user interface in helping computer to find the transformation matri x. The transformation matrix is found according to the geometric characteristics chosen by hand. After the initial transformation matrix is found, fine tune of the registration is preformed to do the optimum adjustment to achieve a complete color textured 3D model. The system can be broadly used in the fields of produc t design, mold manufacture, multimedia, game development, animation, medical eng ineering, antique digitization, etc.展开更多
A design for an efficient monochromatic electron source for Inverse Photoemission Spectroscopy (IPES) apparatus is described. The electron source consists of a BaO cathode, a focus electrostatic lens, a hemispherica...A design for an efficient monochromatic electron source for Inverse Photoemission Spectroscopy (IPES) apparatus is described. The electron source consists of a BaO cathode, a focus electrostatic lens, a hemispherical deflection monochromator (HDM), and a transfer electrostatic lens. The HDM adopts a “slit-in and slit-out” structure and the degradation of first-order focusing is corrected by two electrodes between the two hemispheres, which has been investigated by both analytical methods and electron-ray tracing simulations using the SIMION program. Through the focus lens, the HDM, and the standard five-element transfer lens, an optimal energy resolution is estimated to be about 53 MeV with a beam flux of 27 μA. Pass energy (P.E.) of 10 eV and 5 eV are discussed, respectively.展开更多
The theoretical construction of the fundamental × NOR gate using two injection semiconductor laser diodes due to mutual coupling is presented. Two laser diodes that are commonly driven by a monochromatic light be...The theoretical construction of the fundamental × NOR gate using two injection semiconductor laser diodes due to mutual coupling is presented. Two laser diodes that are commonly driven by a monochromatic light beam result in chaos; however, chaotic synchronization between the two lasers may be achieved by coupling them. The all-optical logic gate is finally implemented by synchronizing or un-synchronizing appropriately the two chaotic states under a phase modulator (PM) control. Numerical results validate the feasibility of the method.展开更多
A feasible and convenient method is proposed to suppress higher-harmonics for a varied-line-spacing plane grating monochromator in the soft X-ray region. Related calculations and experiments demonstrate that decreasin...A feasible and convenient method is proposed to suppress higher-harmonics for a varied-line-spacing plane grating monochromator in the soft X-ray region. Related calculations and experiments demonstrate that decreasing the included angle slightly by changing the parameter of the exit arm length can significantly improve light purity. This method is suitable and has been used for experiments of detector calibration in beamline 4B7B at the Beijing Synchrotron Radiation Facility (BSRF).展开更多
To improve the performance of Beamline 3WIB at the Beijing Synchrotron Radiation Facility for the soft X-ray magnetic linear dichroism research at transition metals L2,3 edges, a new monochromator was designed and bui...To improve the performance of Beamline 3WIB at the Beijing Synchrotron Radiation Facility for the soft X-ray magnetic linear dichroism research at transition metals L2,3 edges, a new monochromator was designed and built to replace the original one. After the assemblage, alignment and adjustment of the monochromator system, the first commissioning results were obtained. The photon energy range is from 50 to 1000 eV with spectral resolutions of 1600 at 250 eV and 1000 at 870 eV. The photon flux is of the order of 10s-109 photons/s/200 mA/0.1%BW. In the electron's orbital plane the linear polarization degree of the light is higher than 99% at 704 eV. The beamline has satisfied the basic experimental requirements.展开更多
We develop a new calibration method in lab by measuring the absolute spectral irradiance responsivity of Sun photometer sun channel. The absolute power responsivity of Sun photometer is obtained when a white laser dou...We develop a new calibration method in lab by measuring the absolute spectral irradiance responsivity of Sun photometer sun channel. The absolute power responsivity of Sun photometer is obtained when a white laser double monochromator system serve as a source, and a standard transfer detector calibrated against cryogenic absolute radiometer is assembled to measure the absolute power of laser beam. The effective area of aperture is measured through laser raster scanning method, and the relative spectral irradiance responsivity of the corresponding channel is obtained by using tungsten-halogen lamps double monoehromator system. On the basis of the above results, the top of the atmosphere responsive constants V0 (500, 675, and 870 nm) are obtained by integration with extraterrestrial solar spectral irradiance data. Comparing the calibration results with that of CIMEL, France in November 2011, the relative differences are 4.38%, 2.23%, and 2.45%, respectively. The calibration uncertainty reaches to 2.048×10^-2, which shows a remarkable consistency with the Langley plot method. Further, our scheme can overcome the limits of space and atmospheric conditions which are only available at a high-altitude calibration site in particular date. The advantages lie in not only shortening the experiment period but also being of high precision. This new scheme definitely plays an important role in supporting the current and future sun photometry calibration activities which are significant to earth observation.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12004426,U2030106,and 12304185)the National Key Scientific Instrument and Equipment Development Project of NSFC(Grant No.11227906)the National Key R&D Program of China(Grant No.2023YFA1406500)。
文摘An innovative monochromator shielding is designed and implemented for the cold neutron spectrometers XINGZHI and BOYA operated by Renmin University of China at China Advanced Research Reactor.Via Monte Carlo simulations and careful mechanical designs,a shielding configuration has been successfully developed to satisfy safety requirements of below 3μSv/h dose rate at its exterior,meanwhile fulfilling space,floor load and nonmagnetic requirements.Composite materials are utilized to form the sandwich-type shielding walls:the inner layer of boron carbide rubber,the middle layer of steel-encased lead and the outer layer of borated polyethylene.Special-shaped liftable shielding blocks are incorporated to facilitate a continuous adjustment of the neutron energy while preventing radiation leakage.Our work has demonstrated that by utilizing composite shielding materials,along with the sandwich structure and liftable shielding blocks,a compact and lightweight shielding solution can be achieved.This enables the realization of advanced neutron scattering instruments that provide expanded space of measurement,larger energy and momentum coverage,and higher flux on the sample.This shielding represents the first of its kind in neutron scattering instruments in China.Following its successful operation,it has been subsequently employed by other neutron instruments across the country.
基金National Natural Science Foundation of China(No.12205360)Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(No.JCYJ-SHFY-2021-010).
文摘This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.
文摘The high energy resolution monochromator (HRM) is widely used in inelastic scattering programs to detect phonons with energy resolution, down to the meV level. Although the large amount of heat from insertion devices can be reduced by a high heat-load monochromator, the unbalanced heat load on the inner pair of crystals in a nested HRM can affect its overall performance. Here, a theoretical analysis of the unbalanced heat load using dynamical diffraction theory and finite element analysis is presented. By utilizing the ray-tracing method, the performance of different HRM nesting configurations is simulated. It is suggested that the heat balance ratio, energy resolution, and overall spectral transmission efficiency are the figures of merit for evaluating the performance of nested HRMs. Although the present study is mainly focused on nested HRMs working at 57Fe nuclear resonant energy at 14.4 keV, it is feasible to extend this to other nested HRMs working at different energies.
基金supported by the National Natural Science Foundation of China(Nos. 10825521 and 10905042)the National "973"Program of China (No. 2011CB922203)
文摘A WSi2/Si multilayer, with 300 bi-layers and a 2.18-nm d-spacing, is designed for X-ray monochroma- tor application. The nmltilayer is deposited using direct current magnetron sputtering technology. The reflectivity of the 1st-order Bragg peak measured at E = 8.05 keV is 38%, and the angular resolution (△θ/θ) is less than 1.0%. Fitting results of the reflectivity curve indicate a layer thickness drift of 1.6%, mainly accounting for the broadening of the Bragg peaks. The layer morphology is further characterized by transmission electron microscopy, and a well-ordered multilayer structure with sharp interfaces is observed from the substrate to the surface. The material combination of WSi2/Si is a promising candidate for the fabrication of a high-resolution nmltilayer monochromator in the hard X-ray region.
基金supported by Major Instrument Projects of Sichuan Province.
文摘The Chinese Academy of Engineering Physics Terahertz Free Electron Laser Facility(CAEP THz FEL,CTFEL)is the only high-average power free electron laser terahertz source based on superconducting accelerators in China.The update of the CTFEL is now undergoing and will expand the frequency range from 0.1–4.2 THz to 0.1–125 THz.Two experimental stations for material spectroscopy and biomedicine will be built.A high harmonic generation(HHG)lightsource based beamline at the material spectroscopy experimental station for time-resolved angle-resolved photoemission spectroscopy(ARPES)research will be constructed and the optical design is presented.The HHG lightsource covers the extreme ultraviolet(XUV)photon energy range of 20–50 eV.A Czerny–Turner monochromator with two plane gratings worked in conical diffraction configuration is employed to maintain the transmission efficiency and preserve the pulse time duration.The calculated beamline transmission efficiency is better than 5%in the whole photon energy range.To our knowledge,this is the first time in China to combine THz-infrared FEL with HHG light source,and this experimental station will be a powerful and effective instrument that will give new research opportunities in the future for users doing research on the dynamic evolution of the excited electron band structure of a material’s surface.
文摘It has been more than half a century since the release of the first Shimadzu UV-VIS (UV-visible) spectrophotometer QB-50 in 1952, and during this time more than 160,000 UV-VIS spectrometers have been produced and installed in a wide variety of different applications. A lot of technical innovations have been implemented to improve the performance and significantly reduce the stray light levels. The latest innovation during development of sophisticated spectrophotometers is based on a new holographic exposure method and optimized etching process which has made it possible to produce both high-efficient and exceptionally low stray light gratings. These LO-RAY-LIGH~ gratings have guaranteed values of stray light at the intermediate position between zero-order and first-order lights. The values are measured by Shimadzu's laser stray-light-measuring system. The latest development in the series of UV-VIS spectrophotometers is the UV-2700 which is a true double beam double monochromator system in a compact design for high-precision spectral analysis of a wide range of samples including organic and inorganic compounds, biological samples, optical materials and photovoltaics. The high performance optical system is designed with "LO-RAY-LIGH" diffraction gratings, featuring highest efficiency and exceptionally low stray light. The spectrophotometer operates in the wavelength range from 185 nm to 900 nm and allows highly sophisticated applications such as direct measurement of high density samples up to 8 absorbance units without dilution.
基金upported by the National Key R&D Plan of China(2016YFF0200802)Establishment of a standard device for air kerma in mammography X-rays(ANL1902)。
文摘Space scientific exploration is rapidly becoming the primary battlefield for humankind to explore the universe.Countries worldwide have launched numerous space exploration satellites.Accurate calibration of the detectors on the ground is a crucial element for space science satellites to obtain observational results.For the purpose of providing calibration for various satellite-borne detectors,multiple monochromatic X-rays facilities have been built at the National Institute of Metrology,P.R.China(NIM).These facilities mainly pertain to grating diffraction and Bragg diffraction,and the energy range of the produced monochromatic X-rays is 0.218–301 ke V.These facilities have a high performance in terms of energy stability,monochromaticity,and flux stability.The monochromaticity was greater than 3.0%.The energy stability of the facility is 0.02%at 25 ke V over 8 h,and the flux stability was within 1.0%at 25 ke V over 8 h.Calibration experiments on the properties of satellite-borne detectors,such as energy linearity,energy resolution,detection efficiency,and temperature response,can be conducted at the facilities.Thus far,the calibration of two satellites has been completed by the authors,and the work on three other satellites is in progress.This study will contribute to the advancement of X-ray astronomy the development of Chinese space science.
基金Supported by the National Natural Science Foundation of China under Grant Nos 60378021 and 10435050, the Hi-Tech Research and Development Programme of China, the Program for New Century Excellent Talents in University (NCET-04-0376), and the Research Fund of Tongji University.
文摘The high reflectance orders are used to improve the spectral resolution of Mo/Si multilayers. The multilayers for the first-, second- and third-order reflectance are designed and optimized, respectively. These multilayers are fabricated by using a directed current magnetron sputtering system, and the reflectivity is measured in an extreme ultraviolet range by synchrotron radiation. The experimental results show that the spectral resolution λ/Δλ(λ= 14 nm) increases from 24.6 for the first order to 66.6 for the third order.
基金partly supported by National Natural Science Foundation of China (Nos. 11375057 and 11505051)the National Magnetic Confinement Fusion Program of China (Nos. 2014GB108003 and 2015GB104003)
文摘A 20 cm focal length normal incidence vacuum ultraviolet (VUV_20 cm) monochromator with a fast time response has been developed for measuring edge impurity line emission in the wavelength range of 300-2000 A on an HL-2A tokamak. An aberration corrected concave holographic grating with 1200 grooves/mm is adopted in the monochromator, which provides a wavelength dispersion of 40 A mm-1. The aperture is f/4.5. A channel electron multiplier is used as a detector. The time resolution of the system is 17 μs. Wavelength calibration of the system has been done by using a hollow cathode light source in the laboratory with helium and argon gases. The obtained signals of helium and argon spectra are very strong since the inner surface of the monochromator vacuum chamber is blackened and the stray light level is then significantly reduced. The optical property of the system has been examined by scanning the width of the entrance and exit slits. The system is then installed at the mid-port of the HL-2A tokamak and typical line emissions from the HL-2A plasma are measured. Time behaviors of edge impurity line emissions are observed with the fast time response system in different plasma confinement regimes, especially in the H-mode discharges. The result shows that the VUV_20 cm system works very well to measure the edge impurity line emissions in the edge localized modes phase of H-mode discharges.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.11627807,11127403,and 11474130)the National Basic Research Program of China(Grant No.2013CB922200)the Natural Science Foundation of Jilin Province of China(Grant No.20160101332JC)
文摘We accomplish a laboratory facility for producing a femtosecond XUV coherent monochromatic radiation with a broad tunable spectral range of 20 eV-75 eV. It is based on spectral selected single-order harmonics from intense laser driven high harmonic generation in gas phase. The time preserving for the selected harmonic radiation is achieved by a Czerny-Turner type monochromator designed with a conical diffraction grating mount for minimizing the time broadening caused by grating diffraction and keeping a relatively high diffraction efficiency. Our measurement shows that the photon flux of the 23-order harmonic(H23) centered at 35.7 eV is 1×10~9 photons/s approximately with a resolving power E/?E ≈ 36.This source provides an ultrashort tunable monochromatic XUV beam for ultrafast studies of electronic and structural dynamics in a large variety of matters.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0206004)the National Natural Science Foundation of China(Grant No.11375160)the National Science Instruments Major Project of China(Grant No.2012YQ130125)
文摘The extreme ultraviolet and soft x-ray sources are widely used in various domains. Suppressing higher order harmonics and improving spectral purity are significant. This paper describes a novel method of higher order harmonics suppression with single order diffraction gratings in extreme ultraviolet and soft x-ray. The principle of harmonic suppression with single order diffraction grating is described, and an extreme ultraviolet and soft x-ray non-harmonics grating monochromator is designed based on the single order diffraction grating. The performance is simulated by an optical design software. The emergent beams of a monochromator with different gratings are measured by a transmission grating spectrometer. The results show that the single order diffraction grating can suppress higher order harmonics effectively, and it is expected to be widely used in synchrotron radiation, diagnostics of laser induced plasma, and astrophysics.
文摘CuKβ radiation with a wavelength of λ = 1.3923 ? is recommended for crystal structure determination from X-ray powder diffraction using the Rietfeld method. A highly sensitive image plate detector is able to collect enough intensity to record a brilliant X-ray powder pattern in a reasonable time, compared to CuKα1 radiation used today. Especially atomic displacement coefficients could be determined more precisely with the much greater number of reflections recorded. A double-radius Guinier camera attached to a micro-focus rotating anode tube ensures increased brilliance besides high resolution. A simple construction specification is presented to make smart cylindrically bent Ge(111) or Si(111) X-ray monochromators that deliver focused CuKβ radiation. The highly linear response of image plate detectors allows removing of fluorescence radiation simply as background of the pattern. The proposed equipment is a cost-efficient alternative to a liquid gallium-metal-jet X-ray source with maximum power load and a similar wavelength of λ(GaKα1) = 1.34013 ?.
文摘This paper presents a principle and a method of col or 3D laser scanning measurement. Based on the fundamental monochrome 3D measureme nt study, color information capture, color texture mapping, coordinate computati on and other techniques are performed to achieve color 3D measurement. The syste m is designed and composed of a line laser light emitter, one color CCD camera, a motor-driven rotary filter, a circuit card and a computer. Two steps in captu ring object’s images in the measurement process: First, the color CCD camera ta kes the color picture of the object to be used for texture mapping in post proce ssing. Secondly, the monochrome data of the object is taken. The laser light emi tter is started; the light plane and the surface of the object intersect to form an undulate line, which forms an image on the CCD sensor. After the optic- electronics transformation, the electronic signals are captured and send to the computer. A new color 3D measurement model was derived, and a rapid calibra ting method to measure the system parameters was proposed--optical plane equat ion calibrating method. A calibrating drone was designed and built. 3D color sca nning system not only provides an object’s individual point information in the 3D coordinate, in the mean time, it provides the color information of each indiv idual point. This paper also advances a multi-frame auto-merging method, i.e. several frames of color 3D digital images measured are merged quickly according to their curvature characteristics and RGB information. Initial matching and fin e tune of the registration are completely performed by the computer; initial mat ching is via user interface in helping computer to find the transformation matri x. The transformation matrix is found according to the geometric characteristics chosen by hand. After the initial transformation matrix is found, fine tune of the registration is preformed to do the optimum adjustment to achieve a complete color textured 3D model. The system can be broadly used in the fields of produc t design, mold manufacture, multimedia, game development, animation, medical eng ineering, antique digitization, etc.
基金Supported by National Natural Science Foundation of China(11175239)One Hundred Person Project of Chinese Academy of SciencesInstrument design and development Project of CAS:Spin rosolved Inverse-PES system
文摘A design for an efficient monochromatic electron source for Inverse Photoemission Spectroscopy (IPES) apparatus is described. The electron source consists of a BaO cathode, a focus electrostatic lens, a hemispherical deflection monochromator (HDM), and a transfer electrostatic lens. The HDM adopts a “slit-in and slit-out” structure and the degradation of first-order focusing is corrected by two electrodes between the two hemispheres, which has been investigated by both analytical methods and electron-ray tracing simulations using the SIMION program. Through the focus lens, the HDM, and the standard five-element transfer lens, an optimal energy resolution is estimated to be about 53 MeV with a beam flux of 27 μA. Pass energy (P.E.) of 10 eV and 5 eV are discussed, respectively.
文摘The theoretical construction of the fundamental × NOR gate using two injection semiconductor laser diodes due to mutual coupling is presented. Two laser diodes that are commonly driven by a monochromatic light beam result in chaos; however, chaotic synchronization between the two lasers may be achieved by coupling them. The all-optical logic gate is finally implemented by synchronizing or un-synchronizing appropriately the two chaotic states under a phase modulator (PM) control. Numerical results validate the feasibility of the method.
基金Supported by National Natural Science Foundation of China(11375227,61204008)
文摘A feasible and convenient method is proposed to suppress higher-harmonics for a varied-line-spacing plane grating monochromator in the soft X-ray region. Related calculations and experiments demonstrate that decreasing the included angle slightly by changing the parameter of the exit arm length can significantly improve light purity. This method is suitable and has been used for experiments of detector calibration in beamline 4B7B at the Beijing Synchrotron Radiation Facility (BSRF).
基金Supported by National Natural Science Foundation of China (11075176)
文摘To improve the performance of Beamline 3WIB at the Beijing Synchrotron Radiation Facility for the soft X-ray magnetic linear dichroism research at transition metals L2,3 edges, a new monochromator was designed and built to replace the original one. After the assemblage, alignment and adjustment of the monochromator system, the first commissioning results were obtained. The photon energy range is from 50 to 1000 eV with spectral resolutions of 1600 at 250 eV and 1000 at 870 eV. The photon flux is of the order of 10s-109 photons/s/200 mA/0.1%BW. In the electron's orbital plane the linear polarization degree of the light is higher than 99% at 704 eV. The beamline has satisfied the basic experimental requirements.
基金supported by the National 973 Project Fund(No.2010CB950801)the National Natural Science Foundation of China(No.61275173)
文摘We develop a new calibration method in lab by measuring the absolute spectral irradiance responsivity of Sun photometer sun channel. The absolute power responsivity of Sun photometer is obtained when a white laser double monochromator system serve as a source, and a standard transfer detector calibrated against cryogenic absolute radiometer is assembled to measure the absolute power of laser beam. The effective area of aperture is measured through laser raster scanning method, and the relative spectral irradiance responsivity of the corresponding channel is obtained by using tungsten-halogen lamps double monoehromator system. On the basis of the above results, the top of the atmosphere responsive constants V0 (500, 675, and 870 nm) are obtained by integration with extraterrestrial solar spectral irradiance data. Comparing the calibration results with that of CIMEL, France in November 2011, the relative differences are 4.38%, 2.23%, and 2.45%, respectively. The calibration uncertainty reaches to 2.048×10^-2, which shows a remarkable consistency with the Langley plot method. Further, our scheme can overcome the limits of space and atmospheric conditions which are only available at a high-altitude calibration site in particular date. The advantages lie in not only shortening the experiment period but also being of high precision. This new scheme definitely plays an important role in supporting the current and future sun photometry calibration activities which are significant to earth observation.