Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailora...Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.展开更多
Porous carbon materials with developed porosity,high surface area and good thermal-and chemicalresistance are advantageous for gas adsorption and separation.However,most carbon adsorbents are in powder form which exhi...Porous carbon materials with developed porosity,high surface area and good thermal-and chemicalresistance are advantageous for gas adsorption and separation.However,most carbon adsorbents are in powder form which exhibit high pressure drop when deployed in practical separation bed.While monolithic carbons have largely addressed the pulverization problem and preserved kinetics and usually suffer from abrasion during multiple adsorption-desorption cycles.Herein,we proposed the designed synthesis of mechanically robust carbon monoliths with hierarchical pores,solid nitrogen-containing framework.The synthesis started with the polymerization of resorcinol and formaldehyde under weakly acidic conditions generated from cyanuric acid,and then an appropriate amount of hexamethylenetetramine(HMTA)was added as a crosslinker to prompt the formation of three dimensional frameworks.After carbonization process,the as-obtained porous carbon monoliths have a high radial compressive strength of 886 N/cm as well as a BET specific surface area of up to 683 m2/g.At approximately 1 bar,the CO2 equilibrium capacities of the monoliths are in the range of 3.1–4.0 mmol/g at 273 K and of 2.3–3.0 mmol/g at 298 K,exhibiting high selectivity for the capture of CO2 over N2 from a stream which consists of 16.7%(v%)CO2 in N2.Meanwhile,they undergo a facile CO2 release in an argon stream at 298 K,indicating a good regeneration capacity.After cycle testing,sieving and regeneration,the adsorbent has no mass loss,compared to that of its fresh counterpart.展开更多
Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourie...Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),scanning electron microscopy(SEM),and N2 adsorption techniques.The effects of seed gel,gel pre-treatment,and gel pre-aging step were determined,while the possible mechanism for formation of alumina composites via different synthesis processes were discussed.The results showed that the crystal size,the shape,and the loading of the supported FAU could be readily tuned by varying the composition of the crystallization gel without notably changing the structure ofα-Al2O3.The proposed seed gel pre-treating and gel pre-aging route are simple,reproducible,and practically easy to integrate triple porous structures into large-dimension monoliths,which are proved to be very effective in depositing pure FAU crystals on theα-Al2O3 skeleton surface and strengthening the interfacial interaction between them.Moreover,it may provide inspiration to the synthesis of other hierarchical zeolites.展开更多
The various advantages of organic polymer monoliths, including relatively simple preparation processes,abundant monomer availability, and a wide application range of pH, have attracted the attention of chromatographer...The various advantages of organic polymer monoliths, including relatively simple preparation processes,abundant monomer availability, and a wide application range of pH, have attracted the attention of chromatographers. Organic polymer monoliths prepared by traditional methods only have macropores and mesopores, and micropores of less than 50 nm are not commonly available. These typical monoliths are suitable for the separation of biological macromolecules such as proteins and nucleic acids, but their ability to separate small molecular compounds is poor. In recent years, researchers have successfully modified polymer monoliths to achieve uniform compact pore structures. In particular, microporous materials with pores of 50 nm or less that can provide a large enough surface area are the key to the separation of small molecules. In this review, preparation methods of polymer monoliths for high-performance liquid chromatography, including ultra-high cross-linking technology, post-surface modification, and the addition of nanomaterials, are discussed. Modified monolithic columns have been used successfully to separate small molecules with obvious improvements in column efficiency.展开更多
Liquid metal(LM)has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM composites with...Liquid metal(LM)has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM composites with finite package without leakage is still a great challenge,due to high surface tension and pump-out issues of LM.Here,a novel confined thermal expansion strategy based on expandable microsphere(EM)is proposed to develop a new class of LM-based monoliths with 3D continuous conductive network.The EM/LM monolith(EM/LMm)presents outstanding performance of lightweight like metallic aerogel(0.104 g cm^(-1)),high strength(3.43 MPa),super elasticity(90%strain),as well as excellent tailor ability and recyclability,rely on its unique gas-filled closed-cellular structure and refined LM network.Moreover,the assembled highly conducting EM/LMm exhibits a recorded shielding effectiveness(98.7 dB)over a broad frequency range of 8.2-40 GHz among reported LM-based composites at an ultra-low content of LM,and demonstrates excellent electromagnetic sealing capacity in practical electronics.The ternary EM/LM/Ni monoliths fabricated by the same approach could be promising universal design principles for multifunctional LM composites,and applicable in magnetic responsive actuator.展开更多
A novelty method,frontal polymerization(FP),was employed to directly produce a series of polyacrylamide (PAM),poly(N-isopropylacrylamide)(PNIPAM) and acrylamide-N-isopropylacrylamide copolymer macroporous monoliths. F...A novelty method,frontal polymerization(FP),was employed to directly produce a series of polyacrylamide (PAM),poly(N-isopropylacrylamide)(PNIPAM) and acrylamide-N-isopropylacrylamide copolymer macroporous monoliths. Field emission scanning electronic microscope and mercury intrusion method were adopted to measure some parameters of these monoliths,such as frame,pore size distribution as well as porosity.Effects of types of monomer,thicker and surfactant on porous structure of monoliths were studied.A variet...展开更多
New energy sources that reduce the volume of harmful gases such as SO_(x)and NO_(x)released into the atmosphere are in constant development.Natural gas,primarily made up of methane,is being widely used as one reliable...New energy sources that reduce the volume of harmful gases such as SO_(x)and NO_(x)released into the atmosphere are in constant development.Natural gas,primarily made up of methane,is being widely used as one reliable energy source for heating and electricity generation due to its high combustion value.Currently,natural gas accounts for a large portion of electricity generation and chemical feedstock in manufacturing plastics and other commercially important organic chemicals.In the near future,natural gas will be widely used as a fuel for vehicles.Therefore,a practical storage device for its storage and transportation is very beneficial to the deployment of natural gas as an energy source for new technologies.In this tutorial review,biomaterials-based carbon monoliths(CMs),one kind of carbonaceous material,was reviewed as an adsorbent for natural gas(methane)adsorption and storage.展开更多
For delivering the nanoscaled extraordinary characteristics in macroscopical bulk,it is essential to integrate two-dimensional nanosheets into threedimensional(3D)porous monoliths,alternatively called as 3D architectu...For delivering the nanoscaled extraordinary characteristics in macroscopical bulk,it is essential to integrate two-dimensional nanosheets into threedimensional(3D)porous monoliths,alternatively called as 3D architectures,3D networks,or aerogels.The intersupported structure of porous monolithic 3D graphene(3DG)can prevent aggregation or restacking of graphene individuals,and the interconnected sp^(2) network of 3DG not only can provide the highway for the transport of electron/phonon but also can present continual cavities/channels for mass transfer.This review summarizes the synthesis methodology of 3DG porous monoliths and highlights the application for electric double-layer capacitors.Present challenges and future prospects about the manufacture and application of 3DG are also discussed.展开更多
Zwitterionic sulfobetaine-based monolithic stationary phases have attracted increasing attention for their use in hydrophilic interaction chromatography.In this study,a novel hydrophilic polymeric monolith was fabrica...Zwitterionic sulfobetaine-based monolithic stationary phases have attracted increasing attention for their use in hydrophilic interaction chromatography.In this study,a novel hydrophilic polymeric monolith was fabricated through photo-initiated copolymerization of 3-(3-vinyl-1-imidazolio)-1-propanesulfonate(SBVI)with pentaerythritol triacrylate using methanol and tetrahydrofuran as the porogenic system.Notably,the duration for the preparation of this novel monolith was as little as 5 min,which was significantly shorter than that required for previously reported sulfobetaine-based monoliths prepared via conventional thermally initiated copolymerization.Moreover,these monoliths showed good morphology,permeability,porosity(62.4%),mechanical strength(over 15 MPa),column efficiency(51,230 plates/m),and reproducibility(relative standard deviations for all analytes were lower than 4.6%).Mechanistic studies indicated that strong hydrophilic and negative electrostatic interactions might be responsible for the retention of polar analytes on the zwitterionic SBVI-based monolith.In particular,the resulting monolith exhibited good anti-protein adhesion ability and low nonspecific protein adsorption.These excellent features seem to favor its application in bioanalysis.Therefore,the novel zwitterionic sulfobetaine-based monolith was successfully employed for the highly selective separation of small bioactive compounds and the efficient enrichment of N-glycopeptides from complex samples.In this study,we prepared a novel zwitterionic sulfobetaine-based monolith with good performance and developed a simpler and faster method for preparation of zwitterionic monoliths.展开更多
In this paper,hierarchically porous Fe2O3 /CuO composite monoliths were first successfully synthesized by a mild method using silica monoliths as templates.The structure of composite monoliths was characterized by X-r...In this paper,hierarchically porous Fe2O3 /CuO composite monoliths were first successfully synthesized by a mild method using silica monoliths as templates.The structure of composite monoliths was characterized by X-ray diffraction,scanning electron microscopy,nitrogen adsorption-desorption.The results indicated that the molar ratio of Fe to Cu had a great influence on the crystal phase of Fe2O3,pore size and the structure of the macroporous wall.The Fe2O3 /CuO composite monoliths consist of hierarchically macroporous and mesoporous structure,while the sample with the Fe/Cu molar ratio of 2:1 possesses tighter wall structure than other samples.It is expected that asprepared Fe2O3/CuO composite monoliths have potential applications in several fields as catalysts,catalyst supports,chemical sensors and high-performance liquid chromatography (HPLC).展开更多
A new method for preparing LiLaNiO/γ(-Al2O3 monolithic catalyst was described and discussed. The catalyst, which was supported over the monolith, was evaluated in a POM to syngas process. Relative stable catalytic pr...A new method for preparing LiLaNiO/γ(-Al2O3 monolithic catalyst was described and discussed. The catalyst, which was supported over the monolith, was evaluated in a POM to syngas process. Relative stable catalytic properties during the 120 hours operation at atmospheric pressure were found for the catalyst. Under the high space velocity of 9.0×104l/(kg·(h)(CH4), the conversion of methane came to 95.5%, and the selectivity of carbon monoxide was not below 96.0% at 1123K when ratio of the feedstock (CH4/O2) was equal to 2.0.展开更多
A new route to synthesize ZSM-5 monoliths with hierarchical pore structure has been referred to in this study. The successful incorporation of the macropores and mesopores within the ZSM-5 struc- ture was achieved thr...A new route to synthesize ZSM-5 monoliths with hierarchical pore structure has been referred to in this study. The successful incorporation of the macropores and mesopores within the ZSM-5 struc- ture was achieved through transforming the skeleton of the macroporous silica gel into zeolite ZSM-5 using carbon materials as the transitional template. The ZSM-5 crystal covered part of the macroporous material, and provided micropores to the macroporous silica gel. The structure of carbon monolith was studied after dissolving the silica contained in the carbon/silica composite.展开更多
Methane adsorption by different forms of activated carbon obtained from coffee husks, including monolith honeycomb and disc types, was studied by activation with zinc salts and potassium hydroxide at 298.15 K and 303....Methane adsorption by different forms of activated carbon obtained from coffee husks, including monolith honeycomb and disc types, was studied by activation with zinc salts and potassium hydroxide at 298.15 K and 303.15 K and pressures up to 30.00 atm in a volumetric adsorption apparatus. We observed increased methane adsorption capacity on a mass basis in the different activated carbon monoliths with increasing surface area, total pore volume and micropore volume, with the honeycomb type displaying the highest methane absorption capacity. The maximum volumetric methane uptake by the synthesised carbon monoliths was observed to be 130 V/V at 298.15 K and 30.00 atm for honeycomb monoliths synthesised with zinc chloride (ZnCl2) and Polyvinyl alcohol (PVA) as the binder. Adsorption calorimetry results were used to describe the interaction between guest molecules and the adsorbent at low surface coverage and the energetic heterogeneous surface nature of the adsorbent.展开更多
Binary oxide systems(Cu Cr2O4, Cu Co2O4), deposited onto cordierite monoliths of honeycomb structure with a second support(finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot ...Binary oxide systems(Cu Cr2O4, Cu Co2O4), deposited onto cordierite monoliths of honeycomb structure with a second support(finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine’s gas exhausts(O2, NOx, H2 O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3 NO2〉 H2 O 〉 NO 〉 O2〉 CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively(in the presence of copper chromite based catalyst) even at closing to ambient temperatures.Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem.展开更多
Utilizing solar energy for sorbent regeneration during the CO_(2)swing adsorption process could potentially reduce CO_(2)capture costs.This study describes a new technique—solar thermal swing adsorption(STSA)for CO_(...Utilizing solar energy for sorbent regeneration during the CO_(2)swing adsorption process could potentially reduce CO_(2)capture costs.This study describes a new technique—solar thermal swing adsorption(STSA)for CO_(2)capture based on application of intermittent illumination onto porous carbon monolith(PCM)sorbents during the CO_(2)capture process.This allows CO_(2)to be selectively adsorbed on the sorbents during the light-off periods and thereafter released during the light-on periods due to the solar thermal effect.The freestanding and mechanically strong PCMs have rich ultramicropores with narrow pore size distributions,displaying relatively high CO_(2)adsorption capacity and high CO_(2)/N_(2) selectivity.Given the high CO_(2)capture performance,high solar thermal conversion efficiency,and high thermal conductivity,the PCM sorbents could achieve high CO_(2)capture rate of up to 0.226 kg·kgcarbon^(-1)·h^(-1)from a gas mixture of 20 vol.%CO_(2)/80 vol.%N_(2) under STSA conditions with a light intensity of 1000 W·m^(-2).In addition,the combination of STSA with the conventional vacuum swing adsorption technique further increases the CO_(2)working capacity.展开更多
A simple strategy for the synthesis of macro-mesoporous carbonaceous monolith materials has been demonstrated through an organic organic self-assembly at the interface of an organic scaffold such as polyurethane(PU)fo...A simple strategy for the synthesis of macro-mesoporous carbonaceous monolith materials has been demonstrated through an organic organic self-assembly at the interface of an organic scaffold such as polyurethane(PU)foam.Hierarchically porous carbonaceous monoliths with cubic(Im m)or hexagonal(p6mm)mesostructure were prepared through evaporation induced self-assembly of the mesostructure on the three-dimensional(3-D)interconnecting struts of the PU foam scaffold.The preparation was carried out by using phenol/formaldehyde resol as a carbon precursor,triblock copolymer F127 as a template for the mesostructure and PU foam as a sacrificial monolithic scaffold.Their hierarchical pore system was macroscopically fabricated with cable-like mesostructured carbonaceous struts.The carbonaceous monoliths exhibit macropores of diameter 100450μm,adjustable uniform mesopores(3.87.5 nm),high surface areas(200870 m2/g),and large pore volumes(0.170.58)cm3/g.Compared with the corresponding evaporation induced self-assembly(EISA)process on a planar substrate,this facile process is a time-saving,labor-saving,space-saving,and highly effi cient pathway for mass production of ordered mesoporous materials.展开更多
We evaluated bismuth doped cerium oxide catalysts for the continuous synthesis of dimethyl carbonate(DMC)from methanol and carbon dioxide in the absence of a dehydrating agent.Bi_(x)Ce_(1-x)O_(δ)nanocomposites of var...We evaluated bismuth doped cerium oxide catalysts for the continuous synthesis of dimethyl carbonate(DMC)from methanol and carbon dioxide in the absence of a dehydrating agent.Bi_(x)Ce_(1-x)O_(δ)nanocomposites of various compositions(x=0.06-0.24)were coated on a ceramic honeycomb and their structural and catalytic properties were examined.The incorporation of Bi species into the CeO_(2) lattice facilitated controlling of the surface population of oxygen vacancies,which is shown to play a crucial role in the mechanism of this reaction and is an important parameter for the design of ceria-based catalysts.The DMC production rate of the Bi_(x)Ce_(1-x)O_(δ) catalysts was found to be strongly enhanced with increasing Ov concentration.The concentration of oxygen vacancies exhibited a maximum for Bi_(0.12)Ce_(0.88)O_(δ),which afforded the highest DMC production rate.Long-term tests showed stable activity and selectivity of this catalyst over 45 h on-stream at 140°C and a gas-hourly space velocity of 2,880 mL·g_(cat)^(-1)·h^(-1).In-situ modulation excitation diffuse reflection Fourier transform infrared spectroscopy and first-principle calculations indicate that the DMC synthesis occurs through reaction of a bidentate carbonate intermediate with the activated methoxy(-OCH_(3))species.The activation of C0_(2) to form the bidentate carbonate intermediate on the oxygen vacancy sites is identified as highest energy barrier in the reaction pathway and thus is likely the rate-determining step.展开更多
Polymeric monoliths are of great interest in a variety of applications.A new gelation approach to produce a mechanically stable polystyrene(PS)gel directly from its microemulsion is reported.To produce a PS gel,the as...Polymeric monoliths are of great interest in a variety of applications.A new gelation approach to produce a mechanically stable polystyrene(PS)gel directly from its microemulsion is reported.To produce a PS gel,the as-prepared microemulsion is first demulsified by adding selected watermiscible organic solvents.The small PS latex particles liberated from the surfactant are assembled into a piece of bulk material at an appropriate temperature with a high degree of entanglement of the polymer chains.It is found that the d2 T/ηvalue is an important parameter to evaluate the gelation ability of the organic solvents and helps determine the gelation conditions.Finally,PS monoliths are obtained by capillary drying and their pore structures can be effectively tuned by changing the gelation time and the amount of solvent exchanged with water.This allows the controlled preparation of bulk PS artefacts with densities in the range of 0.06 to 1.14 g cm^(-3).This simple method of PS monolith production avoids the use of shaping tools or chemical templates,needs less energy,and is a promising alternative approach to design either integrated porous or compact polymer materials.展开更多
To improve their thermal stability, La0.8Sr0.2MnO3 cordierite monoliths are washcoated with mayenite, which is a novel Al-based material with the crystal structure of 12MO 7Al2O3 (M= Ca, Sr). The monoliths are chara...To improve their thermal stability, La0.8Sr0.2MnO3 cordierite monoliths are washcoated with mayenite, which is a novel Al-based material with the crystal structure of 12MO 7Al2O3 (M= Ca, Sr). The monoliths are characterized by means of nitrogen adsorp- tion/desorption, scanning electron microscopy, and X-ray diffraction. Catalytic performances of the monoliths are tested for methyl methacrylate combustion. The results show that mayenite obviously improves both the physic- chemical properties and the catalytic performance of the monoliths. Because mayenite improves the dispersity of Lao.sSro.2MnO3 and also prevents the interaction between La0.8Sr0.2MnO3 and cordierite or γ-A1203, both crystal structure and surface morphology of La0.8Sr0.2MnO3 phase can thereby be stable on the mayenite surface even at high temperature up to 1050 ℃. Under the given reaction conditions, La0.8Sr0.2MnO3 monolith washcoated with 12SrO. γ-A1203 shows the best catalytic activity for methyl methacrylate combustion among all the tested monoliths.展开更多
文摘Metal-organic frameworks(MOFs)have been extensively considered as one of the most promising types of porous and crystalline organic-inorganic materials,thanks to their large specific surface area,high porosity,tailorable structures and compositions,diverse functionalities,and well-controlled pore/size distribution.However,most developed MOFs are in powder forms,which still have some technical challenges,including abrasion,dustiness,low packing densities,clogging,mass/heat transfer limitation,environmental pollution,and mechanical instability during the packing process,that restrict their applicability in industrial applications.Therefore,in recent years,attention has focused on techniques to convert MOF powders into macroscopic materials like beads,membranes,monoliths,gel/sponges,and nanofibers to overcome these challenges.Three-dimensional(3D)printing technology has achieved much interest because it can produce many high-resolution macroscopic frameworks with complex shapes and geometries from digital models.Therefore,this review summarizes the combination of different 3D printing strategies with MOFs and MOF-based materials for fabricating 3D-printed MOF monoliths and their environmental applications,emphasizing water treatment and gas adsorption/separation applications.Herein,the various strategies for the fabrication of 3D-printed MOF monoliths,such as direct ink writing,seed-assisted in-situ growth,coordination replication from solid precursors,matrix incorporation,selective laser sintering,and digital light processing,are described with the relevant examples.Finally,future directions and challenges of 3D-printed MOF monoliths are also presented to better plan future trajectories in the shaping of MOF materials with improved control over the structure,composition,and textural properties of 3D-printed MOF monoliths.
基金financially supported by a Joint Sino-German Research Project(21761132011)the National Natural Science Foundation of China(No.21776041)the Cheung Kong Scholars Programme of China(T2015036).
文摘Porous carbon materials with developed porosity,high surface area and good thermal-and chemicalresistance are advantageous for gas adsorption and separation.However,most carbon adsorbents are in powder form which exhibit high pressure drop when deployed in practical separation bed.While monolithic carbons have largely addressed the pulverization problem and preserved kinetics and usually suffer from abrasion during multiple adsorption-desorption cycles.Herein,we proposed the designed synthesis of mechanically robust carbon monoliths with hierarchical pores,solid nitrogen-containing framework.The synthesis started with the polymerization of resorcinol and formaldehyde under weakly acidic conditions generated from cyanuric acid,and then an appropriate amount of hexamethylenetetramine(HMTA)was added as a crosslinker to prompt the formation of three dimensional frameworks.After carbonization process,the as-obtained porous carbon monoliths have a high radial compressive strength of 886 N/cm as well as a BET specific surface area of up to 683 m2/g.At approximately 1 bar,the CO2 equilibrium capacities of the monoliths are in the range of 3.1–4.0 mmol/g at 273 K and of 2.3–3.0 mmol/g at 298 K,exhibiting high selectivity for the capture of CO2 over N2 from a stream which consists of 16.7%(v%)CO2 in N2.Meanwhile,they undergo a facile CO2 release in an argon stream at 298 K,indicating a good regeneration capacity.After cycle testing,sieving and regeneration,the adsorbent has no mass loss,compared to that of its fresh counterpart.
基金This work was supported by the National Natural Science Foundation of China(No.61673004 and No.11472048)the Fundamental Research Funds for the Central Universities of China(XK1802-4).
文摘Hierarchically porous FAU monoliths were synthesized via the gel pre-aging route using seed gel as directing agent andα-Al2O3 as monolithic carrier.The as-synthesized samples were characterized by means of the Fourier transform infrared spectroscopy(FT-IR),X-ray powder diffraction(XRD),scanning electron microscopy(SEM),and N2 adsorption techniques.The effects of seed gel,gel pre-treatment,and gel pre-aging step were determined,while the possible mechanism for formation of alumina composites via different synthesis processes were discussed.The results showed that the crystal size,the shape,and the loading of the supported FAU could be readily tuned by varying the composition of the crystallization gel without notably changing the structure ofα-Al2O3.The proposed seed gel pre-treating and gel pre-aging route are simple,reproducible,and practically easy to integrate triple porous structures into large-dimension monoliths,which are proved to be very effective in depositing pure FAU crystals on theα-Al2O3 skeleton surface and strengthening the interfacial interaction between them.Moreover,it may provide inspiration to the synthesis of other hierarchical zeolites.
文摘The various advantages of organic polymer monoliths, including relatively simple preparation processes,abundant monomer availability, and a wide application range of pH, have attracted the attention of chromatographers. Organic polymer monoliths prepared by traditional methods only have macropores and mesopores, and micropores of less than 50 nm are not commonly available. These typical monoliths are suitable for the separation of biological macromolecules such as proteins and nucleic acids, but their ability to separate small molecular compounds is poor. In recent years, researchers have successfully modified polymer monoliths to achieve uniform compact pore structures. In particular, microporous materials with pores of 50 nm or less that can provide a large enough surface area are the key to the separation of small molecules. In this review, preparation methods of polymer monoliths for high-performance liquid chromatography, including ultra-high cross-linking technology, post-surface modification, and the addition of nanomaterials, are discussed. Modified monolithic columns have been used successfully to separate small molecules with obvious improvements in column efficiency.
基金This work was financially supported by the National Natural Science Foundation of China(62074154)China Postdoctoral Science Foundation(Grant No.2020M682983)+2 种基金Guangdong Basic and Applied Basic Research Fund(2020A1515110962,2020A1515110154)Shenzhen Basic Research Plan(JCYJ20180507182530279)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2017411).
文摘Liquid metal(LM)has become an emerging material paradigm in the electromagnetic interference shielding field owing to its excellent electrical conductivity.However,the processing of lightweight bulk LM composites with finite package without leakage is still a great challenge,due to high surface tension and pump-out issues of LM.Here,a novel confined thermal expansion strategy based on expandable microsphere(EM)is proposed to develop a new class of LM-based monoliths with 3D continuous conductive network.The EM/LM monolith(EM/LMm)presents outstanding performance of lightweight like metallic aerogel(0.104 g cm^(-1)),high strength(3.43 MPa),super elasticity(90%strain),as well as excellent tailor ability and recyclability,rely on its unique gas-filled closed-cellular structure and refined LM network.Moreover,the assembled highly conducting EM/LMm exhibits a recorded shielding effectiveness(98.7 dB)over a broad frequency range of 8.2-40 GHz among reported LM-based composites at an ultra-low content of LM,and demonstrates excellent electromagnetic sealing capacity in practical electronics.The ternary EM/LM/Ni monoliths fabricated by the same approach could be promising universal design principles for multifunctional LM composites,and applicable in magnetic responsive actuator.
基金supported by the National Natural Science Foundation of China(No50772013)
文摘A novelty method,frontal polymerization(FP),was employed to directly produce a series of polyacrylamide (PAM),poly(N-isopropylacrylamide)(PNIPAM) and acrylamide-N-isopropylacrylamide copolymer macroporous monoliths. Field emission scanning electronic microscope and mercury intrusion method were adopted to measure some parameters of these monoliths,such as frame,pore size distribution as well as porosity.Effects of types of monomer,thicker and surfactant on porous structure of monoliths were studied.A variet...
基金Acknowledgment is made to the Donors of the American Chemical Society Petroleum Research Fund for support of this research.
文摘New energy sources that reduce the volume of harmful gases such as SO_(x)and NO_(x)released into the atmosphere are in constant development.Natural gas,primarily made up of methane,is being widely used as one reliable energy source for heating and electricity generation due to its high combustion value.Currently,natural gas accounts for a large portion of electricity generation and chemical feedstock in manufacturing plastics and other commercially important organic chemicals.In the near future,natural gas will be widely used as a fuel for vehicles.Therefore,a practical storage device for its storage and transportation is very beneficial to the deployment of natural gas as an energy source for new technologies.In this tutorial review,biomaterials-based carbon monoliths(CMs),one kind of carbonaceous material,was reviewed as an adsorbent for natural gas(methane)adsorption and storage.
基金The authors acknowledge the support from National Natural Science Foundation of China(51972168,51672124,21603096)Program for Innovative Talents and Entrepreneur in Jiangsu,State Key Laboratory of Catalytic Materials and Reaction Engineering(RIPP,SINOPEC),and Technical Center of Nano Fabrication and Characterization of Nanjing University.
文摘For delivering the nanoscaled extraordinary characteristics in macroscopical bulk,it is essential to integrate two-dimensional nanosheets into threedimensional(3D)porous monoliths,alternatively called as 3D architectures,3D networks,or aerogels.The intersupported structure of porous monolithic 3D graphene(3DG)can prevent aggregation or restacking of graphene individuals,and the interconnected sp^(2) network of 3DG not only can provide the highway for the transport of electron/phonon but also can present continual cavities/channels for mass transfer.This review summarizes the synthesis methodology of 3DG porous monoliths and highlights the application for electric double-layer capacitors.Present challenges and future prospects about the manufacture and application of 3DG are also discussed.
基金supported by the National Natural Science Foundation of China(Grant Nos.:82173773 and 82073806)the Natural Science Foundation of Guangdong Province,China(Grant Nos.:2020A1515010569 and 2021A0505030039)Science and Technology Program of Guangzhou,China(Grant No.:202102020729).
文摘Zwitterionic sulfobetaine-based monolithic stationary phases have attracted increasing attention for their use in hydrophilic interaction chromatography.In this study,a novel hydrophilic polymeric monolith was fabricated through photo-initiated copolymerization of 3-(3-vinyl-1-imidazolio)-1-propanesulfonate(SBVI)with pentaerythritol triacrylate using methanol and tetrahydrofuran as the porogenic system.Notably,the duration for the preparation of this novel monolith was as little as 5 min,which was significantly shorter than that required for previously reported sulfobetaine-based monoliths prepared via conventional thermally initiated copolymerization.Moreover,these monoliths showed good morphology,permeability,porosity(62.4%),mechanical strength(over 15 MPa),column efficiency(51,230 plates/m),and reproducibility(relative standard deviations for all analytes were lower than 4.6%).Mechanistic studies indicated that strong hydrophilic and negative electrostatic interactions might be responsible for the retention of polar analytes on the zwitterionic SBVI-based monolith.In particular,the resulting monolith exhibited good anti-protein adhesion ability and low nonspecific protein adsorption.These excellent features seem to favor its application in bioanalysis.Therefore,the novel zwitterionic sulfobetaine-based monolith was successfully employed for the highly selective separation of small bioactive compounds and the efficient enrichment of N-glycopeptides from complex samples.In this study,we prepared a novel zwitterionic sulfobetaine-based monolith with good performance and developed a simpler and faster method for preparation of zwitterionic monoliths.
基金supported by the National Natural Science Foundation of China(No. 20977052)the Chinese Academy of Sciences(Grant No. KZCX2-YW-420)the National 973 Program(No. 2009CB421606)
文摘In this paper,hierarchically porous Fe2O3 /CuO composite monoliths were first successfully synthesized by a mild method using silica monoliths as templates.The structure of composite monoliths was characterized by X-ray diffraction,scanning electron microscopy,nitrogen adsorption-desorption.The results indicated that the molar ratio of Fe to Cu had a great influence on the crystal phase of Fe2O3,pore size and the structure of the macroporous wall.The Fe2O3 /CuO composite monoliths consist of hierarchically macroporous and mesoporous structure,while the sample with the Fe/Cu molar ratio of 2:1 possesses tighter wall structure than other samples.It is expected that asprepared Fe2O3/CuO composite monoliths have potential applications in several fields as catalysts,catalyst supports,chemical sensors and high-performance liquid chromatography (HPLC).
基金the National Advanced Materials Committee of China (Grant No. 715-006-0122) and the Ministry of Science and Technology, China (
文摘A new method for preparing LiLaNiO/γ(-Al2O3 monolithic catalyst was described and discussed. The catalyst, which was supported over the monolith, was evaluated in a POM to syngas process. Relative stable catalytic properties during the 120 hours operation at atmospheric pressure were found for the catalyst. Under the high space velocity of 9.0×104l/(kg·(h)(CH4), the conversion of methane came to 95.5%, and the selectivity of carbon monoxide was not below 96.0% at 1123K when ratio of the feedstock (CH4/O2) was equal to 2.0.
文摘A new route to synthesize ZSM-5 monoliths with hierarchical pore structure has been referred to in this study. The successful incorporation of the macropores and mesopores within the ZSM-5 struc- ture was achieved through transforming the skeleton of the macroporous silica gel into zeolite ZSM-5 using carbon materials as the transitional template. The ZSM-5 crystal covered part of the macroporous material, and provided micropores to the macroporous silica gel. The structure of carbon monolith was studied after dissolving the silica contained in the carbon/silica composite.
文摘Methane adsorption by different forms of activated carbon obtained from coffee husks, including monolith honeycomb and disc types, was studied by activation with zinc salts and potassium hydroxide at 298.15 K and 303.15 K and pressures up to 30.00 atm in a volumetric adsorption apparatus. We observed increased methane adsorption capacity on a mass basis in the different activated carbon monoliths with increasing surface area, total pore volume and micropore volume, with the honeycomb type displaying the highest methane absorption capacity. The maximum volumetric methane uptake by the synthesised carbon monoliths was observed to be 130 V/V at 298.15 K and 30.00 atm for honeycomb monoliths synthesised with zinc chloride (ZnCl2) and Polyvinyl alcohol (PVA) as the binder. Adsorption calorimetry results were used to describe the interaction between guest molecules and the adsorbent at low surface coverage and the energetic heterogeneous surface nature of the adsorbent.
文摘Binary oxide systems(Cu Cr2O4, Cu Co2O4), deposited onto cordierite monoliths of honeycomb structure with a second support(finely dispersed Al2O3), were prepared as filters for catalytic combustion of diesel soot using internal combustion engine’s gas exhausts(O2, NOx, H2 O, CO2) and O3 as oxidizing agents. It is shown that the second support increases soot capacity of aforementioned filters, and causes dispersion of the particles of spinel phases as active components enhancing thereby catalyst activity and selectivity of soot combustion to CO2. Oxidants used can be arranged with reference to decreasing their activity in a following series: O3 NO2〉 H2 O 〉 NO 〉 O2〉 CO2. Ozone proved to be the most efficient oxidizing agent: the diesel soot combustion by O3 occurs intensively(in the presence of copper chromite based catalyst) even at closing to ambient temperatures.Results obtained give a basis for the conclusion that using a catalytic coating on soot filters in the form of aforementioned binary oxide systems and ozone as the initiator of the oxidation processes is a promising approach in solving the problem of comprehensive purification of automotive exhaust gases at relatively low temperatures, known as the "cold start" problem.
基金This study was supported byÅForsk research grant and Anhui Provincial Natural Science Foundation(No.2108085QB72)。
文摘Utilizing solar energy for sorbent regeneration during the CO_(2)swing adsorption process could potentially reduce CO_(2)capture costs.This study describes a new technique—solar thermal swing adsorption(STSA)for CO_(2)capture based on application of intermittent illumination onto porous carbon monolith(PCM)sorbents during the CO_(2)capture process.This allows CO_(2)to be selectively adsorbed on the sorbents during the light-off periods and thereafter released during the light-on periods due to the solar thermal effect.The freestanding and mechanically strong PCMs have rich ultramicropores with narrow pore size distributions,displaying relatively high CO_(2)adsorption capacity and high CO_(2)/N_(2) selectivity.Given the high CO_(2)capture performance,high solar thermal conversion efficiency,and high thermal conductivity,the PCM sorbents could achieve high CO_(2)capture rate of up to 0.226 kg·kgcarbon^(-1)·h^(-1)from a gas mixture of 20 vol.%CO_(2)/80 vol.%N_(2) under STSA conditions with a light intensity of 1000 W·m^(-2).In addition,the combination of STSA with the conventional vacuum swing adsorption technique further increases the CO_(2)working capacity.
基金the National Natural Science Foundation of China(20721063,20890123,and 20521140450)the State Key Basic Research Program of China(2006CB932302 and 2006CB202502)+1 种基金Shanghai Leading Academic Discipline Project(B108)the Graduate Student Innovation Foundation of Fudan University(EYH1615047).
文摘A simple strategy for the synthesis of macro-mesoporous carbonaceous monolith materials has been demonstrated through an organic organic self-assembly at the interface of an organic scaffold such as polyurethane(PU)foam.Hierarchically porous carbonaceous monoliths with cubic(Im m)or hexagonal(p6mm)mesostructure were prepared through evaporation induced self-assembly of the mesostructure on the three-dimensional(3-D)interconnecting struts of the PU foam scaffold.The preparation was carried out by using phenol/formaldehyde resol as a carbon precursor,triblock copolymer F127 as a template for the mesostructure and PU foam as a sacrificial monolithic scaffold.Their hierarchical pore system was macroscopically fabricated with cable-like mesostructured carbonaceous struts.The carbonaceous monoliths exhibit macropores of diameter 100450μm,adjustable uniform mesopores(3.87.5 nm),high surface areas(200870 m2/g),and large pore volumes(0.170.58)cm3/g.Compared with the corresponding evaporation induced self-assembly(EISA)process on a planar substrate,this facile process is a time-saving,labor-saving,space-saving,and highly effi cient pathway for mass production of ordered mesoporous materials.
基金supported by the National Natural Science Foundation of China(Nos.21773189 and 11974195)Department of Science and Technology of Sichuan Province(19ZDZX0113)Liaoning Revitalization Talents Program(XLYC1807121).
文摘We evaluated bismuth doped cerium oxide catalysts for the continuous synthesis of dimethyl carbonate(DMC)from methanol and carbon dioxide in the absence of a dehydrating agent.Bi_(x)Ce_(1-x)O_(δ)nanocomposites of various compositions(x=0.06-0.24)were coated on a ceramic honeycomb and their structural and catalytic properties were examined.The incorporation of Bi species into the CeO_(2) lattice facilitated controlling of the surface population of oxygen vacancies,which is shown to play a crucial role in the mechanism of this reaction and is an important parameter for the design of ceria-based catalysts.The DMC production rate of the Bi_(x)Ce_(1-x)O_(δ) catalysts was found to be strongly enhanced with increasing Ov concentration.The concentration of oxygen vacancies exhibited a maximum for Bi_(0.12)Ce_(0.88)O_(δ),which afforded the highest DMC production rate.Long-term tests showed stable activity and selectivity of this catalyst over 45 h on-stream at 140°C and a gas-hourly space velocity of 2,880 mL·g_(cat)^(-1)·h^(-1).In-situ modulation excitation diffuse reflection Fourier transform infrared spectroscopy and first-principle calculations indicate that the DMC synthesis occurs through reaction of a bidentate carbonate intermediate with the activated methoxy(-OCH_(3))species.The activation of C0_(2) to form the bidentate carbonate intermediate on the oxygen vacancy sites is identified as highest energy barrier in the reaction pathway and thus is likely the rate-determining step.
基金financially supported by the National Science Fund for Distinguished Young Scholars of China(51525204)the National Natural Science Foundation of China(51702229)。
文摘Polymeric monoliths are of great interest in a variety of applications.A new gelation approach to produce a mechanically stable polystyrene(PS)gel directly from its microemulsion is reported.To produce a PS gel,the as-prepared microemulsion is first demulsified by adding selected watermiscible organic solvents.The small PS latex particles liberated from the surfactant are assembled into a piece of bulk material at an appropriate temperature with a high degree of entanglement of the polymer chains.It is found that the d2 T/ηvalue is an important parameter to evaluate the gelation ability of the organic solvents and helps determine the gelation conditions.Finally,PS monoliths are obtained by capillary drying and their pore structures can be effectively tuned by changing the gelation time and the amount of solvent exchanged with water.This allows the controlled preparation of bulk PS artefacts with densities in the range of 0.06 to 1.14 g cm^(-3).This simple method of PS monolith production avoids the use of shaping tools or chemical templates,needs less energy,and is a promising alternative approach to design either integrated porous or compact polymer materials.
文摘To improve their thermal stability, La0.8Sr0.2MnO3 cordierite monoliths are washcoated with mayenite, which is a novel Al-based material with the crystal structure of 12MO 7Al2O3 (M= Ca, Sr). The monoliths are characterized by means of nitrogen adsorp- tion/desorption, scanning electron microscopy, and X-ray diffraction. Catalytic performances of the monoliths are tested for methyl methacrylate combustion. The results show that mayenite obviously improves both the physic- chemical properties and the catalytic performance of the monoliths. Because mayenite improves the dispersity of Lao.sSro.2MnO3 and also prevents the interaction between La0.8Sr0.2MnO3 and cordierite or γ-A1203, both crystal structure and surface morphology of La0.8Sr0.2MnO3 phase can thereby be stable on the mayenite surface even at high temperature up to 1050 ℃. Under the given reaction conditions, La0.8Sr0.2MnO3 monolith washcoated with 12SrO. γ-A1203 shows the best catalytic activity for methyl methacrylate combustion among all the tested monoliths.