侦察星座优化是天基信息体系建设的关键问题。为弥补以往研究大多只采用少量性能指标进行侦察星座优化的不足,提出了一种综合考虑5项性能指标的侦察星座优化模型。在解算优化模型过程中,为解决传统基于Pareto支配的进化算法出现的选择...侦察星座优化是天基信息体系建设的关键问题。为弥补以往研究大多只采用少量性能指标进行侦察星座优化的不足,提出了一种综合考虑5项性能指标的侦察星座优化模型。在解算优化模型过程中,为解决传统基于Pareto支配的进化算法出现的选择压力与多样性不足的问题,提出了TOPSIS-MOPSO(Technique for Order Preference by Similarity to an Ideal Solution-Multi-Objective Particle Swarm Optimization)算法,将多属性决策领域的TOPSIS引入进化算法中,并与SPD(Strengthened Pareto Dominate)相结合,得到一种能够同时增强种群收敛性与多样性的环境选择策略。提出了基于Harmonic距离的全局最优粒子选择策略,加快种群收敛速度,保护种群多样性;提出了自适应进化算子选择策略,帮助算法摆脱局部最优解。将TOPSIS-MOPSO算法应用在侦察星座优化问题上,并与MOPSO、DGEA、AR-MOEA 3种经典方法进行实验对比分析,实验结果显示,所提算法比其他3种算法在Δ*、IGD和HV上的最优指标值分别提升了19.76%、89.07%和28.2%。展开更多
轮毂电机电动汽车(in-wheel motor electric vehicle,IWM-EV)的电机激励与车辆系统的耦合特性严重的恶化车辆的动力学性能以及电机的工作稳定性,针对这种振动负效应问题,建立了考虑机电耦合的车辆动力学耦合模型,并设计了工况识别的主...轮毂电机电动汽车(in-wheel motor electric vehicle,IWM-EV)的电机激励与车辆系统的耦合特性严重的恶化车辆的动力学性能以及电机的工作稳定性,针对这种振动负效应问题,建立了考虑机电耦合的车辆动力学耦合模型,并设计了工况识别的主动悬架多目标粒子群(multi-objective particle swarm optimization,MOPSO)模糊滑模控制器。基于傅里叶级数法建立了轮毂电机的垂向不平衡激励与电机转矩的电机模型;将电机模型与车辆动力学模型结合建立了电机与悬架联合的垂向-驱动非线性动力学耦合模型。基于耦合模型分析了车辆的机电耦合振动负效应特性,针对模型强非线性的特点,设计了耦合模型的非线性控制器。仿真结果表明,控制器能既能有效的减小电机的相对偏心率,抑制电机不平衡电磁力,又能提升车辆动力学性能,有效的抑制了轮毂电机电动汽车的振动负效应。展开更多
文摘侦察星座优化是天基信息体系建设的关键问题。为弥补以往研究大多只采用少量性能指标进行侦察星座优化的不足,提出了一种综合考虑5项性能指标的侦察星座优化模型。在解算优化模型过程中,为解决传统基于Pareto支配的进化算法出现的选择压力与多样性不足的问题,提出了TOPSIS-MOPSO(Technique for Order Preference by Similarity to an Ideal Solution-Multi-Objective Particle Swarm Optimization)算法,将多属性决策领域的TOPSIS引入进化算法中,并与SPD(Strengthened Pareto Dominate)相结合,得到一种能够同时增强种群收敛性与多样性的环境选择策略。提出了基于Harmonic距离的全局最优粒子选择策略,加快种群收敛速度,保护种群多样性;提出了自适应进化算子选择策略,帮助算法摆脱局部最优解。将TOPSIS-MOPSO算法应用在侦察星座优化问题上,并与MOPSO、DGEA、AR-MOEA 3种经典方法进行实验对比分析,实验结果显示,所提算法比其他3种算法在Δ*、IGD和HV上的最优指标值分别提升了19.76%、89.07%和28.2%。
文摘轮毂电机电动汽车(in-wheel motor electric vehicle,IWM-EV)的电机激励与车辆系统的耦合特性严重的恶化车辆的动力学性能以及电机的工作稳定性,针对这种振动负效应问题,建立了考虑机电耦合的车辆动力学耦合模型,并设计了工况识别的主动悬架多目标粒子群(multi-objective particle swarm optimization,MOPSO)模糊滑模控制器。基于傅里叶级数法建立了轮毂电机的垂向不平衡激励与电机转矩的电机模型;将电机模型与车辆动力学模型结合建立了电机与悬架联合的垂向-驱动非线性动力学耦合模型。基于耦合模型分析了车辆的机电耦合振动负效应特性,针对模型强非线性的特点,设计了耦合模型的非线性控制器。仿真结果表明,控制器能既能有效的减小电机的相对偏心率,抑制电机不平衡电磁力,又能提升车辆动力学性能,有效的抑制了轮毂电机电动汽车的振动负效应。