Species richness generally decreases with increasing latitude,a biodiversity gradient that has long been considered as one of the few laws in ecology.This latitudinal diversity gradient has been observed in many major...Species richness generally decreases with increasing latitude,a biodiversity gradient that has long been considered as one of the few laws in ecology.This latitudinal diversity gradient has been observed in many major groups of organisms.In plants,the latitudinal diversity gradient has been observed in vascular plants,angiosperms,ferns,and liverworts.However,a conspicuous latitudinal diversity gradient in mosses at a global or continental scale has not been observed until now.Here,we analyze a comprehensive data set including moss species in each band of 20° in latitude worldwide.Our results show that moss species richness decreases strongly with increasing latitude,regardless of whether the globe is considered as a whole or different longitudinal segments(e.g.,Old World versus New World) are considered separately.This result holds when variation in area size among latitudinal bands is taken into account.Pearson's correlation coefficient between latitude and species richness is-0.99 for both the Northern and Southern Hemispheres.Because bryophytes are an extant lineage of early land plants and because mosses not only include most of extant species of bryophytes but also are important constituents of most terrestrial ecosystems,understanding geographic patterns of mosses is particularly important The finding of our study fills a critical knowledge gap.展开更多
In vitro regeneration systems of Atrichum mosses, Atrichurn undulatum (Hedw.) P. Beauv. and A. undulatum var. minus (Hedw.) Par. were established. After one month, soft, friable and green calli were induced successful...In vitro regeneration systems of Atrichum mosses, Atrichurn undulatum (Hedw.) P. Beauv. and A. undulatum var. minus (Hedw.) Par. were established. After one month, soft, friable and green calli were induced successfully from inoculated protonema of Atrichum mosses on MS medium containing glucose (4%) and 6-BA (0.2-2.0 mg/L). The suitable culture medium for the callus induction and regular subculture was MS medium with 1.0-2.0 mg/L 6-BA and 4% glucose. The calli of Atrichum mosses developed into protonema, when it was transferred to phytohormone-free MS medium with 4% glucose. Meanwhile, the calli developed into erect gametophytes through protonema phase on carbohydrate-free Benecke medium.展开更多
Twenty-seven moss specimens collected from the Guangfayong section (Early Miocene,22.1 Ma) of the Weichang District,North China were investigated in the present study.Based on the morphological and anatomical featur...Twenty-seven moss specimens collected from the Guangfayong section (Early Miocene,22.1 Ma) of the Weichang District,North China were investigated in the present study.Based on the morphological and anatomical features of gametophytes,all specimens were found to belong to three species:Leptodictyum riparium,Drepanocladus subtrichophyllus sp.nov.,and Amblystegium varium,all of which belong to the family Amblystegiaceae.The microhabitats and living environments of fossil mosses were also investigated based on comparison with living mosses.The results suggest that these mosses grew primarily at the edges of rivers,streams,and lakes and favored being submerged in streams or lakes in the Weichang District in the Early Miocene.展开更多
Sphagnum mosses are globally important owing to their considerable peat-forming ability and their potential impact on global climatic cycles acting as a long-term net carbon sink. However, changes in climatic conditio...Sphagnum mosses are globally important owing to their considerable peat-forming ability and their potential impact on global climatic cycles acting as a long-term net carbon sink. However, changes in climatic conditions due to global warming may affect the relations between Sphagnum mosses and vascular plants but also the competition among Sphagnum, and thus alter the accumulation of carbon on boreal wetlands. Sphagnum mosses are a plant genus with a favorable ability to grow in low solar irradiance and temperature conditions compared to vascular plants. This may be increasingly beneficial in increased wintertime temperatures and predated snowmelt conditions. To understand particularly the importance of early spring photosynthetic activity and thus the role of the length of growing season on carbon balance, we analyzed the CO<sub>2</sub> exchange of Sphagnum mosses with closed chamber technique in two categories of microtopographical habitats, hummocks and lawns, during four seasons 2010-2013 on a raised bog in Central Finland. During CO<sub>2</sub> exchange measurements, instantaneous net ecosystem exchange (NEE) and ecosystem respiration (RE) were measured. Our results show that the mean measured seasonal NEE, i.e. the instantaneous net carbon sequestration, of hummocks was generally only slightly higher than the NEE of lawns, but the mean measured seasonal RE of hummocks was clearly and significantly higher than the RE of lawns in every study year. A reason for the observed still higher seasonal carbon sequestration of hummocks than that of lawns besides the slightly higher rate of carbon accumulation was the longer duration of physiologically active growing season. Therefore, hummock-forming Sphagnum mosses exposed firstly from snow cover showed to get the extra time for photosynthesis and thus extra benefit compared to other mire plants. This may be further enhanced by the expansion of hummock-forming Sphagnum moss dominated raised bogs towards northern aapa-mire region due to the global warming.展开更多
Bryophytes dominate northern peatlands. Obtaining reliable measurements of moss-growth and how it may be affected by global changes are therefore important. Several methods have been used to measure moss-growth but it...Bryophytes dominate northern peatlands. Obtaining reliable measurements of moss-growth and how it may be affected by global changes are therefore important. Several methods have been used to measure moss-growth but it is unclear how comparable they are in different conditions and this uncertainty undermines comparisons among studies. In a field experiment we measured the growth and production of Sphagnum fallax (Sphagnum) and Polytrichum strictum (Polytrichum) using two handling methods, using cut and uncut plants, and three growth-variables, height-growth, length-growth, and mass-growth. We aimed “benchmarking” a combination of six methodological options against exactly the same set of factorial experiments: atmospheric CO2 enrichment and N addition. The two handling methods produced partly different results: in half of the cases, one method revealed a significant treatment effect but the other one did not: significant negative effects on growth were only observed on uncut plants for elevated CO2 and on cut plants for N addition. Furthermore, the correspondence between measurements made with various growth-variables depended on the species and, to a lesser extent, treatments. Sphagnum and Polytrichum growth was inhibited under elevated CO2, and correlated to higher ammonium values. Sphagnum was however less affected than Polytrichum and the height difference between the two species decreased. N addition reduced the P/N ratio and probably induced P-limiting conditions. Sphagnum growth was more inhibited than Polytrichum and the height difference between the two species increased. Our data show that such a problem indeed exists between the cut and uncut handling methods. Not only do the results differ in absolute terms by as much as 82% but also do their comparisons and interpretations depend on the handling method—and thus the interpretation would be biased—in half of the cases. These results call for caution when comparing factorial studies based on different handling methods.展开更多
The increasing global concern over the public health impacts attributed to environmental pollution led us to investigate and compare the deposition of some heavy metals in mosses from an urban area, Aramoko Ekiti and ...The increasing global concern over the public health impacts attributed to environmental pollution led us to investigate and compare the deposition of some heavy metals in mosses from an urban area, Aramoko Ekiti and a rural area, Are Ekiti. Both towns are located in the SouthWest, Nigeria. Moss samples were collected at different sites in the two towns. These samples were then digested in acid and analysed for Cd, Cr, Ni, Pb and Cu, using a flame atomic absorption spectrometer. The results of the study show variations in the concentrations of the heavy metals among the different sites in each town as well as between the two towns. Apart from cd which was suspected to have originated from natural sources in the investigated samples, the relatively higher concentrations of the other metals in Aramoko-Ekiti suggests an important anthropogenic source which we suspect to be automobiles since there are little or no industrial or mining activities within the town. Furthermore, the relatively higher concentrations of the metals exhibited by moss samples collected around locations prone to higher traffic situations in the two towns such as roadsides, filling stations and garages stresses the significance of traffic density in heavy metal pollution of the environment. These places (filling stations and garages) should be sited far away from residential areas. Also, residences should be sited at considerably far distances from major roads. These will prevent the bioaccumulation of the heavy metals in residents. Though, the results show that Aramoko-Ekiti is more polluted with the heavy metals than Are-Ekiti, the concentration of the heavy metals were still within the permissible limits. Given the results of this work and similar ones, there is need to evaluate the pollution status of the environment from time to time especially the urban areas and high traffic areas.展开更多
Algae and mosses are not only two of the familiar communities in the process of desert vegetational succession,but also have the highest biomass in biological soil crusts.Meanwhile,being the pioneer plants,algae and m...Algae and mosses are not only two of the familiar communities in the process of desert vegetational succession,but also have the highest biomass in biological soil crusts.Meanwhile,being the pioneer plants,algae and mosses are involved in the establishment of biological soil crusts,which have great importance in arid environments and play a major role in desert ecosystems,such as being the indicator of the vegetation type,soil-holding,preventing erosion by water and wind,and sand fixation.This paper reviews the advances in the study of algae and mosses in arid and semi-arid areas.It mainly describes the ecological functions of algae and mosses including their influences on water cycle,circulation of substances,and community succession.In addition,the relationships between algae and mosses are discussed.Finally,some suggestions are proposed for the research orientations of algae and mosses in biological soil crusts.Ecologically,algae and mosses have significant ecological importance in arid areas,especially in those areas where environmental problems are becoming increasingly serious.展开更多
Aims Mosses are dominant in many ecosystems where nutrients from deposition are one of the main nutrient sources.However,it is difficult to evaluate mosses’role in nutrient cycling without knowledge of how mosses use...Aims Mosses are dominant in many ecosystems where nutrients from deposition are one of the main nutrient sources.However,it is difficult to evaluate mosses’role in nutrient cycling without knowledge of how mosses use deposited nutrient inputs.To fill this gap,the present study aims to investigate:(i)how nitrogen(N)and phosphorus(P)concentrations of new-grown segments change along a gradient of N or P amount in a pulse treatment?(ii)how do a pulse of major nutrient(N or P)affect N or P translocation rate along a moss shoot?and(iii)to what extent do N or P translocation rates link to nutrient status of the new-grown segments of mosses?Methods We measured N and P concentrations of segments with different ages in two dominant forest floor mosses,Actinothuidium hookeri and Hylocomium splendens,on 8 days and 1 year after N and P pulse treatment with an in situ experiment in a subalpine fir forest in eastern Tibetan Plateau.Important Findings Both mosses were efficient in taking up nutrients from a pulse of either N or P.Nitrogen and P concentrations of new-grown segments were affected by nutrient pulse treatments.These N and P concentration changes were attributed to the initial N and P concentration of the young segments harvested 8 days after nutrient pulse treatments,suggesting that the captured nutrients were reallocated to the new-grown segments via translocation,which was largely controlled by a source-sink relationship.While no significant relationship was found between N translocation rate and N:P ratio of the new-grown segments,P translocation rate explained 21%-23%of the variance of N:P ratio of the new-grown segments,implying importance of P transport in supporting the new-grown sections.These results suggest that nutrient(N,P)translocation is a key process for mosses to utilize intermittent nutrient supply,and thus make mosses an important nutrient pool of the ecosystem.展开更多
Many mosses and lichens thrive in high-elevation subalpine forests and even become dominant species on the forest foor.Although they play an irreplaceable ecological role in the forest,less is known about their ecophy...Many mosses and lichens thrive in high-elevation subalpine forests and even become dominant species on the forest foor.Although they play an irreplaceable ecological role in the forest,less is known about their ecophysiological status,and how their photosynthesis-related functional traits differ from those of co-occurring vascular plants.We determined the carbon,nitrogen and phosphorus concentrations and stoichiometric ratios,tissue mass per area,chlorophyll concentrations and photosynthetic light–response curves of three lichens,three mosses and four vascular plants in a subalpine forest in the eastern Tibetan Plateau of China.Trait values were compared among and within each group.The lichens possessed a higher nitrogen concentration than that of mosses.In addition,the two poikilohydric groups exhibited lower concentrations of nitrogen,phosphorus and chlorophyll,light-saturated assimilation rates and photosynthetic nutrient use effciencies,and higher light compensation points than those of vascular plant leaves.Furthermore,variations in photosynthesis-related traits for lichen species refect their different adaptation strategies to their corresponding environments.In contrast,the differences were weak among the three forest-foor mosses and the three herb species.These results demonstrate that the high abundance of understory lichens and mosses in the high-elevation subalpine forest cannot be explained by the photosynthesis-related traits.展开更多
Since natural restoration combined with artificial auxiliary measures may achieve a relatively rapid restoration effect at a lower cost, it has become an essential measure for the ecological restoration of rock slopes...Since natural restoration combined with artificial auxiliary measures may achieve a relatively rapid restoration effect at a lower cost, it has become an essential measure for the ecological restoration of rock slopes. Previous studies have focused heavily on the relationship between substrate nutrients and water conditions and the development of mosses on the rock surface, but quantitative characterization of substantial effect of rock surface texture(e.g., microrelief) on moss growth is absent. The undulating microrelief on the rock surface can increase the heterogeneity of the microhabitat, which may be an important factor affecting the development of mossdominated biocrusts. In this study, the roughness of rock surfaces, moss coverage and biomass, weight and major nutrient contents of soils within the biocrusts were measured in the western mountainous area of Sichuan Province, Southwest China to further examine the role of rock surface microrelief in the biocrusts. The results showed that three main factors affecting the development of the biocrusts were bryophyte emergence, soil accumulation, and lithology. The presence of moss accelerates soil formation on rock surfaces and lead to the accumulation of nutrients so that all parts of the moss-dominated biocrusts system can develop synergistically. It was found that a microrelief structure with a roughness between 1.5 and 2.5 could gather soil and bryophyte propagules effectively, which may have a strong relationship with the angle of repose. When the roughness is 1.5, the corresponding undulation angle is very close to the theoretical minimum value of the undulation angle calculated according to the relationships between the undulation angle of the protrusion, slope and angle of repose.展开更多
[Objective] The paper aimed to discuss the relationship between sulfur contents of mosses and the concentration of SO2-4 and the source of Atmospheric sulfur in Nanchang.[Method] 29 moss samples (Bryohaplocladium mic...[Objective] The paper aimed to discuss the relationship between sulfur contents of mosses and the concentration of SO2-4 and the source of Atmospheric sulfur in Nanchang.[Method] 29 moss samples (Bryohaplocladium micriophyllum (Hedw.) R.Watanabe et Iwats) were collected from four sampling points,including North campus and Qianhu campus of Nanchang Power Station were determined.[Result] The results showed that sulfur contents of mosses tissues in North campus of Nanchang University (0.45±0.059%) were higher than Qianhu campus of Nanchang University (0.26±0.002%),which coincided with the changing law of the concentration of SO2-4.Sulphur isotope of mosses tissues was-0.64‰-9.71‰.Sulphur isotope of mosses tissues in Meling (4.02‰-9.71‰) was higher than Qianhu campus of Nanchang University (0.55‰-0.56‰) and power plant (-0.64‰-0.45‰).[Conclusion] Relationship between sulphur contents and sulphur isotopes of mosses tissues showed sulfur source of sulphur deposition in Nanchang city was mainly affected by 34S-enriched sulphur transported from northerly air masses and biogenic sulfur.展开更多
The relationships of 42 species of ground moss with six environmental factors in 41 sites on Changbai Mountain Biosphere Reserve were analyzed. Four site groups and four groups of ground moss ecological species were i...The relationships of 42 species of ground moss with six environmental factors in 41 sites on Changbai Mountain Biosphere Reserve were analyzed. Four site groups and four groups of ground moss ecological species were identified using the method of Two-way Indicator Species Analysis (TWINSPAN). The results of Detrended Canonical. Correspondence Analysis (DCCA) showed that altitude, soil sand content, soil acidity, forest canopy coverage and soil water content are the five major environmental factors influencing the distributional patterns of the moss species. The four groups of ecological species, which correspond well with the four site groups, are projected on the species-environment biplot of DCCA. Group 1 dominated in the bogs of Larix olgensis forest, group 2 in the alpine tundra, group 3 in the dense conifer forest, and group 4 mainly in the Betula ermanii community and the Betula ermanii-Larix olgensis forest in sub-alpine respectively.展开更多
文摘Species richness generally decreases with increasing latitude,a biodiversity gradient that has long been considered as one of the few laws in ecology.This latitudinal diversity gradient has been observed in many major groups of organisms.In plants,the latitudinal diversity gradient has been observed in vascular plants,angiosperms,ferns,and liverworts.However,a conspicuous latitudinal diversity gradient in mosses at a global or continental scale has not been observed until now.Here,we analyze a comprehensive data set including moss species in each band of 20° in latitude worldwide.Our results show that moss species richness decreases strongly with increasing latitude,regardless of whether the globe is considered as a whole or different longitudinal segments(e.g.,Old World versus New World) are considered separately.This result holds when variation in area size among latitudinal bands is taken into account.Pearson's correlation coefficient between latitude and species richness is-0.99 for both the Northern and Southern Hemispheres.Because bryophytes are an extant lineage of early land plants and because mosses not only include most of extant species of bryophytes but also are important constituents of most terrestrial ecosystems,understanding geographic patterns of mosses is particularly important The finding of our study fills a critical knowledge gap.
文摘In vitro regeneration systems of Atrichum mosses, Atrichurn undulatum (Hedw.) P. Beauv. and A. undulatum var. minus (Hedw.) Par. were established. After one month, soft, friable and green calli were induced successfully from inoculated protonema of Atrichum mosses on MS medium containing glucose (4%) and 6-BA (0.2-2.0 mg/L). The suitable culture medium for the callus induction and regular subculture was MS medium with 1.0-2.0 mg/L 6-BA and 4% glucose. The calli of Atrichum mosses developed into protonema, when it was transferred to phytohormone-free MS medium with 4% glucose. Meanwhile, the calli developed into erect gametophytes through protonema phase on carbohydrate-free Benecke medium.
基金supported by grants from China Geological Survey (No. 1212011120116)the Natural Science Foundation of China (Nos. 41072022 and 41210001)+2 种基金the International S & T Cooperation Project of China (No. 2009DFA32210)the Outlay Research Fund of the Institute of Geology, Chinese Academy of Geological Sciences (No. J1213)a contribution to a bilateral research project supported by the Chinese Ministry of Science and Technology and the Belgian Federal Science Policy Office (BL/36/C54)
文摘Twenty-seven moss specimens collected from the Guangfayong section (Early Miocene,22.1 Ma) of the Weichang District,North China were investigated in the present study.Based on the morphological and anatomical features of gametophytes,all specimens were found to belong to three species:Leptodictyum riparium,Drepanocladus subtrichophyllus sp.nov.,and Amblystegium varium,all of which belong to the family Amblystegiaceae.The microhabitats and living environments of fossil mosses were also investigated based on comparison with living mosses.The results suggest that these mosses grew primarily at the edges of rivers,streams,and lakes and favored being submerged in streams or lakes in the Weichang District in the Early Miocene.
文摘Sphagnum mosses are globally important owing to their considerable peat-forming ability and their potential impact on global climatic cycles acting as a long-term net carbon sink. However, changes in climatic conditions due to global warming may affect the relations between Sphagnum mosses and vascular plants but also the competition among Sphagnum, and thus alter the accumulation of carbon on boreal wetlands. Sphagnum mosses are a plant genus with a favorable ability to grow in low solar irradiance and temperature conditions compared to vascular plants. This may be increasingly beneficial in increased wintertime temperatures and predated snowmelt conditions. To understand particularly the importance of early spring photosynthetic activity and thus the role of the length of growing season on carbon balance, we analyzed the CO<sub>2</sub> exchange of Sphagnum mosses with closed chamber technique in two categories of microtopographical habitats, hummocks and lawns, during four seasons 2010-2013 on a raised bog in Central Finland. During CO<sub>2</sub> exchange measurements, instantaneous net ecosystem exchange (NEE) and ecosystem respiration (RE) were measured. Our results show that the mean measured seasonal NEE, i.e. the instantaneous net carbon sequestration, of hummocks was generally only slightly higher than the NEE of lawns, but the mean measured seasonal RE of hummocks was clearly and significantly higher than the RE of lawns in every study year. A reason for the observed still higher seasonal carbon sequestration of hummocks than that of lawns besides the slightly higher rate of carbon accumulation was the longer duration of physiologically active growing season. Therefore, hummock-forming Sphagnum mosses exposed firstly from snow cover showed to get the extra time for photosynthesis and thus extra benefit compared to other mire plants. This may be further enhanced by the expansion of hummock-forming Sphagnum moss dominated raised bogs towards northern aapa-mire region due to the global warming.
文摘Bryophytes dominate northern peatlands. Obtaining reliable measurements of moss-growth and how it may be affected by global changes are therefore important. Several methods have been used to measure moss-growth but it is unclear how comparable they are in different conditions and this uncertainty undermines comparisons among studies. In a field experiment we measured the growth and production of Sphagnum fallax (Sphagnum) and Polytrichum strictum (Polytrichum) using two handling methods, using cut and uncut plants, and three growth-variables, height-growth, length-growth, and mass-growth. We aimed “benchmarking” a combination of six methodological options against exactly the same set of factorial experiments: atmospheric CO2 enrichment and N addition. The two handling methods produced partly different results: in half of the cases, one method revealed a significant treatment effect but the other one did not: significant negative effects on growth were only observed on uncut plants for elevated CO2 and on cut plants for N addition. Furthermore, the correspondence between measurements made with various growth-variables depended on the species and, to a lesser extent, treatments. Sphagnum and Polytrichum growth was inhibited under elevated CO2, and correlated to higher ammonium values. Sphagnum was however less affected than Polytrichum and the height difference between the two species decreased. N addition reduced the P/N ratio and probably induced P-limiting conditions. Sphagnum growth was more inhibited than Polytrichum and the height difference between the two species increased. Our data show that such a problem indeed exists between the cut and uncut handling methods. Not only do the results differ in absolute terms by as much as 82% but also do their comparisons and interpretations depend on the handling method—and thus the interpretation would be biased—in half of the cases. These results call for caution when comparing factorial studies based on different handling methods.
文摘The increasing global concern over the public health impacts attributed to environmental pollution led us to investigate and compare the deposition of some heavy metals in mosses from an urban area, Aramoko Ekiti and a rural area, Are Ekiti. Both towns are located in the SouthWest, Nigeria. Moss samples were collected at different sites in the two towns. These samples were then digested in acid and analysed for Cd, Cr, Ni, Pb and Cu, using a flame atomic absorption spectrometer. The results of the study show variations in the concentrations of the heavy metals among the different sites in each town as well as between the two towns. Apart from cd which was suspected to have originated from natural sources in the investigated samples, the relatively higher concentrations of the other metals in Aramoko-Ekiti suggests an important anthropogenic source which we suspect to be automobiles since there are little or no industrial or mining activities within the town. Furthermore, the relatively higher concentrations of the metals exhibited by moss samples collected around locations prone to higher traffic situations in the two towns such as roadsides, filling stations and garages stresses the significance of traffic density in heavy metal pollution of the environment. These places (filling stations and garages) should be sited far away from residential areas. Also, residences should be sited at considerably far distances from major roads. These will prevent the bioaccumulation of the heavy metals in residents. Though, the results show that Aramoko-Ekiti is more polluted with the heavy metals than Are-Ekiti, the concentration of the heavy metals were still within the permissible limits. Given the results of this work and similar ones, there is need to evaluate the pollution status of the environment from time to time especially the urban areas and high traffic areas.
基金The project was supported by the National Natural Science Foundation of China(Grant Nos.40571085 and 30670152)the National Infrastructure of Natural Resources for Science and Technology(No.2005DKA21403)Science and Social Practice Foundation of Graduate Students in Chinese Academy of Sciences(Investigation on Algal Distribution in Gurbantunggut Desert,Xinjiang,China)。
文摘Algae and mosses are not only two of the familiar communities in the process of desert vegetational succession,but also have the highest biomass in biological soil crusts.Meanwhile,being the pioneer plants,algae and mosses are involved in the establishment of biological soil crusts,which have great importance in arid environments and play a major role in desert ecosystems,such as being the indicator of the vegetation type,soil-holding,preventing erosion by water and wind,and sand fixation.This paper reviews the advances in the study of algae and mosses in arid and semi-arid areas.It mainly describes the ecological functions of algae and mosses including their influences on water cycle,circulation of substances,and community succession.In addition,the relationships between algae and mosses are discussed.Finally,some suggestions are proposed for the research orientations of algae and mosses in biological soil crusts.Ecologically,algae and mosses have significant ecological importance in arid areas,especially in those areas where environmental problems are becoming increasingly serious.
文摘Aims Mosses are dominant in many ecosystems where nutrients from deposition are one of the main nutrient sources.However,it is difficult to evaluate mosses’role in nutrient cycling without knowledge of how mosses use deposited nutrient inputs.To fill this gap,the present study aims to investigate:(i)how nitrogen(N)and phosphorus(P)concentrations of new-grown segments change along a gradient of N or P amount in a pulse treatment?(ii)how do a pulse of major nutrient(N or P)affect N or P translocation rate along a moss shoot?and(iii)to what extent do N or P translocation rates link to nutrient status of the new-grown segments of mosses?Methods We measured N and P concentrations of segments with different ages in two dominant forest floor mosses,Actinothuidium hookeri and Hylocomium splendens,on 8 days and 1 year after N and P pulse treatment with an in situ experiment in a subalpine fir forest in eastern Tibetan Plateau.Important Findings Both mosses were efficient in taking up nutrients from a pulse of either N or P.Nitrogen and P concentrations of new-grown segments were affected by nutrient pulse treatments.These N and P concentration changes were attributed to the initial N and P concentration of the young segments harvested 8 days after nutrient pulse treatments,suggesting that the captured nutrients were reallocated to the new-grown segments via translocation,which was largely controlled by a source-sink relationship.While no significant relationship was found between N translocation rate and N:P ratio of the new-grown segments,P translocation rate explained 21%-23%of the variance of N:P ratio of the new-grown segments,implying importance of P transport in supporting the new-grown sections.These results suggest that nutrient(N,P)translocation is a key process for mosses to utilize intermittent nutrient supply,and thus make mosses an important nutrient pool of the ecosystem.
基金funded by National Natural Science Foundation of China(31600316).
文摘Many mosses and lichens thrive in high-elevation subalpine forests and even become dominant species on the forest foor.Although they play an irreplaceable ecological role in the forest,less is known about their ecophysiological status,and how their photosynthesis-related functional traits differ from those of co-occurring vascular plants.We determined the carbon,nitrogen and phosphorus concentrations and stoichiometric ratios,tissue mass per area,chlorophyll concentrations and photosynthetic light–response curves of three lichens,three mosses and four vascular plants in a subalpine forest in the eastern Tibetan Plateau of China.Trait values were compared among and within each group.The lichens possessed a higher nitrogen concentration than that of mosses.In addition,the two poikilohydric groups exhibited lower concentrations of nitrogen,phosphorus and chlorophyll,light-saturated assimilation rates and photosynthetic nutrient use effciencies,and higher light compensation points than those of vascular plant leaves.Furthermore,variations in photosynthesis-related traits for lichen species refect their different adaptation strategies to their corresponding environments.In contrast,the differences were weak among the three forest-foor mosses and the three herb species.These results demonstrate that the high abundance of understory lichens and mosses in the high-elevation subalpine forest cannot be explained by the photosynthesis-related traits.
基金supported by the Project of Assessment on Post-quake Ecosystem and Environment Recovery in Jiuzhaigou under Grant 5132202020000046the National Key Research and Development Programme of China under Grant 2017YFC0504902。
文摘Since natural restoration combined with artificial auxiliary measures may achieve a relatively rapid restoration effect at a lower cost, it has become an essential measure for the ecological restoration of rock slopes. Previous studies have focused heavily on the relationship between substrate nutrients and water conditions and the development of mosses on the rock surface, but quantitative characterization of substantial effect of rock surface texture(e.g., microrelief) on moss growth is absent. The undulating microrelief on the rock surface can increase the heterogeneity of the microhabitat, which may be an important factor affecting the development of mossdominated biocrusts. In this study, the roughness of rock surfaces, moss coverage and biomass, weight and major nutrient contents of soils within the biocrusts were measured in the western mountainous area of Sichuan Province, Southwest China to further examine the role of rock surface microrelief in the biocrusts. The results showed that three main factors affecting the development of the biocrusts were bryophyte emergence, soil accumulation, and lithology. The presence of moss accelerates soil formation on rock surfaces and lead to the accumulation of nutrients so that all parts of the moss-dominated biocrusts system can develop synergistically. It was found that a microrelief structure with a roughness between 1.5 and 2.5 could gather soil and bryophyte propagules effectively, which may have a strong relationship with the angle of repose. When the roughness is 1.5, the corresponding undulation angle is very close to the theoretical minimum value of the undulation angle calculated according to the relationships between the undulation angle of the protrusion, slope and angle of repose.
基金Supported by National Natural Science Foundation (40573006)~~
文摘[Objective] The paper aimed to discuss the relationship between sulfur contents of mosses and the concentration of SO2-4 and the source of Atmospheric sulfur in Nanchang.[Method] 29 moss samples (Bryohaplocladium micriophyllum (Hedw.) R.Watanabe et Iwats) were collected from four sampling points,including North campus and Qianhu campus of Nanchang Power Station were determined.[Result] The results showed that sulfur contents of mosses tissues in North campus of Nanchang University (0.45±0.059%) were higher than Qianhu campus of Nanchang University (0.26±0.002%),which coincided with the changing law of the concentration of SO2-4.Sulphur isotope of mosses tissues was-0.64‰-9.71‰.Sulphur isotope of mosses tissues in Meling (4.02‰-9.71‰) was higher than Qianhu campus of Nanchang University (0.55‰-0.56‰) and power plant (-0.64‰-0.45‰).[Conclusion] Relationship between sulphur contents and sulphur isotopes of mosses tissues showed sulfur source of sulphur deposition in Nanchang city was mainly affected by 34S-enriched sulphur transported from northerly air masses and biogenic sulfur.
文摘The relationships of 42 species of ground moss with six environmental factors in 41 sites on Changbai Mountain Biosphere Reserve were analyzed. Four site groups and four groups of ground moss ecological species were identified using the method of Two-way Indicator Species Analysis (TWINSPAN). The results of Detrended Canonical. Correspondence Analysis (DCCA) showed that altitude, soil sand content, soil acidity, forest canopy coverage and soil water content are the five major environmental factors influencing the distributional patterns of the moss species. The four groups of ecological species, which correspond well with the four site groups, are projected on the species-environment biplot of DCCA. Group 1 dominated in the bogs of Larix olgensis forest, group 2 in the alpine tundra, group 3 in the dense conifer forest, and group 4 mainly in the Betula ermanii community and the Betula ermanii-Larix olgensis forest in sub-alpine respectively.