An asymmetric damping force generation algorithm is originally proposed to yield the asymmetric force-velocity characteristics for the symmetric magneto-rheological (MR) dampers. The command current is formulated in...An asymmetric damping force generation algorithm is originally proposed to yield the asymmetric force-velocity characteristics for the symmetric magneto-rheological (MR) dampers. The command current is formulated in an asymmetric manner to excite the symmetric MR dampers by employing the “on-off” control law in response to the direction of velocity, and a smooth modulation function is developed without phase shift to suppress strong transients in the damping forces caused by the current-switching discontinuity. The effectiveness of the proposed algorithm is evaluated by analyzing the dynamic responses of a quarter-vehicle suspension system with a symmetric MR-damper by modulating the command current into the asymmetric manner. The simulation results show that the proposed algorithm could achieve a better compromise between the conflicting requirements of the asymmetric damping force ratio and the force-velocity curve smoothness, and the asymmetric damping MR-suspension design can ideally improve the road holding and ride performances of vehicle motion. The proposed algorithm can be generally incorporated with a controller synthesis to realize an intelligent vehicle suspension design with the symmetric MR dampers.展开更多
This paper presents a linear shear mod magneto-rheological(MR) damper which can be applied to vibration control system.The proposed MR damper featured by a small amount of MR fluid,absence of a gas chamber or diaphrag...This paper presents a linear shear mod magneto-rheological(MR) damper which can be applied to vibration control system.The proposed MR damper featured by a small amount of MR fluid,absence of a gas chamber or diaphragm and piston with helix slotted.Because of the absence of a gas chamber or diaphragm,unnecessary damping force caused by gas compression is not generated.Magnitude and damping coefficient of damping force are two important indexes to evaluate performance of MR damper.The piston with helix slotted is developed based on mechanical analysis on rheological characteristics of MR damper,and the damping performance of MR damper with helix slotted piston is investigated through performance experiments and comparison with analytical simulation.The results indicate that helix slot may increase friction coefficient on surface of the piston,and improve the maximum damping force without reducing damping coefficient of the damper.The reflux of MR fluid may be increased by adjusting helix angle suitably,which avoids the settlement of MR fluid.展开更多
基金This project is supported by Senior Visiting Scholarship of Chinese Scholarship Council, China(No.20H05002) Provincial Naturial Science Foundation of Education Commission of Jiangsu, China(No.03KJB510072)Doctoral Scholarship of Concordia University, Canada.
文摘An asymmetric damping force generation algorithm is originally proposed to yield the asymmetric force-velocity characteristics for the symmetric magneto-rheological (MR) dampers. The command current is formulated in an asymmetric manner to excite the symmetric MR dampers by employing the “on-off” control law in response to the direction of velocity, and a smooth modulation function is developed without phase shift to suppress strong transients in the damping forces caused by the current-switching discontinuity. The effectiveness of the proposed algorithm is evaluated by analyzing the dynamic responses of a quarter-vehicle suspension system with a symmetric MR-damper by modulating the command current into the asymmetric manner. The simulation results show that the proposed algorithm could achieve a better compromise between the conflicting requirements of the asymmetric damping force ratio and the force-velocity curve smoothness, and the asymmetric damping MR-suspension design can ideally improve the road holding and ride performances of vehicle motion. The proposed algorithm can be generally incorporated with a controller synthesis to realize an intelligent vehicle suspension design with the symmetric MR dampers.
基金Sponsored by the National Natural Science Foundation of China(Grant No.11372803)
文摘This paper presents a linear shear mod magneto-rheological(MR) damper which can be applied to vibration control system.The proposed MR damper featured by a small amount of MR fluid,absence of a gas chamber or diaphragm and piston with helix slotted.Because of the absence of a gas chamber or diaphragm,unnecessary damping force caused by gas compression is not generated.Magnitude and damping coefficient of damping force are two important indexes to evaluate performance of MR damper.The piston with helix slotted is developed based on mechanical analysis on rheological characteristics of MR damper,and the damping performance of MR damper with helix slotted piston is investigated through performance experiments and comparison with analytical simulation.The results indicate that helix slot may increase friction coefficient on surface of the piston,and improve the maximum damping force without reducing damping coefficient of the damper.The reflux of MR fluid may be increased by adjusting helix angle suitably,which avoids the settlement of MR fluid.