Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant resear...Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges.展开更多
Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction mode...Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.展开更多
Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of po...Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of possible future trajectories can be consid-erable(multi-modal).Most prior approaches proposed to address multi-modal motion prediction are based on complex machine learning systems that have limited interpret-ability.Moreover,the metrics used in current benchmarks do not evaluate all aspects of the problem,such as the diversity and admissibility of the output.The authors aim to advance towards the design of trustworthy motion prediction systems,based on some of the re-quirements for the design of Trustworthy Artificial Intelligence.The focus is on evaluation criteria,robustness,and interpretability of outputs.First,the evaluation metrics are comprehensively analysed,the main gaps of current benchmarks are identified,and a new holistic evaluation framework is proposed.Then,a method for the assessment of spatial and temporal robustness is introduced by simulating noise in the perception system.To enhance the interpretability of the outputs and generate more balanced results in the proposed evaluation framework,an intent prediction layer that can be attached to multi-modal motion prediction models is proposed.The effectiveness of this approach is assessed through a survey that explores different elements in the visualisation of the multi-modal trajectories and intentions.The proposed approach and findings make a significant contribution to the development of trustworthy motion prediction systems for autono-mous vehicles,advancing the field towards greater safety and reliability.展开更多
Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and ...Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.展开更多
Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the...Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the research and applications of natural language processing across different modalities,our goal is to accurately extract frame-level semantic information from videos and ultimately transmit high-quality videos.Specifically,we propose a deep learning-basedMulti-ModalMutual Enhancement Video Semantic Communication system,called M3E-VSC.Built upon a VectorQuantized Generative AdversarialNetwork(VQGAN),our systemaims to leverage mutual enhancement among different modalities by using text as the main carrier of transmission.With it,the semantic information can be extracted fromkey-frame images and audio of the video and performdifferential value to ensure that the extracted text conveys accurate semantic information with fewer bits,thus improving the capacity of the system.Furthermore,a multi-frame semantic detection module is designed to facilitate semantic transitions during video generation.Simulation results demonstrate that our proposed model maintains high robustness in complex noise environments,particularly in low signal-to-noise ratio conditions,significantly improving the accuracy and speed of semantic transmission in video communication by approximately 50 percent.展开更多
Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the intro...Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the introduction of a large amount of information from other modalities reduces the effectiveness of representation learning and makes knowledge graph inference less effective.To address the issue,an inference method based on Media Convergence and Rule-guided Joint Inference model(MCRJI)has been pro-posed.The authors not only converge multi-media features of entities but also introduce logic rules to improve the accuracy and interpretability of link prediction.First,a multi-headed self-attention approach is used to obtain the attention of different media features of entities during semantic synthesis.Second,logic rules of different lengths are mined from knowledge graph to learn new entity representations.Finally,knowledge graph inference is performed based on representing entities that converge multi-media features.Numerous experimental results show that MCRJI outperforms other advanced baselines in using multi-media features and knowledge graph inference,demonstrating that MCRJI provides an excellent approach for knowledge graph inference with converged multi-media features.展开更多
Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent...Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent personal assistants within the context of visual,auditory,and somatosensory interactions with drivers were discussed.Their impact on the driver’s psychological state through various modes such as visual imagery,voice interaction,and gesture interaction were explored.The study also introduced innovative designs for in-vehicle intelligent personal assistants,incorporating design principles such as driver-centricity,prioritizing passenger safety,and utilizing timely feedback as a criterion.Additionally,the study employed design methods like driver behavior research and driving situation analysis to enhance the emotional connection between drivers and their vehicles,ultimately improving driver satisfaction and trust.展开更多
The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-genera...The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable.展开更多
The sixth generation(6G)of mobile communication system is witnessing a new paradigm shift,i.e.,integrated sensing-communication system.A comprehensive dataset is a prerequisite for 6G integrated sensing-communication ...The sixth generation(6G)of mobile communication system is witnessing a new paradigm shift,i.e.,integrated sensing-communication system.A comprehensive dataset is a prerequisite for 6G integrated sensing-communication research.This paper develops a novel simulation dataset,named M3SC,for mixed multi-modal(MMM)sensing-communication integration,and the generation framework of the M3SC dataset is further given.To obtain multimodal sensory data in physical space and communication data in electromagnetic space,we utilize Air-Sim and WaveFarer to collect multi-modal sensory data and exploit Wireless InSite to collect communication data.Furthermore,the in-depth integration and precise alignment of AirSim,WaveFarer,andWireless InSite are achieved.The M3SC dataset covers various weather conditions,multiplex frequency bands,and different times of the day.Currently,the M3SC dataset contains 1500 snapshots,including 80 RGB images,160 depth maps,80 LiDAR point clouds,256 sets of mmWave waveforms with 8 radar point clouds,and 72 channel impulse response(CIR)matrices per snapshot,thus totaling 120,000 RGB images,240,000 depth maps,120,000 LiDAR point clouds,384,000 sets of mmWave waveforms with 12,000 radar point clouds,and 108,000 CIR matrices.The data processing result presents the multi-modal sensory information and communication channel statistical properties.Finally,the MMM sensing-communication application,which can be supported by the M3SC dataset,is discussed.展开更多
Deep learning based methods have been successfully applied to semantic segmentation of optical remote sensing images.However,as more and more remote sensing data is available,it is a new challenge to comprehensively u...Deep learning based methods have been successfully applied to semantic segmentation of optical remote sensing images.However,as more and more remote sensing data is available,it is a new challenge to comprehensively utilize multi-modal remote sensing data to break through the performance bottleneck of single-modal interpretation.In addition,semantic segmentation and height estimation in remote sensing data are two tasks with strong correlation,but existing methods usually study individual tasks separately,which leads to high computational resource overhead.To this end,we propose a Multi-Task learning framework for Multi-Modal remote sensing images(MM_MT).Specifically,we design a Cross-Modal Feature Fusion(CMFF)method,which aggregates complementary information of different modalities to improve the accuracy of semantic segmentation and height estimation.Besides,a dual-stream multi-task learning method is introduced for Joint Semantic Segmentation and Height Estimation(JSSHE),extracting common features in a shared network to save time and resources,and then learning task-specific features in two task branches.Experimental results on the public multi-modal remote sensing image dataset Potsdam show that compared to training two tasks independently,multi-task learning saves 20%of training time and achieves competitive performance with mIoU of 83.02%for semantic segmentation and accuracy of 95.26%for height estimation.展开更多
Power Shell has been widely deployed in fileless malware and advanced persistent threat(APT)attacks due to its high stealthiness and live-off-theland technique.However,existing works mainly focus on deobfuscation and ...Power Shell has been widely deployed in fileless malware and advanced persistent threat(APT)attacks due to its high stealthiness and live-off-theland technique.However,existing works mainly focus on deobfuscation and malicious detection,lacking the malicious Power Shell families classification and behavior analysis.Moreover,the state-of-the-art methods fail to capture fine-grained features and semantic relationships,resulting in low robustness and accuracy.To this end,we propose Power Detector,a novel malicious Power Shell script detector based on multimodal semantic fusion and deep learning.Specifically,we design four feature extraction methods to extract key features from character,token,abstract syntax tree(AST),and semantic knowledge graph.Then,we intelligently design four embeddings(i.e.,Char2Vec,Token2Vec,AST2Vec,and Rela2Vec) and construct a multi-modal fusion algorithm to concatenate feature vectors from different views.Finally,we propose a combined model based on transformer and CNN-Bi LSTM to implement Power Shell family detection.Our experiments with five types of Power Shell attacks show that PowerDetector can accurately detect various obfuscated and stealth PowerShell scripts,with a 0.9402 precision,a 0.9358 recall,and a 0.9374 F1-score.Furthermore,through singlemodal and multi-modal comparison experiments,we demonstrate that PowerDetector’s multi-modal embedding and deep learning model can achieve better accuracy and even identify more unknown attacks.展开更多
Deep multi-modal learning,a rapidly growing field with a wide range of practical applications,aims to effectively utilize and integrate information from multiple sources,known as modalities.Despite its impressive empi...Deep multi-modal learning,a rapidly growing field with a wide range of practical applications,aims to effectively utilize and integrate information from multiple sources,known as modalities.Despite its impressive empirical performance,the theoretical foundations of deep multi-modal learning have yet to be fully explored.In this paper,we will undertake a comprehensive survey of recent developments in multi-modal learning theories,focusing on the fundamental properties that govern this field.Our goal is to provide a thorough collection of current theoretical tools for analyzing multi-modal learning,to clarify their implications for practitioners,and to suggest future directions for the establishment of a solid theoretical foundation for deep multi-modal learning.展开更多
Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event eleme...Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event elements from multi-modal data remains a challenging task due to the presence of a large number of images and overlapping event elements in the data.Although researchers have proposed various methods to accomplish this task,most existing event extraction models cannot address these challenges because they are only applicable to text scenarios.To solve the above issues,this paper proposes a multi-modal event extraction method based on knowledge fusion.Specifically,for event-type recognition,we use a meticulous pipeline approach that integrates multiple pre-trained models.This approach enables a more comprehensive capture of the multidimensional event semantic features present in military texts,thereby enhancing the interconnectedness of information between trigger words and events.For event element extraction,we propose a method for constructing a priori templates that combine event types with corresponding trigger words.This approach facilitates the acquisition of fine-grained input samples containing event trigger words,thus enabling the model to understand the semantic relationships between elements in greater depth.Furthermore,a fusion method for spatial mapping of textual event elements and image elements is proposed to reduce the category number overload and effectively achieve multi-modal knowledge fusion.The experimental results based on the CCKS 2022 dataset show that our method has achieved competitive results,with a comprehensive evaluation value F1-score of 53.4%for the model.These results validate the effectiveness of our method in extracting event elements from multi-modal data.展开更多
Media convergence is a media change led by technological innovation.Applying media convergence technology to the study of clustering in Chinese medicine can significantly exploit the advantages of media fusion.Obtaini...Media convergence is a media change led by technological innovation.Applying media convergence technology to the study of clustering in Chinese medicine can significantly exploit the advantages of media fusion.Obtaining consistent and complementary information among multiple modalities through media convergence can provide technical support for clustering.This article presents an approach based on Media Convergence and Graph convolution Encoder Clustering(MCGEC)for traditonal Chinese medicine(TCM)clinical data.It feeds modal information and graph structure from media information into a multi-modal graph convolution encoder to obtain the media feature representation learnt from multiple modalities.MCGEC captures latent information from various modalities by fusion and optimises the feature representations and network architecture with learnt clustering labels.The experiment is conducted on real-world multimodal TCM clinical data,including information like images and text.MCGEC has improved clustering results compared to the generic single-modal clustering methods and the current more advanced multi-modal clustering methods.MCGEC applied to TCM clinical datasets can achieve better results.Integrating multimedia features into clustering algorithms offers significant benefits compared to single-modal clustering approaches that simply concatenate features from different modalities.It provides practical technical support for multi-modal clustering in the TCM field incorporating multimedia features.展开更多
In recent years,many visual positioning algorithms have been proposed based on computer vision and they have achieved good results.However,these algorithms have a single function,cannot perceive the environment,and ha...In recent years,many visual positioning algorithms have been proposed based on computer vision and they have achieved good results.However,these algorithms have a single function,cannot perceive the environment,and have poor versatility,and there is a certain mismatch phenomenon,which affects the positioning accuracy.Therefore,this paper proposes a location algorithm that combines a target recognition algorithm with a depth feature matching algorithm to solve the problem of unmanned aerial vehicle(UAV)environment perception and multi-modal image-matching fusion location.This algorithm was based on the single-shot object detector based on multi-level feature pyramid network(M2Det)algorithm and replaced the original visual geometry group(VGG)feature extraction network with the ResNet-101 network to improve the feature extraction capability of the network model.By introducing a depth feature matching algorithm,the algorithm shares neural network weights and realizes the design of UAV target recognition and a multi-modal image-matching fusion positioning algorithm.When the reference image and the real-time image were mismatched,the dynamic adaptive proportional constraint and the random sample consensus consistency algorithm(DAPC-RANSAC)were used to optimize the matching results to improve the correct matching efficiency of the target.Using the multi-modal registration data set,the proposed algorithm was compared and analyzed to verify its superiority and feasibility.The results show that the algorithm proposed in this paper can effectively deal with the matching between multi-modal images(visible image–infrared image,infrared image–satellite image,visible image–satellite image),and the contrast,scale,brightness,ambiguity deformation,and other changes had good stability and robustness.Finally,the effectiveness and practicability of the algorithm proposed in this paper were verified in an aerial test scene of an S1000 sixrotor UAV.展开更多
In geometry processing,symmetry research benefits from global geo-metric features of complete shapes,but the shape of an object captured in real-world applications is often incomplete due to the limited sensor resoluti...In geometry processing,symmetry research benefits from global geo-metric features of complete shapes,but the shape of an object captured in real-world applications is often incomplete due to the limited sensor resolution,single viewpoint,and occlusion.Different from the existing works predicting symmetry from the complete shape,we propose a learning approach for symmetry predic-tion based on a single RGB-D image.Instead of directly predicting the symmetry from incomplete shapes,our method consists of two modules,i.e.,the multi-mod-al feature fusion module and the detection-by-reconstruction module.Firstly,we build a channel-transformer network(CTN)to extract cross-fusion features from the RGB-D as the multi-modal feature fusion module,which helps us aggregate features from the color and the depth separately.Then,our self-reconstruction net-work based on a 3D variational auto-encoder(3D-VAE)takes the global geo-metric features as input,followed by a prediction symmetry network to detect the symmetry.Our experiments are conducted on three public datasets:ShapeNet,YCB,and ScanNet,we demonstrate that our method can produce reliable and accurate results.展开更多
The knowledge graph with relational abundant information has been widely used as the basic data support for the retrieval platforms.Image and text descriptions added to the knowledge graph enrich the node information,...The knowledge graph with relational abundant information has been widely used as the basic data support for the retrieval platforms.Image and text descriptions added to the knowledge graph enrich the node information,which accounts for the advantage of the multi-modal knowledge graph.In the field of cross-modal retrieval platforms,multi-modal knowledge graphs can help to improve retrieval accuracy and efficiency because of the abundant relational infor-mation provided by knowledge graphs.The representation learning method is sig-nificant to the application of multi-modal knowledge graphs.This paper proposes a distributed collaborative vector retrieval platform(DCRL-KG)using the multi-modal knowledge graph VisualSem as the foundation to achieve efficient and high-precision multimodal data retrieval.Firstly,use distributed technology to classify and store the data in the knowledge graph to improve retrieval efficiency.Secondly,this paper uses BabelNet to expand the knowledge graph through multi-ple filtering processes and increase the diversification of information.Finally,this paper builds a variety of retrieval models to achieve the fusion of retrieval results through linear combination methods to achieve high-precision language retrieval and image retrieval.The paper uses sentence retrieval and image retrieval experi-ments to prove that the platform can optimize the storage structure of the multi-modal knowledge graph and have good performance in multi-modal space.展开更多
This paper presents a two-phase genetic algorithm (TPGA) based on the multi- parent genetic algorithm (MPGA). Through analysis we find MPGA will lead the population' s evol vement to diversity or convergence accor...This paper presents a two-phase genetic algorithm (TPGA) based on the multi- parent genetic algorithm (MPGA). Through analysis we find MPGA will lead the population' s evol vement to diversity or convergence according to the population size and the crossover size, so we make it run in different forms during the global and local optimization phases and then forms TPGA. The experiment results show that TPGA is very efficient for the optimization of low-dimension multi-modal functions, usually we can obtain all the global optimal solutions.展开更多
Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become availa...Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.展开更多
In this paper, a new algorithm for solving multi-modal function optimization problems-two-level subspace evolutionary algorithm is proposed. In the first level, the improved GT algorithm is used to do global recombina...In this paper, a new algorithm for solving multi-modal function optimization problems-two-level subspace evolutionary algorithm is proposed. In the first level, the improved GT algorithm is used to do global recombination search so that the whole population can be separated into several niches according to the position of solutions; then, in the second level, the niche evolutionary strategy is used for local search in the subspaces gotten in the first level till solutions of the problem are found. The new algorithm has been tested on some hard problems and some good results are obtained.展开更多
基金supported by the Natural Science Foundation of Liaoning Province(Grant No.2023-MSBA-070)the National Natural Science Foundation of China(Grant No.62302086).
文摘Multi-modal fusion technology gradually become a fundamental task in many fields,such as autonomous driving,smart healthcare,sentiment analysis,and human-computer interaction.It is rapidly becoming the dominant research due to its powerful perception and judgment capabilities.Under complex scenes,multi-modal fusion technology utilizes the complementary characteristics of multiple data streams to fuse different data types and achieve more accurate predictions.However,achieving outstanding performance is challenging because of equipment performance limitations,missing information,and data noise.This paper comprehensively reviews existing methods based onmulti-modal fusion techniques and completes a detailed and in-depth analysis.According to the data fusion stage,multi-modal fusion has four primary methods:early fusion,deep fusion,late fusion,and hybrid fusion.The paper surveys the three majormulti-modal fusion technologies that can significantly enhance the effect of data fusion and further explore the applications of multi-modal fusion technology in various fields.Finally,it discusses the challenges and explores potential research opportunities.Multi-modal tasks still need intensive study because of data heterogeneity and quality.Preserving complementary information and eliminating redundant information between modalities is critical in multi-modal technology.Invalid data fusion methods may introduce extra noise and lead to worse results.This paper provides a comprehensive and detailed summary in response to these challenges.
基金Project(2023JH26-10100002)supported by the Liaoning Science and Technology Major Project,ChinaProjects(U21A20117,52074085)supported by the National Natural Science Foundation of China+1 种基金Project(2022JH2/101300008)supported by the Liaoning Applied Basic Research Program Project,ChinaProject(22567612H)supported by the Hebei Provincial Key Laboratory Performance Subsidy Project,China。
文摘Mill vibration is a common problem in rolling production,which directly affects the thickness accuracy of the strip and may even lead to strip fracture accidents in serious cases.The existing vibration prediction models do not consider the features contained in the data,resulting in limited improvement of model accuracy.To address these challenges,this paper proposes a multi-dimensional multi-modal cold rolling vibration time series prediction model(MDMMVPM)based on the deep fusion of multi-level networks.In the model,the long-term and short-term modal features of multi-dimensional data are considered,and the appropriate prediction algorithms are selected for different data features.Based on the established prediction model,the effects of tension and rolling force on mill vibration are analyzed.Taking the 5th stand of a cold mill in a steel mill as the research object,the innovative model is applied to predict the mill vibration for the first time.The experimental results show that the correlation coefficient(R^(2))of the model proposed in this paper is 92.5%,and the root-mean-square error(RMSE)is 0.0011,which significantly improves the modeling accuracy compared with the existing models.The proposed model is also suitable for the hot rolling process,which provides a new method for the prediction of strip rolling vibration.
基金European Commission,Joint Research Center,Grant/Award Number:HUMAINTMinisterio de Ciencia e Innovación,Grant/Award Number:PID2020‐114924RB‐I00Comunidad de Madrid,Grant/Award Number:S2018/EMT‐4362 SEGVAUTO 4.0‐CM。
文摘Predicting the motion of other road agents enables autonomous vehicles to perform safe and efficient path planning.This task is very complex,as the behaviour of road agents depends on many factors and the number of possible future trajectories can be consid-erable(multi-modal).Most prior approaches proposed to address multi-modal motion prediction are based on complex machine learning systems that have limited interpret-ability.Moreover,the metrics used in current benchmarks do not evaluate all aspects of the problem,such as the diversity and admissibility of the output.The authors aim to advance towards the design of trustworthy motion prediction systems,based on some of the re-quirements for the design of Trustworthy Artificial Intelligence.The focus is on evaluation criteria,robustness,and interpretability of outputs.First,the evaluation metrics are comprehensively analysed,the main gaps of current benchmarks are identified,and a new holistic evaluation framework is proposed.Then,a method for the assessment of spatial and temporal robustness is introduced by simulating noise in the perception system.To enhance the interpretability of the outputs and generate more balanced results in the proposed evaluation framework,an intent prediction layer that can be attached to multi-modal motion prediction models is proposed.The effectiveness of this approach is assessed through a survey that explores different elements in the visualisation of the multi-modal trajectories and intentions.The proposed approach and findings make a significant contribution to the development of trustworthy motion prediction systems for autono-mous vehicles,advancing the field towards greater safety and reliability.
基金funded by the National Natural Science Foundation of China(61991413)the China Postdoctoral Science Foundation(2019M651142)+1 种基金the Natural Science Foundation of Liaoning Province(2021-KF-12-07)the Natural Science Foundations of Liaoning Province(2023-MS-322).
文摘Fusing hand-based features in multi-modal biometric recognition enhances anti-spoofing capabilities.Additionally,it leverages inter-modal correlation to enhance recognition performance.Concurrently,the robustness and recognition performance of the system can be enhanced through judiciously leveraging the correlation among multimodal features.Nevertheless,two issues persist in multi-modal feature fusion recognition:Firstly,the enhancement of recognition performance in fusion recognition has not comprehensively considered the inter-modality correlations among distinct modalities.Secondly,during modal fusion,improper weight selection diminishes the salience of crucial modal features,thereby diminishing the overall recognition performance.To address these two issues,we introduce an enhanced DenseNet multimodal recognition network founded on feature-level fusion.The information from the three modalities is fused akin to RGB,and the input network augments the correlation between modes through channel correlation.Within the enhanced DenseNet network,the Efficient Channel Attention Network(ECA-Net)dynamically adjusts the weight of each channel to amplify the salience of crucial information in each modal feature.Depthwise separable convolution markedly reduces the training parameters and further enhances the feature correlation.Experimental evaluations were conducted on four multimodal databases,comprising six unimodal databases,including multispectral palmprint and palm vein databases from the Chinese Academy of Sciences.The Equal Error Rates(EER)values were 0.0149%,0.0150%,0.0099%,and 0.0050%,correspondingly.In comparison to other network methods for palmprint,palm vein,and finger vein fusion recognition,this approach substantially enhances recognition performance,rendering it suitable for high-security environments with practical applicability.The experiments in this article utilized amodest sample database comprising 200 individuals.The subsequent phase involves preparing for the extension of the method to larger databases.
基金supported by the National Key Research and Development Project under Grant 2020YFB1807602Key Program of Marine Economy Development Special Foundation of Department of Natural Resources of Guangdong Province(GDNRC[2023]24)the National Natural Science Foundation of China under Grant 62271267.
文摘Recently,there have been significant advancements in the study of semantic communication in single-modal scenarios.However,the ability to process information in multi-modal environments remains limited.Inspired by the research and applications of natural language processing across different modalities,our goal is to accurately extract frame-level semantic information from videos and ultimately transmit high-quality videos.Specifically,we propose a deep learning-basedMulti-ModalMutual Enhancement Video Semantic Communication system,called M3E-VSC.Built upon a VectorQuantized Generative AdversarialNetwork(VQGAN),our systemaims to leverage mutual enhancement among different modalities by using text as the main carrier of transmission.With it,the semantic information can be extracted fromkey-frame images and audio of the video and performdifferential value to ensure that the extracted text conveys accurate semantic information with fewer bits,thus improving the capacity of the system.Furthermore,a multi-frame semantic detection module is designed to facilitate semantic transitions during video generation.Simulation results demonstrate that our proposed model maintains high robustness in complex noise environments,particularly in low signal-to-noise ratio conditions,significantly improving the accuracy and speed of semantic transmission in video communication by approximately 50 percent.
基金National College Students’Training Programs of Innovation and Entrepreneurship,Grant/Award Number:S202210022060the CACMS Innovation Fund,Grant/Award Number:CI2021A00512the National Nature Science Foundation of China under Grant,Grant/Award Number:62206021。
文摘Media convergence works by processing information from different modalities and applying them to different domains.It is difficult for the conventional knowledge graph to utilise multi-media features because the introduction of a large amount of information from other modalities reduces the effectiveness of representation learning and makes knowledge graph inference less effective.To address the issue,an inference method based on Media Convergence and Rule-guided Joint Inference model(MCRJI)has been pro-posed.The authors not only converge multi-media features of entities but also introduce logic rules to improve the accuracy and interpretability of link prediction.First,a multi-headed self-attention approach is used to obtain the attention of different media features of entities during semantic synthesis.Second,logic rules of different lengths are mined from knowledge graph to learn new entity representations.Finally,knowledge graph inference is performed based on representing entities that converge multi-media features.Numerous experimental results show that MCRJI outperforms other advanced baselines in using multi-media features and knowledge graph inference,demonstrating that MCRJI provides an excellent approach for knowledge graph inference with converged multi-media features.
文摘Intelligent personal assistants play a pivotal role in in-vehicle systems,significantly enhancing life efficiency,driving safety,and decision-making support.In this study,the multi-modal design elements of intelligent personal assistants within the context of visual,auditory,and somatosensory interactions with drivers were discussed.Their impact on the driver’s psychological state through various modes such as visual imagery,voice interaction,and gesture interaction were explored.The study also introduced innovative designs for in-vehicle intelligent personal assistants,incorporating design principles such as driver-centricity,prioritizing passenger safety,and utilizing timely feedback as a criterion.Additionally,the study employed design methods like driver behavior research and driving situation analysis to enhance the emotional connection between drivers and their vehicles,ultimately improving driver satisfaction and trust.
基金the National Natural Science Foundation of China(No.61976080)the Academic Degrees&Graduate Education Reform Project of Henan Province(No.2021SJGLX195Y)+1 种基金the Teaching Reform Research and Practice Project of Henan Undergraduate Universities(No.2022SYJXLX008)the Key Project on Research and Practice of Henan University Graduate Education and Teaching Reform(No.YJSJG2023XJ006)。
文摘The unsupervised multi-modal image translation is an emerging domain of computer vision whose goal is to transform an image from the source domain into many diverse styles in the target domain.However,the multi-generator mechanism is employed among the advanced approaches available to model different domain mappings,which results in inefficient training of neural networks and pattern collapse,leading to inefficient generation of image diversity.To address this issue,this paper introduces a multi-modal unsupervised image translation framework that uses a generator to perform multi-modal image translation.Specifically,firstly,the domain code is introduced in this paper to explicitly control the different generation tasks.Secondly,this paper brings in the squeeze-and-excitation(SE)mechanism and feature attention(FA)module.Finally,the model integrates multiple optimization objectives to ensure efficient multi-modal translation.This paper performs qualitative and quantitative experiments on multiple non-paired benchmark image translation datasets while demonstrating the benefits of the proposed method over existing technologies.Overall,experimental results have shown that the proposed method is versatile and scalable.
基金This work was supported in part by the Ministry National Key Research and Development Project(Grant No.2020AAA0108101)the National Natural Science Foundation of China(Grants No.62125101,62341101,62001018,and 62301011)+1 种基金Shandong Natural Science Foundation(Grant No.ZR2023YQ058)the New Cornerstone Science Foundation through the XPLORER PRIZE.The authors would like to thank Mengyuan Lu and Zengrui Han for their help in the construction of electromagnetic space in Wireless InSite simulation platform and Weibo Wen,Qi Duan,and Yong Yu for their help in the construction of phys ical space in AirSim simulation platform.
文摘The sixth generation(6G)of mobile communication system is witnessing a new paradigm shift,i.e.,integrated sensing-communication system.A comprehensive dataset is a prerequisite for 6G integrated sensing-communication research.This paper develops a novel simulation dataset,named M3SC,for mixed multi-modal(MMM)sensing-communication integration,and the generation framework of the M3SC dataset is further given.To obtain multimodal sensory data in physical space and communication data in electromagnetic space,we utilize Air-Sim and WaveFarer to collect multi-modal sensory data and exploit Wireless InSite to collect communication data.Furthermore,the in-depth integration and precise alignment of AirSim,WaveFarer,andWireless InSite are achieved.The M3SC dataset covers various weather conditions,multiplex frequency bands,and different times of the day.Currently,the M3SC dataset contains 1500 snapshots,including 80 RGB images,160 depth maps,80 LiDAR point clouds,256 sets of mmWave waveforms with 8 radar point clouds,and 72 channel impulse response(CIR)matrices per snapshot,thus totaling 120,000 RGB images,240,000 depth maps,120,000 LiDAR point clouds,384,000 sets of mmWave waveforms with 12,000 radar point clouds,and 108,000 CIR matrices.The data processing result presents the multi-modal sensory information and communication channel statistical properties.Finally,the MMM sensing-communication application,which can be supported by the M3SC dataset,is discussed.
基金National Key R&D Program of China(No.2022ZD0118401).
文摘Deep learning based methods have been successfully applied to semantic segmentation of optical remote sensing images.However,as more and more remote sensing data is available,it is a new challenge to comprehensively utilize multi-modal remote sensing data to break through the performance bottleneck of single-modal interpretation.In addition,semantic segmentation and height estimation in remote sensing data are two tasks with strong correlation,but existing methods usually study individual tasks separately,which leads to high computational resource overhead.To this end,we propose a Multi-Task learning framework for Multi-Modal remote sensing images(MM_MT).Specifically,we design a Cross-Modal Feature Fusion(CMFF)method,which aggregates complementary information of different modalities to improve the accuracy of semantic segmentation and height estimation.Besides,a dual-stream multi-task learning method is introduced for Joint Semantic Segmentation and Height Estimation(JSSHE),extracting common features in a shared network to save time and resources,and then learning task-specific features in two task branches.Experimental results on the public multi-modal remote sensing image dataset Potsdam show that compared to training two tasks independently,multi-task learning saves 20%of training time and achieves competitive performance with mIoU of 83.02%for semantic segmentation and accuracy of 95.26%for height estimation.
基金This work was supported by National Natural Science Foundation of China(No.62172308,No.U1626107,No.61972297,No.62172144,and No.62062019).
文摘Power Shell has been widely deployed in fileless malware and advanced persistent threat(APT)attacks due to its high stealthiness and live-off-theland technique.However,existing works mainly focus on deobfuscation and malicious detection,lacking the malicious Power Shell families classification and behavior analysis.Moreover,the state-of-the-art methods fail to capture fine-grained features and semantic relationships,resulting in low robustness and accuracy.To this end,we propose Power Detector,a novel malicious Power Shell script detector based on multimodal semantic fusion and deep learning.Specifically,we design four feature extraction methods to extract key features from character,token,abstract syntax tree(AST),and semantic knowledge graph.Then,we intelligently design four embeddings(i.e.,Char2Vec,Token2Vec,AST2Vec,and Rela2Vec) and construct a multi-modal fusion algorithm to concatenate feature vectors from different views.Finally,we propose a combined model based on transformer and CNN-Bi LSTM to implement Power Shell family detection.Our experiments with five types of Power Shell attacks show that PowerDetector can accurately detect various obfuscated and stealth PowerShell scripts,with a 0.9402 precision,a 0.9358 recall,and a 0.9374 F1-score.Furthermore,through singlemodal and multi-modal comparison experiments,we demonstrate that PowerDetector’s multi-modal embedding and deep learning model can achieve better accuracy and even identify more unknown attacks.
基金Supported by Technology and Innovation Major Project of the Ministry of Science and Technology of China(2020AAA0108400, 2020AAA0108403)Tsinghua Precision Medicine Foundation(10001020109)。
文摘Deep multi-modal learning,a rapidly growing field with a wide range of practical applications,aims to effectively utilize and integrate information from multiple sources,known as modalities.Despite its impressive empirical performance,the theoretical foundations of deep multi-modal learning have yet to be fully explored.In this paper,we will undertake a comprehensive survey of recent developments in multi-modal learning theories,focusing on the fundamental properties that govern this field.Our goal is to provide a thorough collection of current theoretical tools for analyzing multi-modal learning,to clarify their implications for practitioners,and to suggest future directions for the establishment of a solid theoretical foundation for deep multi-modal learning.
基金supported by the National Natural Science Foundation of China(Grant No.81973695)Discipline with Strong Characteristics of Liaocheng University-Intelligent Science and Technology(Grant No.319462208).
文摘Event extraction stands as a significant endeavor within the realm of information extraction,aspiring to automatically extract structured event information from vast volumes of unstructured text.Extracting event elements from multi-modal data remains a challenging task due to the presence of a large number of images and overlapping event elements in the data.Although researchers have proposed various methods to accomplish this task,most existing event extraction models cannot address these challenges because they are only applicable to text scenarios.To solve the above issues,this paper proposes a multi-modal event extraction method based on knowledge fusion.Specifically,for event-type recognition,we use a meticulous pipeline approach that integrates multiple pre-trained models.This approach enables a more comprehensive capture of the multidimensional event semantic features present in military texts,thereby enhancing the interconnectedness of information between trigger words and events.For event element extraction,we propose a method for constructing a priori templates that combine event types with corresponding trigger words.This approach facilitates the acquisition of fine-grained input samples containing event trigger words,thus enabling the model to understand the semantic relationships between elements in greater depth.Furthermore,a fusion method for spatial mapping of textual event elements and image elements is proposed to reduce the category number overload and effectively achieve multi-modal knowledge fusion.The experimental results based on the CCKS 2022 dataset show that our method has achieved competitive results,with a comprehensive evaluation value F1-score of 53.4%for the model.These results validate the effectiveness of our method in extracting event elements from multi-modal data.
基金China Academy of Chinese Medical Sciences,Grant/Award Number:CI2021A00512。
文摘Media convergence is a media change led by technological innovation.Applying media convergence technology to the study of clustering in Chinese medicine can significantly exploit the advantages of media fusion.Obtaining consistent and complementary information among multiple modalities through media convergence can provide technical support for clustering.This article presents an approach based on Media Convergence and Graph convolution Encoder Clustering(MCGEC)for traditonal Chinese medicine(TCM)clinical data.It feeds modal information and graph structure from media information into a multi-modal graph convolution encoder to obtain the media feature representation learnt from multiple modalities.MCGEC captures latent information from various modalities by fusion and optimises the feature representations and network architecture with learnt clustering labels.The experiment is conducted on real-world multimodal TCM clinical data,including information like images and text.MCGEC has improved clustering results compared to the generic single-modal clustering methods and the current more advanced multi-modal clustering methods.MCGEC applied to TCM clinical datasets can achieve better results.Integrating multimedia features into clustering algorithms offers significant benefits compared to single-modal clustering approaches that simply concatenate features from different modalities.It provides practical technical support for multi-modal clustering in the TCM field incorporating multimedia features.
基金supported in part by the National Natural Science Foundation of China under Grant 62276274in part by the Natural Science Foundation of Shaanxi Province under Grant 2020JM-537,and in part by the Aeronautical Science Fund under Grant 201851U8012(corresponding author:Xiaogang Yang).
文摘In recent years,many visual positioning algorithms have been proposed based on computer vision and they have achieved good results.However,these algorithms have a single function,cannot perceive the environment,and have poor versatility,and there is a certain mismatch phenomenon,which affects the positioning accuracy.Therefore,this paper proposes a location algorithm that combines a target recognition algorithm with a depth feature matching algorithm to solve the problem of unmanned aerial vehicle(UAV)environment perception and multi-modal image-matching fusion location.This algorithm was based on the single-shot object detector based on multi-level feature pyramid network(M2Det)algorithm and replaced the original visual geometry group(VGG)feature extraction network with the ResNet-101 network to improve the feature extraction capability of the network model.By introducing a depth feature matching algorithm,the algorithm shares neural network weights and realizes the design of UAV target recognition and a multi-modal image-matching fusion positioning algorithm.When the reference image and the real-time image were mismatched,the dynamic adaptive proportional constraint and the random sample consensus consistency algorithm(DAPC-RANSAC)were used to optimize the matching results to improve the correct matching efficiency of the target.Using the multi-modal registration data set,the proposed algorithm was compared and analyzed to verify its superiority and feasibility.The results show that the algorithm proposed in this paper can effectively deal with the matching between multi-modal images(visible image–infrared image,infrared image–satellite image,visible image–satellite image),and the contrast,scale,brightness,ambiguity deformation,and other changes had good stability and robustness.Finally,the effectiveness and practicability of the algorithm proposed in this paper were verified in an aerial test scene of an S1000 sixrotor UAV.
文摘In geometry processing,symmetry research benefits from global geo-metric features of complete shapes,but the shape of an object captured in real-world applications is often incomplete due to the limited sensor resolution,single viewpoint,and occlusion.Different from the existing works predicting symmetry from the complete shape,we propose a learning approach for symmetry predic-tion based on a single RGB-D image.Instead of directly predicting the symmetry from incomplete shapes,our method consists of two modules,i.e.,the multi-mod-al feature fusion module and the detection-by-reconstruction module.Firstly,we build a channel-transformer network(CTN)to extract cross-fusion features from the RGB-D as the multi-modal feature fusion module,which helps us aggregate features from the color and the depth separately.Then,our self-reconstruction net-work based on a 3D variational auto-encoder(3D-VAE)takes the global geo-metric features as input,followed by a prediction symmetry network to detect the symmetry.Our experiments are conducted on three public datasets:ShapeNet,YCB,and ScanNet,we demonstrate that our method can produce reliable and accurate results.
基金This work is supported by the Fundamental Research Funds for the Central Universities(Grant No.HIT.NSRIF.201714)Weihai Science and Technology Development Program(2016DX GJMS15)+1 种基金Weihai Scientific Research and Innovation Fund(2020)Key Research and Development Program in Shandong Provincial(2017GGX90103).
文摘The knowledge graph with relational abundant information has been widely used as the basic data support for the retrieval platforms.Image and text descriptions added to the knowledge graph enrich the node information,which accounts for the advantage of the multi-modal knowledge graph.In the field of cross-modal retrieval platforms,multi-modal knowledge graphs can help to improve retrieval accuracy and efficiency because of the abundant relational infor-mation provided by knowledge graphs.The representation learning method is sig-nificant to the application of multi-modal knowledge graphs.This paper proposes a distributed collaborative vector retrieval platform(DCRL-KG)using the multi-modal knowledge graph VisualSem as the foundation to achieve efficient and high-precision multimodal data retrieval.Firstly,use distributed technology to classify and store the data in the knowledge graph to improve retrieval efficiency.Secondly,this paper uses BabelNet to expand the knowledge graph through multi-ple filtering processes and increase the diversification of information.Finally,this paper builds a variety of retrieval models to achieve the fusion of retrieval results through linear combination methods to achieve high-precision language retrieval and image retrieval.The paper uses sentence retrieval and image retrieval experi-ments to prove that the platform can optimize the storage structure of the multi-modal knowledge graph and have good performance in multi-modal space.
基金Supported by the National Natural Science Foundation of China (70071042,60073043,60133010)
文摘This paper presents a two-phase genetic algorithm (TPGA) based on the multi- parent genetic algorithm (MPGA). Through analysis we find MPGA will lead the population' s evol vement to diversity or convergence according to the population size and the crossover size, so we make it run in different forms during the global and local optimization phases and then forms TPGA. The experiment results show that TPGA is very efficient for the optimization of low-dimension multi-modal functions, usually we can obtain all the global optimal solutions.
基金Supported by Grant-in-Aid for Young Scientists(A)(Grant No.26700021)Japan Society for the Promotion of Science and Strategic Information and Communications R&D Promotion Programme(Grant No.142103011)Ministry of Internal Affairs and Communications
文摘Gesture recognition is used in many practical applications such as human-robot interaction, medical rehabilitation and sign language. With increasing motion sensor development, multiple data sources have become available, which leads to the rise of multi-modal gesture recognition. Since our previous approach to gesture recognition depends on a unimodal system, it is difficult to classify similar motion patterns. In order to solve this problem, a novel approach which integrates motion, audio and video models is proposed by using dataset captured by Kinect. The proposed system can recognize observed gestures by using three models. Recognition results of three models are integrated by using the proposed framework and the output becomes the final result. The motion and audio models are learned by using Hidden Markov Model. Random Forest which is the video classifier is used to learn the video model. In the experiments to test the performances of the proposed system, the motion and audio models most suitable for gesture recognition are chosen by varying feature vectors and learning methods. Additionally, the unimodal and multi-modal models are compared with respect to recognition accuracy. All the experiments are conducted on dataset provided by the competition organizer of MMGRC, which is a workshop for Multi-Modal Gesture Recognition Challenge. The comparison results show that the multi-modal model composed of three models scores the highest recognition rate. This improvement of recognition accuracy means that the complementary relationship among three models improves the accuracy of gesture recognition. The proposed system provides the application technology to understand human actions of daily life more precisely.
基金Supported by the National Natural Science Foundation of China (70071042,60073043,60133010)
文摘In this paper, a new algorithm for solving multi-modal function optimization problems-two-level subspace evolutionary algorithm is proposed. In the first level, the improved GT algorithm is used to do global recombination search so that the whole population can be separated into several niches according to the position of solutions; then, in the second level, the niche evolutionary strategy is used for local search in the subspaces gotten in the first level till solutions of the problem are found. The new algorithm has been tested on some hard problems and some good results are obtained.