A method for the direct syntheses of partially and fully delaminated MWW zeolites is reported herein.Two organic amines were introduced into the hydrothermal synthetic system:hexamethyleneimine(HMI),which acted as the...A method for the direct syntheses of partially and fully delaminated MWW zeolites is reported herein.Two organic amines were introduced into the hydrothermal synthetic system:hexamethyleneimine(HMI),which acted as the structure-directing agent for the MWW layered structure;and dicyclohexylamine(DCHA),in the role of an in-situ delaminating agent.By varying the amount of DCHA,partially and fully delaminated MWW zeolites having two MWW structure layers and one single layer,respectively,were obtained.These were denoted as SCM-1(Sinopec Composite Material)and SCM-6,respectively.The delaminated materials possess ultra-large external surface areas,and the transmission electron microscopy images illustrated their layered nature.In the reaction of liquid phase benzene alkylation with ethylene,SCM-1,the double-layered MWW zeolite,exhibited far superior catalytic performance compared to zeolite MCM-22.展开更多
The synthesis of ferrierite(FER)zeolite using piperidine as an organic structure‐directing agent was investigated.X‐ray diffraction,X‐ray fluorescence,N2‐adsorption,and scanning electron microscopy were used to ch...The synthesis of ferrierite(FER)zeolite using piperidine as an organic structure‐directing agent was investigated.X‐ray diffraction,X‐ray fluorescence,N2‐adsorption,and scanning electron microscopy were used to characterize the crystal phases,textural properties,and particle morphologies of the zeolite samples.The crystallization behavior of the FER zeolite was found to be directly related to crystallization temperature.At150?C,pure FER phase was observed throughout crystallization.At160–170?C,MWW phase appeared first and gradually transformed into FER phase over time,indicating that the FER phase was thermodynamically favored.In the piperidine‐Na2O‐H2O synthetic system,alkalinity proved to be the crucial factor determining the size and textural properties of FER zeolite.Furthermore,the obtained FER samples exhibited good catalytic performance in the skeletal isomerization of1‐butene.展开更多
文摘A method for the direct syntheses of partially and fully delaminated MWW zeolites is reported herein.Two organic amines were introduced into the hydrothermal synthetic system:hexamethyleneimine(HMI),which acted as the structure-directing agent for the MWW layered structure;and dicyclohexylamine(DCHA),in the role of an in-situ delaminating agent.By varying the amount of DCHA,partially and fully delaminated MWW zeolites having two MWW structure layers and one single layer,respectively,were obtained.These were denoted as SCM-1(Sinopec Composite Material)and SCM-6,respectively.The delaminated materials possess ultra-large external surface areas,and the transmission electron microscopy images illustrated their layered nature.In the reaction of liquid phase benzene alkylation with ethylene,SCM-1,the double-layered MWW zeolite,exhibited far superior catalytic performance compared to zeolite MCM-22.
基金supported by the National Natural Science Foundation of China(21376235)Natural Science Foundation of Liaoning Province(201602740)~~
文摘The synthesis of ferrierite(FER)zeolite using piperidine as an organic structure‐directing agent was investigated.X‐ray diffraction,X‐ray fluorescence,N2‐adsorption,and scanning electron microscopy were used to characterize the crystal phases,textural properties,and particle morphologies of the zeolite samples.The crystallization behavior of the FER zeolite was found to be directly related to crystallization temperature.At150?C,pure FER phase was observed throughout crystallization.At160–170?C,MWW phase appeared first and gradually transformed into FER phase over time,indicating that the FER phase was thermodynamically favored.In the piperidine‐Na2O‐H2O synthetic system,alkalinity proved to be the crucial factor determining the size and textural properties of FER zeolite.Furthermore,the obtained FER samples exhibited good catalytic performance in the skeletal isomerization of1‐butene.