期刊文献+
共找到232篇文章
< 1 2 12 >
每页显示 20 50 100
Magnetic and magnetocaloric effect of Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass
1
作者 于世霖 田路 +4 位作者 王俊峰 赵新国 李达 莫兆军 李昺 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期602-606,共5页
Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_... Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass exhibited excellent magnetic refrigeration material with a wide temperature range and high refrigeration capacity(RC)was reported.Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass was observed with typical spin glass behavior around 15.5 K.In addition,we find that the magnetic entropy change(-△S_(M))originates from the sample undergoing a ferromagnetic(FM)to paramagnetic(PM)transition around 20 K.Under a field change from 0 T to 7 T,the value of maximum magnetic entropy change(-△S_(M)^(max))reaches 12.5 J/kg·K,and the corresponding value of RC reaches 487.7 J/kg in the temperature range from 6 K to 60 K.The large RC and wide temperature range make the Er_(20)Ho_(20)Dy_(20)Cu_(20)Ni_(20)high-entropy metallic glass be a promising material for application in magnetic refrigerators. 展开更多
关键词 magnetic materials magnetocaloric effect high-entropy metallic glass magnetic refrigeration large refrigeration capacity
下载PDF
Magnetocaloric properties of Nd-doped Gd5Si4 microparticles and nanopowders
2
作者 Kaiyang Zhang Huanhuan Wang +1 位作者 Ying Wang Tao Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第11期396-402,共7页
The preparation of materials with enhanced magnetocaloric properties is crucial for magnetic refrigeration. In thisstudy, Nd-doped Gd5Si4 microparticles and nanomaterials were synthesized using the reduction–diffusio... The preparation of materials with enhanced magnetocaloric properties is crucial for magnetic refrigeration. In thisstudy, Nd-doped Gd5Si4 microparticles and nanomaterials were synthesized using the reduction–diffusion method. Theimpact of Nd doping with varying compositions on the structure and entropy change properties of the materials was investigated.The Curie temperatures of both the micron- and nano-sized materials ranged from 190 K to 210 K, which were lowerthan previously reported values. Micron-sized samples doped with 1% Nd exhibited superior magnetocaloric properties,demonstrating a maximum entropy change of 4.98 J·kg^(-1)·K^(-1) at 5 T, with an entropy change exceeding 4 J·kg^(-1)·K^(-1)over a wide temperature range of approximately 70 K. Conversely, the nanomaterials had broader entropy change peaks butlower values. All samples exhibited a second-order phase transition, as confirmed by the Arrott plots. 展开更多
关键词 magnetocaloric Gd5Si4 Nd doping reduction-diffusion method
下载PDF
Magnetism, heat capacity, magnetocaloric effect, and magneto-transport properties of heavy fermion antiferromagnet CeGaSi
3
作者 张黎博 董庆新 +8 位作者 白建利 刘乔宇 程靖雯 李存东 刘品宇 孙英睿 黄宇 任治安 陈根富 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期495-502,共8页
We synthesize high-quality single crystal of CeGaSi by a Ga self-flux method and investigate its physical properties through magnetic susceptibility,specific heat and electrical resistivity measurements as well as hig... We synthesize high-quality single crystal of CeGaSi by a Ga self-flux method and investigate its physical properties through magnetic susceptibility,specific heat and electrical resistivity measurements as well as high pressure effect.Magnetic measurements reveal that an antiferromagnetic order develops below T_(m)~10.4 K with magnetic moments orientated in the ab plane.The enhanced electronic specific heat coefficient and the negative logarithmic slope in the resistivity of CeGaSi indicate that the title compound belongs to the family of Kondo system with heavy fermion ground states.The max magnetic entropy change-ΔS_(M)^(max)(μ_(0)H⊥c,μ_(0)H=7 T) around T_(m) is found to reach up to 11.85 J·kg^(-1)·K^(-1).Remarkably,both the antiferromagnetic transition temperature and-ln T behavior increase monotonically with pressure applied to 20 kbar(1 bar=10~5 Pa),indicating that much higher pressure will be needed to reach its quantum critical point. 展开更多
关键词 heavy fermion antiferromagnetic order magnetocaloric effect
下载PDF
Study of the Magnetocaloric Effect in La0.5Sm0.2Sr0.3Mn1-xFexO3 (x = 0 and 0.05) Manganites with the Mean-Field Theory
4
作者 Amnah Alofi Salha Khadhraui 《Advances in Materials Physics and Chemistry》 CAS 2024年第7期113-122,共10页
In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical... In this paper, the magnetocaloric in La0.5Sm0.2Sr0.3Mn1-xFexO3 compounds with x = 0 (LSSMO) and x = 0.05 (LSSMFO) were simulated using mean field model theory. A strong consistency was observed between the theoretical and experimental curves of magnetizations and magnetic entropy changes, −ΔSM(T). Based on the mean-field generated −ΔSM(T), the substantial Temperature-averaged Entropy Change (TEC) values reinforce the appropriateness of these materials for use in magnetic refrigeration technology within TEC (10) values of 1 and 0.57 J∙kg−1∙K−1under 1 T applied magnetic field. 展开更多
关键词 MANGANITES MAGNETIZATION magnetocaloric Effect Mean Field Model SIMULATION
下载PDF
Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
5
作者 徐少山 付琪 +6 位作者 周益帆 彭铃 高新强 李振兴 公茂琼 董学强 沈俊 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期460-467,共8页
We present a simple hot press-based method for processing La(Fe,Si)13-based compounds consisting of La–Fe–Co–Si–C particles and phenolic resin. The magnetic entropy change △S per unit mass for the La Fe_(10.87)Co... We present a simple hot press-based method for processing La(Fe,Si)13-based compounds consisting of La–Fe–Co–Si–C particles and phenolic resin. The magnetic entropy change △S per unit mass for the La Fe_(10.87)Co_(0.63)Si_(1.5)C_(0.2)/phenolic resin compounds have nearly the same magnitude with the base materials. With the content of phenolic resin of 5.0 wt%, the compound conductivity is 3.13 W·m^(-1)·K^(-1). In order to measure the cooling performance of La(Fe,Si)13-based compounds,the La(Fe_(11.6-x)Co_(x))Si_(1.4)C_(0.15)(x =0.60, 0.65, 0.75, 0.80, 0.85)/phenolic resin compounds were pressed into thin plates and tested in a hybrid refrigerator that combines the active magnetic refrigeration effect with the Stirling cycle refrigeration effect. The test results showed that a maximum cooling power of 41 W was achieved over a temperature span of 30 K. 展开更多
关键词 magnetocaloric effect La(Fe Si)13 phenolic resin magnetic refrigeration hybrid refrigerator
下载PDF
Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo_(4)O_(7)
6
作者 Tina Raoufi 何金城 +2 位作者 王彬彬 刘恩克 孙阳 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期509-515,共7页
We present a study on the magnetocaloric properties of a CaBaCo_(4)O_(7) polycrystalline cobaltite along with research on the nature of magnetic phase transition.The magnetization as a function of temperature identifi... We present a study on the magnetocaloric properties of a CaBaCo_(4)O_(7) polycrystalline cobaltite along with research on the nature of magnetic phase transition.The magnetization as a function of temperature identifies the ferrimagnetic to paramagnetic transition at a Curie temperature of 60 K.Moreover,a Griffiths-like phase is confirmed in a temperature range above T_(C).The compound undergoes a crossover from the first to second-order ferrimagnetic transformation,as evidenced by the Arrott plots,scaling of the universal entropy curve,and field-dependent magnetic entropy change.The maximum of entropy change is 3 J/kg⋅K for ΔH=7 T at T_(C),and a broadening of the entropy peak with increasing magnetic field indicates a field-induced transition above T_(C).The analysis of the magnetic entropy change using the Landau theory reveals the second-order phase transition and indicates that the magnetocaloric properties of CaBaCo_(4)O_(7) are dominated by the magnetoelastic coupling and electron interaction.The corresponding values of refrigerant capacity and relative cooling power are estimated to be 33 J/kg and 42 J/kg,respectively. 展开更多
关键词 magnetocaloric effect COBALTITE phase transition Griffiths phase
下载PDF
Structure, magnetism and magnetocaloric effects in Er_(5)Si_(3)B_(x)(x=0.3,0.6) compounds
7
作者 郝志红 刘辉 张聚国 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第11期575-579,共5页
We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagona... We investigate the structure, magnetic properties, magnetic phase transitions and magnetocaloric effects(MCEs) of Er5Si3Bx(x=0.3,0.6) compounds. The Er5Si3Bx(x = 0.3, 0.6) compounds crystalize in a Mn5Si3type hexagonal structure(space group: P63/cm) and exhibit a successive complicated magnetic phase transition. The extensive magnetic phase transitions contribute to the broad temperature range of MCEs exhibiting in Er_(5)Si_(3)B_(x)(x=0.3,0.6) compounds, with maximum magnetic entropy change(-ΔSM_(max)) and refrigeration capacity of 10.2 J·kg^(-1)·K^(-1), 356.3 J/kg and 11.5 J·kg^(-1)·K^(-1),393.3 J/kg under varying magnetic fields 0–5 T, respectively. Remarkably, the δTFWHMvalues(the temperature range corresponding to 1/2×|-ΔSM_(max)|) of Er5Si3Bx(x=0.3,0.6) compounds were up to 41.8 K and 39.6 K, respectively. Thus, the present work provides a potential magnetic refrigeration material with a broad temperature range MCEs for applications in cryogenic magnetic refrigerators. 展开更多
关键词 magnetic materials cryogenic magnetic refrigeration magnetic phase transition magnetocaloric effects
下载PDF
Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
8
作者 莫兆军 巩建建 +5 位作者 谢慧财 张磊 付琪 高新强 李振兴 沈俊 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期468-472,共5页
Antiferromagnetic LiErF4has attracted extensive attention due to its dipolar interaction domination and quantum fluctuations action. In the present work, the crystal structure, cryogenic magnetic properties, and magne... Antiferromagnetic LiErF4has attracted extensive attention due to its dipolar interaction domination and quantum fluctuations action. In the present work, the crystal structure, cryogenic magnetic properties, and magnetocaloric effect(MCE) of polycrystalline LiErF4compound are investigated. Crystallographic study shows that the compound crystallizes in the tetragonal scheelite structure with I41/a space group. It exhibits an antiferromagnetic(AFM) phase transition around 0.4 K, accompanied by a giant cryogenic MCE. At 1.3 K, the maximum values of magnetic entropy changes are 24.3 J/kg·K,33.1 J/kg·K, and 49.0 J/kg·K under the low magnetic field change of 0–0.6 T, 0–1 T, and 0–2 T, respectively. The giant MCE observed above Néel temperature TNis probably due to the strong quantum fluctuations, which cause a large ratio of the unreleased magnetic entropy existing above the phase transition temperature. The outstanding low-field MCE below 2 K makes the LiErF4compound an attractive candidate for the magnetic refrigeration at the ultra-low temperature. 展开更多
关键词 LiErF4 magnetocaloric effect ultra-low temperature
下载PDF
Magnetocaloric effect in Ni-Mn-In-Co microwires prepared by Taylor-Ulitovsky method 被引量:1
9
作者 张学习 苗生沛 孙剑飞 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第10期3152-3157,共6页
Ni-Mn-In-Co microwires with diameter of 30-100 μm are prepared by glass-coated metal filaments(Taylor–Ulitovsky) method. The effects of magnetic field on martensite transformation temperature in the as-prepared an... Ni-Mn-In-Co microwires with diameter of 30-100 μm are prepared by glass-coated metal filaments(Taylor–Ulitovsky) method. The effects of magnetic field on martensite transformation temperature in the as-prepared and annealed microwires are investigated using a physical property measurement system(PPMS). Magnetocaloric effect(MCE) attributed to field-induced austenite transformation in the as-prepared and annealed microwires is analyzed indirectly from the isothermal magnetization(M-B) curves. The as-prepared microwire has a 7-layer modulated martensite structure(7M) at room temperature. The changes of austenite starting temperature induced by an external magnetic field(ΔAs/ΔB) in the as-prepared and annealed microwires are-1.6 and-4 K/T, respectively. Inverse martensite to austenite transformation exists in annealed microwires when an external magnetic field is applied at temperatures near As. The entropy change(ΔS) obtained in the annealed microwires is 3.0 J/(kg·K), which is much larger than that in the as-prepared microwires 0.5 J/(kg·K). The large entropy change and low price make Ni-Mn-In-Co microwires a potential working material in magnetic refrigeration. 展开更多
关键词 magnetic shape memory alloys MICROWIRES martensitic transformation magnetocaloric effect magnetization curve
下载PDF
Magnetocaloric effects in RT X intermetallic compounds(R = Gd–Tm, T = Fe–Cu and Pd, X = Al and Si) 被引量:10
10
作者 张虎 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第12期138-164,共27页
The magnetocaloric effect(MCE) of RT Si and RT Al systems with R = Gd–Tm, T = Fe–Cu and Pd, which have been widely investigated in recent years, is reviewed. It is found that these RT X compounds exhibit various c... The magnetocaloric effect(MCE) of RT Si and RT Al systems with R = Gd–Tm, T = Fe–Cu and Pd, which have been widely investigated in recent years, is reviewed. It is found that these RT X compounds exhibit various crystal structures and magnetic properties, which then result in different MCE. Large MCE has been observed not only in the typical ferromagnetic materials but also in the antiferromagnetic materials. The magnetic properties have been studied in detail to discuss the physical mechanism of large MCE in RT X compounds. Particularly, some RT X compounds such as Er Fe Si,Ho Cu Si, Ho Cu Al exhibit large reversible MCE under low magnetic field change, which suggests that these compounds could be promising materials for magnetic refrigeration in a low temperature range. 展开更多
关键词 rare-earth compounds magnetocaloric effect magnetic entropy change magnetic property
下载PDF
Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals 被引量:9
11
作者 李领伟 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第3期1-15,共15页
The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refr... The magnetocaloric effect (MCE) in many rare earth (RE) based intermetallic compounds has been extensively in- vestigated during the last two decades, not only due to their potential applications for magnetic refrigeration but also for better understanding of the fundamental problems of the materials. This paper reviews our recent progress on studying the magnetic properties and MCE in some binary or ternary intermetallic compounds of RE with low boiling point metal(s) (Zn, Mg, and Cd). Some of them exhibit promising MCE properties, which make them attractive for low temperature magnetic refrigeration. Characteristics of the magnetic transition, origin of large MCE, as well as the potential application of these compounds are thoroughly discussed. Additionally, a brief review of the magnetic and magnetocaloric properties in the quaternary rare earth nickel boroncarbides RENi2B2C superconductors is also presented. 展开更多
关键词 magnetocaloric effect rare earth based intermetallic compounds RENizB2C superconductors magnetic phase transition
下载PDF
Effect of R substitution on magnetic properties and magnetocaloric effects of La_(1-x)R_xFe_(11.5)Si_(1.5) compounds with R=Ce,Pr and Nd 被引量:6
12
作者 沈俊 李养贤 +1 位作者 孙继荣 沈保根 《Chinese Physics B》 SCIE EI CAS CSCD 2009年第5期2058-2062,共5页
Magnetic properties and magnetocaloric effects of La1-xRxFe11.5Si1.5 (R=Pr, (0 ≤ x ≤ 0.5); R = Ce and Nd, (0 ≤ x ≤ 0.3)) compounds are investigated. Partially replacing La with R = Ce, Pr and Nd in La1-xRxFe... Magnetic properties and magnetocaloric effects of La1-xRxFe11.5Si1.5 (R=Pr, (0 ≤ x ≤ 0.5); R = Ce and Nd, (0 ≤ x ≤ 0.3)) compounds are investigated. Partially replacing La with R = Ce, Pr and Nd in La1-xRxFe11.5Si1.5 leads to a reduction in Curie temperature due to the lattice contraction. The substitution of R for La causes an enhancement in field-induced itinerant electron metamagnetic transition, which leads to a remarkable increase in magnetic entropy change ASm and also in hysteresis loss. However, a high effective refrigerant capacity RCeff is still maintained in La1-xRxFe11.5Si1.5. In the present samples, a large △Sm and a high RCeff have been achieved simultaneously. 展开更多
关键词 magnetocaloric effect hysteresis loss refrigerant capacity
下载PDF
Effects of the Mn/Co ratio on the magnetic transition and magnetocaloric properties of Mn_(1+x)Co_(1-x)Ge alloys 被引量:5
13
作者 马胜灿 王敦辉 +3 位作者 轩海成 沈凌佳 曹庆琪 都有为 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第8期411-414,共4页
We have investigated the magnetic transition and magnetocaloric effects of Mn1+xCo1-xGe alloys by tuning the ratio of Mn/Co. With increasing Mn content, a series of first-order magnetostructural transitions from ferr... We have investigated the magnetic transition and magnetocaloric effects of Mn1+xCo1-xGe alloys by tuning the ratio of Mn/Co. With increasing Mn content, a series of first-order magnetostructural transitions from ferromagnetic to paramagnetic states with large changes of magnetization are observed at room temperature. Further increasing the content of Mn (x = 0.11) gives rise to a single second-order magnetic transition. Interestingly, large low-field magnetic entropy changes with almost zero magnetic hysteresis are observed in these alloys. The effects of Mn/Co ratio on magnetic transition and magnetocaloric effects are discussed in this paper. 展开更多
关键词 Mn/Co ratio magnetic transition magnetocaloric properties magnetic hysteresis losses
下载PDF
Influence of carbon on the giant magnetocaloric effect of LaFe_11.7Si_1.3 被引量:5
14
作者 LI Junqin LIU Fusheng +2 位作者 AO Weiqin ZHUANG Yinghong ZHOU Kaiwen 《Rare Metals》 SCIE EI CAS CSCD 2006年第5期556-561,共6页
The influences of carbon on phase formation, Curie temperature, and magnetic entropy change of the NaZn13-type LaFe11.7Si1.3 were investigated. Seven carbon-containing alloys, LaFe11.7Si1.3Cx with x = 0, 0.03, 0.06, 0... The influences of carbon on phase formation, Curie temperature, and magnetic entropy change of the NaZn13-type LaFe11.7Si1.3 were investigated. Seven carbon-containing alloys, LaFe11.7Si1.3Cx with x = 0, 0.03, 0.06, 0.10, 0.20, 0.30, and 0.50, respectively, were prepared for this investigation. Experimental results show that addition of a small amount of carbon in LaFe11.7Sil.3 is favorable for the formation of the NaZn13-type structure of LaFe11.7Si1.3Cx. The lattice constant increases with C addition and x increases in the alloy because of the introduction of C as interstitial atoms. The Curie temperature of LaFe11.7Si1.3Cx increases from 194 K to 225 K as x increases from 0 to 0.5. Large magnetic entropy changes were observed in these carbon-containing alloys LaFe11.7Si1.3Cx because of their first-order structural/magnetic transition. The maximum magnetic entropy change of 27.5 J.kg^-1K^-1 at 202 K for the 0-1.56 T magnetic field change was observed in the alloy with x = 0.06. The large magnetic-entropy changes corresponding to low magnetic field change, and the low cost of the material of LaFe11..7Si1.3Cx makes it a promising candidate to be used as magnetic refrigerants in the corresponding temperature range. 展开更多
关键词 LaFe11.7Si1.3 carbon addition magnetocaloric effect
下载PDF
Low field induced giant anisotropic magnetocaloric effect in DyFeO_3 single crystal 被引量:4
15
作者 柯亚娇 张向群 +2 位作者 葛恒 马跃 成昭华 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第3期5-9,共5页
We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in Dy FeO3 single crystal. A giant rotating field entropy change of -ΔSM^R = 16.62 J/kg·K was achieved from b ax... We have investigated the anisotropic magnetocaloric effect and the rotating field magnetic entropy in Dy FeO3 single crystal. A giant rotating field entropy change of -ΔSM^R = 16.62 J/kg·K was achieved from b axis to c axis in bc plane at 5 K for a low field change of 20 k Oe. The large anisotropic magnetic entropy change is mainly accounted for the 4 f electron of rare-earth Dy^3+ ion. The large value of rotating field entropy change, together with large refrigeration capacity and negligible hysteresis, suggests that the multiferroic ferrite Dy FeO3 singlecrystal could be a potential material for anisotropic magnetic refrigeration at low field, which can be realized in the practical application around liquid helium temperature region. 展开更多
关键词 magnetocaloric effect rotating field entropy change magnetocrystalline anisotropy DyFeO3 single crystal
下载PDF
Magnetic properties and magnetocaloric effects in NaZn_(13)-type La(Fe,Al)(13)-based compounds 被引量:4
16
作者 沈保根 胡凤霞 +1 位作者 董巧燕 孙继荣 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期12-22,共11页
In this article, our recent progress concerning the effects of atomic substitution, magnetic field, and temperature on the magnetic and magnetocaloric properties of the LaFe13-xAlx compounds are reviewed. With an incr... In this article, our recent progress concerning the effects of atomic substitution, magnetic field, and temperature on the magnetic and magnetocaloric properties of the LaFe13-xAlx compounds are reviewed. With an increase of the aluminum content, the compounds exhibit successively an antiferromagnetic (AFM) state, a ferromagnetic (FM) state, and a mictomagnetic state. Furthermore, the AFM coupling of LaFe13 -xAlx can be converted to an FM one by substituting Si for A1, Co for Fe, and magnetic rare-earth R for La, or introducing interstitial C or H atoms. However, low doping levels lead to FM clusters embedded in an AFM matrix, and the resultant compounds can undergo, under appropriate applied fields, first an AFM-FM and then an FM-AFM phase transition while heated, with significant magnetic relaxation in the vicinity of the transition temperature. The Curie temperature of LaFe13-xAlx can be shifted to room temperature by choosing appropriate contents of Co, C, or H, and a strong magnetocaloric effect can be obtained around the transition temperature. For example, for the LaFel 1.5All.5Co.2Hl.o compound, the maximal entropy change reaches 13.8 J.kg-1.K-1 for a field change of 0-5 T, occurring around room temperature. It is 42% higher than that of Gd, and therefore, this compound is a promising room-temperature magnetic refrigerant. 展开更多
关键词 La(Fe Al)13 compounds magnetocaloric effect magnetic entropy change magnetic phase transition
下载PDF
Magnetocaloric and magnetic properties of La_2NiMnO_6 double perovskite 被引量:3
17
作者 Masrour R Jabar A 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第8期373-378,共6页
The magnetic effect and the magnetocaloric effect in La_2NiMnO_6(LNMO) double perovskite are studied using the Monte Carlo simulations.The magnetizations,specific heat values,and magnetic entropies are obtained for ... The magnetic effect and the magnetocaloric effect in La_2NiMnO_6(LNMO) double perovskite are studied using the Monte Carlo simulations.The magnetizations,specific heat values,and magnetic entropies are obtained for different exchange interactions and external magnetic fields.The adiabatic temperature is obtained.The transition temperature is deduced.The relative cooling power is established with a fixed value of exchange interaction.According to the master curve behaviors for the temperature dependence of △S_m^(max) predicted for different maximum fields,in this work it is confirmed that the paramagnetic-ferromagnetic phase transition observed for our sample is of a second order.The near room-temperature interaction and the superexchange interaction between Ni and Mn are shown to be due to the ferromagnetism of LNMO. 展开更多
关键词 oxides magnetocaloric Monte Carlo simulation specific heat magnetic properties
下载PDF
Effect of gallium doping on the magnetocaloric effect of LaFe_(11.2)Co_(0.7)Si_(1.1) 被引量:2
18
作者 DENG Jianqiu CHEN Xiang ZHUANG Yinghong 《Rare Metals》 SCIE EI CAS CSCD 2008年第4期345-349,共5页
The lattice parameter and magnetocaloric properties of three samples of LaFe11.2Co0.7Si1.1-xGax with x = 0, 0.03 and 0.05 have been investigated by X-ray powder diffraction and magnetization measurements. The lattice ... The lattice parameter and magnetocaloric properties of three samples of LaFe11.2Co0.7Si1.1-xGax with x = 0, 0.03 and 0.05 have been investigated by X-ray powder diffraction and magnetization measurements. The lattice parameter increases slightly and the Curie temperature increases somewhat with increasing gallium content. However, a small amount of Ga doping into the sample decreases the magnetic entropy change of the sample. All the samples remain in the first-order magnetic phase transition. The most striking effect of the Ga doping is that the cooling capacity in the samples increases significantly. The maximum magnetic entropy change, ASM and the cooling capacity of the sample LaFe11.2Co0.7Si1.07Ga0.03 are 11.9 J·kg^-1·K^-1 and 254.8 J·kg^-1, respectively. 展开更多
关键词 rare earth MAGNETIZATION magnetocaloric effect cooling capacity relative cooling power
下载PDF
Magnetic properties, magnetoresistivity and magnetocaloric effect in Gd_xLa_(1-x)-MnSi alloys 被引量:2
19
作者 T.I.Ivanova S.A.Nikitin +3 位作者 W.Suski G.A.Tskhadadze I.A.Ovtchenkova D.Badurski 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第4期684-687,共4页
The results of magnetization, magnetoresistivity and magnetocalofic effect (MCE) studies performed on polycrystalline samples of the GdxLa1-xMnSi (x=0.5, 0.6, 0.7, 0.8, 0.9, 1.0) compounds were presented. Complex ... The results of magnetization, magnetoresistivity and magnetocalofic effect (MCE) studies performed on polycrystalline samples of the GdxLa1-xMnSi (x=0.5, 0.6, 0.7, 0.8, 0.9, 1.0) compounds were presented. Complex measurements were carried out on the GdxLa1-xMnSi compounds to determine the influence of substitution in the rare earth (R) sublattice on the magnetic and related properties of these compounds. The compounds with x≤0.6 demonstrated two magnetic phase transitions (ferromagnetic to paramagnetic and antiferro- magnetic to ferromagnetic) both of which were first order. Anomalies in the magnetocaloric effect, electroresistivity and magnetoresistivity were observed in the temperature ranges of the magnetic phase transitions. The temperature dependences of MCE and magnetoresistivity for these compounds correlated with the temperature dependence of magnetization. 展开更多
关键词 magnetocaloric effect MAGNETORESISTIVITY magnetic phase Iransition itinerant magnetism rare earths
下载PDF
Development of magnetocaloric materials in room temperature magnetic refrigeration application in recent six years 被引量:2
20
作者 刘敏 俞炳丰 《Journal of Central South University》 SCIE EI CAS 2009年第1期1-12,共12页
Some magnetocaloric materials were used successfully in magnetic refrigeration application and became one of the critical parts of magnetic refrigeration technology whose delightful progresses were made worldwide in t... Some magnetocaloric materials were used successfully in magnetic refrigeration application and became one of the critical parts of magnetic refrigeration technology whose delightful progresses were made worldwide in the past 30 years. At the same time, the research on giant magnetocaloric materials will accelerate the development of room temperature magnetic refrigeration. In this paper, the new theoretical and experimental investigations on magnetic materials in room temperature application were described, including Gd and its binary and ternary intermetallic compounds, Mn-based compounds, La(Fe13-xMx)-based compounds and manganites. Based on the analysis of hysteresis, corrosion, cost and heat process, the comparison between different families of magnetic materials was discussed. Further research of room temperature magnetic refrigerant was suggested. 展开更多
关键词 magnetic material REFRIGERATION magnetocaloric effect magnetic resistance
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部