The morphology of the plant and ear is a preliminary selection characteristic in breeding new varieties of maize.As new maize cultivars were developed from the 1950s through the 2010s in China,most had changes in both...The morphology of the plant and ear is a preliminary selection characteristic in breeding new varieties of maize.As new maize cultivars were developed from the 1950s through the 2010s in China,most had changes in both plant and ear morphological characteristics that contributed substantially to maize yield gains.Over the seven decades,plant and ear height fluctuated with a small increase from the 1950s to 2000s,and then a decrease in the 2010s,while the ear ratio and internodes length below the ear decreased significantly.Leaf angles became significantly more upright,especially for the leaves above the ear,and the leaf area per plant improved markedly.Leaf orientation increased from the 1950s to the 2000s then decreased in the 2010s.Tassel size and the anthesis-silking interval were both reduced substantially.Ear diameter,kernel number,and kernel weight increased from the 1950 to the 2000s,then decreased in the 2010s under the same cultivation conditions.We found that modern maize hybrids have a lower plant height,ear height and ear ratio which increased lodging resistance,a more erect leaf which increased high-density planting tolerance,and smaller ears and kernels which facilitated rapid dehydration during late grain filling.These morphological selection criteria,which are suitable for mechanized operations,are proposed as the focus for future maize breeding.展开更多
The main objective of this study was to evaluate the impact of adopting improved maize varieties on crop yield in Uganda using propensity score matching (PSM) algorithms to control for hidden selection bias. The stu...The main objective of this study was to evaluate the impact of adopting improved maize varieties on crop yield in Uganda using propensity score matching (PSM) algorithms to control for hidden selection bias. The study employed cross-sectional household data collected in 2005/2006 by the Uganda Bureau of Statistics (UBOS) across the country. Data were divided into two parts; the full sample and smallholder farmer sub-sample (those that cultivated less than 5 acres or 2 Hectares of maize in 2004 and 2005). Then estimation was made of the difference in yields between the adopters and non adopters, the average treatment effect on the treated (ATT) for the full sample and smallholder farmer sub-sample. Matching methods were used to control for hidden selection bias and the standardized bias measure was used to check for the quality of matching. The results indicate that adoption of improved maize seed had a robust positive and significant effect on yields obtained by farmers. The results were consistent for both the full and smallholder farmer sub-samples. Sensitivity analysis using Rosenbaum bounds indicated that the ATT results were fairly robust to hidden selection bias. That is, the results were not sensitive to unobserved selection bias. Therefore it is confidently asserted that the estimated average difference in maize yields between the adopters and non-adopters was due to the effect of planting improved maize seed.展开更多
Bioenergy crops currently provide the only source of alternative energy with the potential to reduce the use of fossil transportation fuels in a way that is compatible with existing engine technology, including in dev...Bioenergy crops currently provide the only source of alternative energy with the potential to reduce the use of fossil transportation fuels in a way that is compatible with existing engine technology, including in developing countries. Even though bioenergy research is currently receiving considerable attention, many of the concepts are not new, but rather build on intense research efforts from 30 years ago. A major difference with that era is the availability of genomics tools that have the potential to accelerate crop improvement significantly. This review is focused on maize, sorghum and sugarcane as representatives of bioenergy grasses that produce sugar and/or lignocellulosic biomass. Examples of how genetic mapping, forward and reverse genetics, highthroughput expression profiling and comparative genomics can be used to unravel and improve bioenergy traits will be presented.展开更多
基金the National Key Research and Development Program of China(2017YFD0300302 and 2017YFD0300804)the China Agriculture Research System of MOF and MARA(CARS-02-63)the Natural Science Foundation of Inner Mongolia,China(2020MS03053)。
文摘The morphology of the plant and ear is a preliminary selection characteristic in breeding new varieties of maize.As new maize cultivars were developed from the 1950s through the 2010s in China,most had changes in both plant and ear morphological characteristics that contributed substantially to maize yield gains.Over the seven decades,plant and ear height fluctuated with a small increase from the 1950s to 2000s,and then a decrease in the 2010s,while the ear ratio and internodes length below the ear decreased significantly.Leaf angles became significantly more upright,especially for the leaves above the ear,and the leaf area per plant improved markedly.Leaf orientation increased from the 1950s to the 2000s then decreased in the 2010s.Tassel size and the anthesis-silking interval were both reduced substantially.Ear diameter,kernel number,and kernel weight increased from the 1950 to the 2000s,then decreased in the 2010s under the same cultivation conditions.We found that modern maize hybrids have a lower plant height,ear height and ear ratio which increased lodging resistance,a more erect leaf which increased high-density planting tolerance,and smaller ears and kernels which facilitated rapid dehydration during late grain filling.These morphological selection criteria,which are suitable for mechanized operations,are proposed as the focus for future maize breeding.
文摘The main objective of this study was to evaluate the impact of adopting improved maize varieties on crop yield in Uganda using propensity score matching (PSM) algorithms to control for hidden selection bias. The study employed cross-sectional household data collected in 2005/2006 by the Uganda Bureau of Statistics (UBOS) across the country. Data were divided into two parts; the full sample and smallholder farmer sub-sample (those that cultivated less than 5 acres or 2 Hectares of maize in 2004 and 2005). Then estimation was made of the difference in yields between the adopters and non adopters, the average treatment effect on the treated (ATT) for the full sample and smallholder farmer sub-sample. Matching methods were used to control for hidden selection bias and the standardized bias measure was used to check for the quality of matching. The results indicate that adoption of improved maize seed had a robust positive and significant effect on yields obtained by farmers. The results were consistent for both the full and smallholder farmer sub-samples. Sensitivity analysis using Rosenbaum bounds indicated that the ATT results were fairly robust to hidden selection bias. That is, the results were not sensitive to unobserved selection bias. Therefore it is confidently asserted that the estimated average difference in maize yields between the adopters and non-adopters was due to the effect of planting improved maize seed.
基金Funding from the U.S.Department of Energy, Office of Science(BER) (Grant No.DE-FG02-07ER64458)the U.S.Department of Agriculture (Grant No.68-3A75-7-603) for sorghum andsugarcane research,respectively
文摘Bioenergy crops currently provide the only source of alternative energy with the potential to reduce the use of fossil transportation fuels in a way that is compatible with existing engine technology, including in developing countries. Even though bioenergy research is currently receiving considerable attention, many of the concepts are not new, but rather build on intense research efforts from 30 years ago. A major difference with that era is the availability of genomics tools that have the potential to accelerate crop improvement significantly. This review is focused on maize, sorghum and sugarcane as representatives of bioenergy grasses that produce sugar and/or lignocellulosic biomass. Examples of how genetic mapping, forward and reverse genetics, highthroughput expression profiling and comparative genomics can be used to unravel and improve bioenergy traits will be presented.