For the maintenance of the pipelines which pipe oil from oil fields in the Bohai Gulf of China, an underwater vehicle for pipeline detection and maintenance (PDM-UV) is designed. In this paper, the maneuverability a...For the maintenance of the pipelines which pipe oil from oil fields in the Bohai Gulf of China, an underwater vehicle for pipeline detection and maintenance (PDM-UV) is designed. In this paper, the maneuverability and motion simulation of PDM-UV are studied. A general dynamic equation to describe the hydrodynamics of PDM-UV is presented. For a deep understanding of the dynamics of PDM-UV, which is somewhat different from normal underwater vehicles in configuration, the maneuverability is discussed in terms of hydrodynamic coefficients with experimental results. Finally, the whole motion simulation system is introduced and simulation results are presented to demonstrate the feasibility and correctness of the simulation platform.展开更多
In this paper,the mechatronic design and maneuverability analysis of a novel robotic shark are presented.To obtain good maneuverability,a barycenter regulating device is designed to assist the posture adjustment at lo...In this paper,the mechatronic design and maneuverability analysis of a novel robotic shark are presented.To obtain good maneuverability,a barycenter regulating device is designed to assist the posture adjustment at low speeds.Based on the Newton-Euler approach,an analytical dynamic model is established with particular consideration of pectoral fins for threedimensional motions.The hydrodynamic coefficients are computed using computational fluid dynamics(CFD)methods.Oscillation amplitudes and phases are determined by fitting an optimized fish body wave.The performance of the robotic shark is estimated by varying the oscillation frequency and offset angle.The results show that with oscillation frequency increasing,the swimming speed increases linearly.The robotic shark reaches the maximum swimming speed of 1.05 m/s with an oscillation frequency of 1.2 Hz.Furthermore,the turning radius decreases nonlinearly as the offset angle increased.The robotic shark reaches the minimum turning radius of 1.4 times the body length with 0.2 Hz frequency and 12°offset angle.In the vertical plane,as the pectoral fin angle increases,the diving velocity increases nonlinearly with increase rate slowing down.展开更多
In order to simulate the under water motion of a mini autonomous underwater vehicle( AUV) and an- alyze its maneuverability,the dynamical characteristic of the mini AUV was researched. The 6-DOF motion equations were ...In order to simulate the under water motion of a mini autonomous underwater vehicle( AUV) and an- alyze its maneuverability,the dynamical characteristic of the mini AUV was researched. The 6-DOF motion equations were founded. Through model experiment with accessory bodies,the hydrodynamics of AUV body including resistance,main inertial and viscous hydrodynamic coefficients was obtained. The hydrodynamics of rudders was gained through theoretical calculation. Simulation computation of the vehicle was carried out through numerical integration of the motion equations. A motion simulation system was constructed. Four typical maneuvers in horizontal and vertical planes were simulated and the maneuverability of the mini AUV was forecasted. The simulation results reflect the basic motion characteristic of mini AUV and validate the feasibility and correctness of the whole system. The simulation system can be a testing platform for the design and debugging of motion controller and an effective tool for the development of AUV.展开更多
To enhance the maneuverability of the selected aircraft model, a standard genetic algorithm (GA) is used as an optimization method for the preliminary design of the leading-edge extension (LEX) layout. The aerodyn...To enhance the maneuverability of the selected aircraft model, a standard genetic algorithm (GA) is used as an optimization method for the preliminary design of the leading-edge extension (LEX) layout. The aerodynamic loads and the maximum lift coefficient of the complete aircraft configuration (fuselage+wing+tail) are computed by using the modified three-dimensional low-order panel method in conjunction with the semi-empirical formulas of DATCOM. Results show that the lift coefficient increases approximately 20.5%- 15.3% for Mach number 0. 4-0.8 and 6.8% for Mach number 1.2, and its maximum value approximately 9.5% -15.0% for Machnumber 0.2-0.95when LEXis installed. A 6.6%-8.0 % gain at altitudes of 1-5 km on the turn rate maneuverability and the corner speed have been achieved in the subsonic regime.展开更多
Ordinary mobile robots have some kind of moving mechanisms attached to one rigid body. When working on rough terrain or in other hazard environments, there existed some possibilities that the robot will be turned up s...Ordinary mobile robots have some kind of moving mechanisms attached to one rigid body. When working on rough terrain or in other hazard environments, there existed some possibilities that the robot will be turned up side down, thus causing losses to the robot's expedition. Multi bodied mobile robots provide a solution to that problem. Using active joints between bodies, the robot can recover from turnover situation by itself. In this paper, the authors discuss the joint arrangements and the additional maneuverability resulted from joints between body segments.展开更多
It is well known that model test is one of approaches to investigate the maneuverability of vessels and the correlative method is an important problem of model test for vessels with large scale. Some of correlative pr...It is well known that model test is one of approaches to investigate the maneuverability of vessels and the correlative method is an important problem of model test for vessels with large scale. Some of correlative problems,which should be solved with care in model test,are presented from analysis of the similarity principle for the ship maneuverability in this paper.A corrective method of appropriate angle of rudder is provided based on the result of maneuverability model test for a tanker with large scale and the corresponding prediction of the maneuverability for full scale tanker is satisfactory in view of engineering practice.展开更多
In this paper,we propose a cooperative guidance law aimed to achieve coordinated impact angles with limited observation on target information.The primary challenge lies in establishing an appropriate communication gra...In this paper,we propose a cooperative guidance law aimed to achieve coordinated impact angles with limited observation on target information.The primary challenge lies in establishing an appropriate communication graph among all missiles and devising an algorithm to estimate target acceleration information during engagements.To address this,we propose a specific communication topology and employ a numerical integration-based estimation method.Additionally,a distributed algorithm is introduced to facilitate consensus on target acceleration estimation.Building upon these foundations,we design an optimal-control-based distributed guidance law for each missile.Performance of the proposed guidance law is validated through numerical simulations.展开更多
The capturability of the Three-Dimensional(3D)Realistic True Proportional Navigation(RTPN)guidance law is thoroughly analyzed.The true-arbitrarily maneuvering target is considered,which maneuvers along an arbitrary di...The capturability of the Three-Dimensional(3D)Realistic True Proportional Navigation(RTPN)guidance law is thoroughly analyzed.The true-arbitrarily maneuvering target is considered,which maneuvers along an arbitrary direction in 3D space with an arbitrary but upperbounded acceleration.The whole nonlinear relative kinematics between the interceptor and target is taken into account.First,the upper-bound of commanded acceleration of 3D RTPN is deduced,using a novel Lyapunov-like approach.Second,the reasonable selection range of navigation gain of3D RTPN is analyzed,when the maneuver limitation of interceptor is considered.After that,a more realistic definition of capture is adopted,i.e.,the relative range is smaller than an acceptable miss-distance while the approaching speed is larger than a required impact speed.Unlike previous researches which present Two-Dimensional(2D)capture regions,the inequality analysis technique is utilized to obtain the 3D capture region,where the three coordinates are the closing speed,transversal relative speed,and relative range.The obtained capture region could be taken as a sufficient-but-unnecessary condition of capture.The new theoretical findings are all given in explicit expressions and are more general than previous results.展开更多
Maneuverability is one of the most important sailing performances of vessels. In this article, a motion control model with three degrees of freedom(DoFs) for twin-waterjet propulsion vessel is proposed. The model is d...Maneuverability is one of the most important sailing performances of vessels. In this article, a motion control model with three degrees of freedom(DoFs) for twin-waterjet propulsion vessel is proposed. The model is developed on the basis of maneuvering model group(MMG) maneuverability equations. A simulation environment is constructed on the Matlab Simulink platform. Standard turning tests and zig-zag tests are simulated by solving the motion control model, and the corresponding maneuverability parameters are calculated. Simulation results demonstrate that the maneuverability parameters are in accordance with the vessel maneuverability standard.The approach may be applied to the rapid prediction of vessel maneuverability.展开更多
In this paper,we present an overview of the mechanical design and control of biomimetic robotic fishes with high maneuverability.The robotic fishes modelled after Esoxlucius adopt multilink propulsive mechanism for a ...In this paper,we present an overview of the mechanical design and control of biomimetic robotic fishes with high maneuverability.The robotic fishes modelled after Esoxlucius adopt multilink propulsive mechanism for a high turning rate and a small turning radius.According to different tasks,these robotic fishes are designed with decorated pectoral fins for a two-dimensional horizon plane,or controllable pectoral fins with multiple degrees of freedom for a three-dimensional space.Through observing and analyzing the fast-starts of real fish,we separately develop a dynamic trajectory tracking strategy based C-start control method and an L-shaped sliding method based S-start control method.Finally,a four-link robotic fish is able to execute C-start flexibly with a turning angle of up to 213°,a top turning rate of approximately670°/s,and an upper limit of turning precision of less than 10°and an S-start with a peak turning rate up to318.08±9.20°/s.The experimental results verify the feasibility of our high-maneuverability-oriented mechatronic design and control methods.展开更多
Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net...Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net network based on a communication mechanism is introduced into a deep reinforcement learning algorithm to solve the multi-agent problem. A layer of gated recurrent unit(GRU) is added to the actor-network structure to remember historical environmental states. Subsequently,another GRU is designed as a communication channel in the Comm Net core network layer to refine communication information between UAVs. Finally, the simulation results of the algorithm in two sets of scenarios are given, and the results show that the method has good effectiveness and applicability.展开更多
The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances.This paper investigates the issue of strategy interaction and behavioral decision-ma...The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances.This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment.It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players,as well as the impact of participants’manipulative behaviors on the state changes of the players.A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario.Subsequently,the strategy selection interaction relationship,strategy evolution stability,and dynamic decision-making process of the game players are investigated and verified by simulation experiments.The results show that maneuver-related parameters and random environmental interference factors have different effects on the selection and evolutionary speed of the agent’s strategies.Especially in a highly uncertain environment,even small information asymmetry or miscalculation may have a significant impact on decision-making.This also confirms the feasibility and effectiveness of the method proposed in the paper,which can better explain the behavioral decision-making process of the agent in the interaction process.This study provides feasibility analysis ideas and theoretical references for improving multi-agent interactive decision-making and the interpretability of the game system model.展开更多
To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,th...To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,the relative motion equations between multiple missiles and targets are established,and the topological model among multiple agents is considered.Secondly,based on the temporal consistency constraint,a cooperative guidance law for simultaneous arrival with finite-time convergence is derived.Finally,the unknown target maneuver-ing is regarded as bounded interference.Based on the second-order sliding mode theory,a super-twisting sliding mode observer is devised to observe and track the bounded interfer-ence,and the stability of the observer is proved.Compared with the existing research,this approach only needs to obtain the sliding mode variable which simplifies the design process.The simulation results show that the designed cooperative guidance law for maneuvering targets achieves the expected effect.It ensures successful cooperative attacks,even when confronted with strong maneuvering targets.展开更多
Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition me...Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy.展开更多
This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed ra...This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed rapidly,moving from basic driver-assistance systems(Level 1)to fully autonomous capabilities(Level 5).Central to this advancement are two key functionalities:Lane-Change Maneuvers(LCM)and Adaptive Cruise Control(ACC).In this study,a detailed simulation environment is created to replicate the road network between Nantun andWuri on National Freeway No.1 in Taiwan.The MPC controller is deployed to optimize vehicle trajectories,ensuring safe and efficient navigation.Simulated onboard sensors,including vehicle cameras and millimeterwave radar,are used to detect and respond to dynamic changes in the surrounding environment,enabling real-time decision-making for LCM and ACC.The simulation resultshighlight the superiority of the MPC-based approach in maintaining safe distances,executing controlled lane changes,and optimizing fuel efficiency.Specifically,the MPC controller effectively manages collision avoidance,reduces travel time,and contributes to smoother traffic flow compared to traditional path planning methods.These findings underscore the potential of MPC to enhance the reliability and safety of autonomous driving in complex traffic scenarios.Future research will focus on validating these results through real-world testing,addressing computational challenges for real-time implementation,and exploring the adaptability of MPC under various environmental conditions.This study provides a significant step towards achieving safer and more efficient autonomous vehicle navigation,paving the way for broader adoption of MPC in AV systems.展开更多
To enhance the stability of helicopter maneuvers during task execution,a composite trajectory tracking controller design based on the implicit model(IM)and linear active disturbance rejection control(LADRC)is proposed...To enhance the stability of helicopter maneuvers during task execution,a composite trajectory tracking controller design based on the implicit model(IM)and linear active disturbance rejection control(LADRC)is proposed.Initially,aerodynamic models of the main and tail rotor are created using the blade element theory and the uniform inflow assumption.Subsequently,a comprehensive flight dynamic model of the helicopter is established through fitting aerodynamic force fitting.Subsequently,for precise helicopter maneuvering,including the spiral,spiral up,and Ranversman maneuver,a regular trim is undertaken,followed by minor perturbation linearization at the trim point.Utilizing the linearized model,controllers are created for the IM attitude inner loop and LADRC position outer loop of the helicopter.Ultimately,a comparison is made between the maneuver trajectory tracking results of the IM‑LADRC and the conventional proportional-integral-derivative(PID)control method is performed.Experimental results demonstrate that utilizing the post-trim minor perturbation linearized model in combination with the IM‑LADRC method can achieve higher precision in tracking results,thus enhancing the accuracy of helicopter maneuver execution.展开更多
In modern warfare,unpowered glide munitions,represented by JDAM,are widely used.Accurately predicting the future trajectory of such targets is crucial for intercepting them.This paper proposes a future point predictio...In modern warfare,unpowered glide munitions,represented by JDAM,are widely used.Accurately predicting the future trajectory of such targets is crucial for intercepting them.This paper proposes a future point prediction method for unpowered gliding targets based on attitude computation.By estimating the current state of the target,we derive the target’s attitude coordinate system.Subsequently,the paper analyzes the forces acting on the target and updates the state transition matrix,ultimately calculating the future position of the target.Experimental results show that,compared to traditional methods,this approach improves the accuracy of future point predictions by 9%to 45%.展开更多
Thirty-seven years have passed since the first K-1 resuscitation maneuver implementation next to both basic and advanced CPR failure and Prof.Inchauspe has consistently continued such unique research recovering impend...Thirty-seven years have passed since the first K-1 resuscitation maneuver implementation next to both basic and advanced CPR failure and Prof.Inchauspe has consistently continued such unique research recovering impending death situation victims in the most varied scenarios.After a dozen publications on the issue-mostly in World Journal of Critical Care Medicine and Hainan University Medical Editorial in China,the number of rescues increased to more than 195 cases.Having been contacted by experts in Ayurvedic medicine from India,the authors made a comparative analysis between said K-1 Yongquan and the Talahridaya points,and realized that not only are they located at the very same place for stimulation,but they are also integrated in the Reconciliation Vessel,a new Marvelous meridian discovered by Prof.Inchauspe within the Ancient Chinese classics.The following paper will show a statistical analysis made by Prof.Inchauspe and Dr.Saidman about the possible future impact that would result from the inclusion of the aforementioned maneuver in life support protocols.展开更多
To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A...To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A Peters-He finite-state wake model is improved to incorporate the operating-state-dependent KR to embody maneuver-induced effects. The curvature parameter KR varies with rotor forward speed, thrust and maneuvering angular rate according to a smoking experiment. Moreover, aerodynamic force/moment experiment indicates that after a quasi-step angular input, both on-axis and off-axis rotor responses show that an overshoot and its amplitude increases with the pitching rate. The comparison between theoretical and experimental results shows that the operating-state-accurate curvature parameter must be adopted to obtain accurate aerodynamic forces/moments, especially for the off-axis response. Additionally, combined with a dynamic wake distortion model, the obtained correlation agrees well with experimental data.展开更多
基金The paper was supported bythe National Ocean 863 High Technology Project (Grant No.2001AA602021)
文摘For the maintenance of the pipelines which pipe oil from oil fields in the Bohai Gulf of China, an underwater vehicle for pipeline detection and maintenance (PDM-UV) is designed. In this paper, the maneuverability and motion simulation of PDM-UV are studied. A general dynamic equation to describe the hydrodynamics of PDM-UV is presented. For a deep understanding of the dynamics of PDM-UV, which is somewhat different from normal underwater vehicles in configuration, the maneuverability is discussed in terms of hydrodynamic coefficients with experimental results. Finally, the whole motion simulation system is introduced and simulation results are presented to demonstrate the feasibility and correctness of the simulation platform.
基金financially supported by the National Natural Science Foundation of China(Grant No.51909040)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2020E073)the Key Technology Research and Development Program of Shandong(Grant No.2020CXGC010702).
文摘In this paper,the mechatronic design and maneuverability analysis of a novel robotic shark are presented.To obtain good maneuverability,a barycenter regulating device is designed to assist the posture adjustment at low speeds.Based on the Newton-Euler approach,an analytical dynamic model is established with particular consideration of pectoral fins for threedimensional motions.The hydrodynamic coefficients are computed using computational fluid dynamics(CFD)methods.Oscillation amplitudes and phases are determined by fitting an optimized fish body wave.The performance of the robotic shark is estimated by varying the oscillation frequency and offset angle.The results show that with oscillation frequency increasing,the swimming speed increases linearly.The robotic shark reaches the maximum swimming speed of 1.05 m/s with an oscillation frequency of 1.2 Hz.Furthermore,the turning radius decreases nonlinearly as the offset angle increased.The robotic shark reaches the minimum turning radius of 1.4 times the body length with 0.2 Hz frequency and 12°offset angle.In the vertical plane,as the pectoral fin angle increases,the diving velocity increases nonlinearly with increase rate slowing down.
文摘In order to simulate the under water motion of a mini autonomous underwater vehicle( AUV) and an- alyze its maneuverability,the dynamical characteristic of the mini AUV was researched. The 6-DOF motion equations were founded. Through model experiment with accessory bodies,the hydrodynamics of AUV body including resistance,main inertial and viscous hydrodynamic coefficients was obtained. The hydrodynamics of rudders was gained through theoretical calculation. Simulation computation of the vehicle was carried out through numerical integration of the motion equations. A motion simulation system was constructed. Four typical maneuvers in horizontal and vertical planes were simulated and the maneuverability of the mini AUV was forecasted. The simulation results reflect the basic motion characteristic of mini AUV and validate the feasibility and correctness of the whole system. The simulation system can be a testing platform for the design and debugging of motion controller and an effective tool for the development of AUV.
文摘To enhance the maneuverability of the selected aircraft model, a standard genetic algorithm (GA) is used as an optimization method for the preliminary design of the leading-edge extension (LEX) layout. The aerodynamic loads and the maximum lift coefficient of the complete aircraft configuration (fuselage+wing+tail) are computed by using the modified three-dimensional low-order panel method in conjunction with the semi-empirical formulas of DATCOM. Results show that the lift coefficient increases approximately 20.5%- 15.3% for Mach number 0. 4-0.8 and 6.8% for Mach number 1.2, and its maximum value approximately 9.5% -15.0% for Machnumber 0.2-0.95when LEXis installed. A 6.6%-8.0 % gain at altitudes of 1-5 km on the turn rate maneuverability and the corner speed have been achieved in the subsonic regime.
文摘Ordinary mobile robots have some kind of moving mechanisms attached to one rigid body. When working on rough terrain or in other hazard environments, there existed some possibilities that the robot will be turned up side down, thus causing losses to the robot's expedition. Multi bodied mobile robots provide a solution to that problem. Using active joints between bodies, the robot can recover from turnover situation by itself. In this paper, the authors discuss the joint arrangements and the additional maneuverability resulted from joints between body segments.
文摘It is well known that model test is one of approaches to investigate the maneuverability of vessels and the correlative method is an important problem of model test for vessels with large scale. Some of correlative problems,which should be solved with care in model test,are presented from analysis of the similarity principle for the ship maneuverability in this paper.A corrective method of appropriate angle of rudder is provided based on the result of maneuverability model test for a tanker with large scale and the corresponding prediction of the maneuverability for full scale tanker is satisfactory in view of engineering practice.
基金supported by the NSFC 62088101 Autonomous Intelligent Unmanned Systems,Chinaby the Zhejiang Provincial Natural Science Foundation of China(No.LR20F030003).
文摘In this paper,we propose a cooperative guidance law aimed to achieve coordinated impact angles with limited observation on target information.The primary challenge lies in establishing an appropriate communication graph among all missiles and devising an algorithm to estimate target acceleration information during engagements.To address this,we propose a specific communication topology and employ a numerical integration-based estimation method.Additionally,a distributed algorithm is introduced to facilitate consensus on target acceleration estimation.Building upon these foundations,we design an optimal-control-based distributed guidance law for each missile.Performance of the proposed guidance law is validated through numerical simulations.
基金supported in part by the National Natural Science Foundation of China(No.12002370)in part by the Hunan Provincial Natural Science Foundation of China(No.2019JJ50736)。
文摘The capturability of the Three-Dimensional(3D)Realistic True Proportional Navigation(RTPN)guidance law is thoroughly analyzed.The true-arbitrarily maneuvering target is considered,which maneuvers along an arbitrary direction in 3D space with an arbitrary but upperbounded acceleration.The whole nonlinear relative kinematics between the interceptor and target is taken into account.First,the upper-bound of commanded acceleration of 3D RTPN is deduced,using a novel Lyapunov-like approach.Second,the reasonable selection range of navigation gain of3D RTPN is analyzed,when the maneuver limitation of interceptor is considered.After that,a more realistic definition of capture is adopted,i.e.,the relative range is smaller than an acceptable miss-distance while the approaching speed is larger than a required impact speed.Unlike previous researches which present Two-Dimensional(2D)capture regions,the inequality analysis technique is utilized to obtain the 3D capture region,where the three coordinates are the closing speed,transversal relative speed,and relative range.The obtained capture region could be taken as a sufficient-but-unnecessary condition of capture.The new theoretical findings are all given in explicit expressions and are more general than previous results.
基金the Open Project of the Key Laboratory of Science and Technology on Waterjet Propulsion(No.614222303051117)the Joint Fund of CSSC(No.6141B03020301)
文摘Maneuverability is one of the most important sailing performances of vessels. In this article, a motion control model with three degrees of freedom(DoFs) for twin-waterjet propulsion vessel is proposed. The model is developed on the basis of maneuvering model group(MMG) maneuverability equations. A simulation environment is constructed on the Matlab Simulink platform. Standard turning tests and zig-zag tests are simulated by solving the motion control model, and the corresponding maneuverability parameters are calculated. Simulation results demonstrate that the maneuverability parameters are in accordance with the vessel maneuverability standard.The approach may be applied to the rapid prediction of vessel maneuverability.
基金supported by the National Natural Science Foundation of China(Grant Nos.61375102, 61333016 and 61421004)
文摘In this paper,we present an overview of the mechanical design and control of biomimetic robotic fishes with high maneuverability.The robotic fishes modelled after Esoxlucius adopt multilink propulsive mechanism for a high turning rate and a small turning radius.According to different tasks,these robotic fishes are designed with decorated pectoral fins for a two-dimensional horizon plane,or controllable pectoral fins with multiple degrees of freedom for a three-dimensional space.Through observing and analyzing the fast-starts of real fish,we separately develop a dynamic trajectory tracking strategy based C-start control method and an L-shaped sliding method based S-start control method.Finally,a four-link robotic fish is able to execute C-start flexibly with a turning angle of up to 213°,a top turning rate of approximately670°/s,and an upper limit of turning precision of less than 10°and an S-start with a peak turning rate up to318.08±9.20°/s.The experimental results verify the feasibility of our high-maneuverability-oriented mechatronic design and control methods.
基金supported in part by the National Key Laboratory of Air-based Information Perception and Fusion and the Aeronautical Science Foundation of China (Grant No. 20220001068001)National Natural Science Foundation of China (Grant No.61673327)+1 种基金Natural Science Basic Research Plan in Shaanxi Province,China (Grant No. 2023-JC-QN-0733)China IndustryUniversity-Research Innovation Foundation (Grant No. 2022IT188)。
文摘Aiming at the problem of multi-UAV pursuit-evasion confrontation, a UAV cooperative maneuver method based on an improved multi-agent deep reinforcement learning(MADRL) is proposed. In this method, an improved Comm Net network based on a communication mechanism is introduced into a deep reinforcement learning algorithm to solve the multi-agent problem. A layer of gated recurrent unit(GRU) is added to the actor-network structure to remember historical environmental states. Subsequently,another GRU is designed as a communication channel in the Comm Net core network layer to refine communication information between UAVs. Finally, the simulation results of the algorithm in two sets of scenarios are given, and the results show that the method has good effectiveness and applicability.
文摘The strategy evolution process of game players is highly uncertain due to random emergent situations and other external disturbances.This paper investigates the issue of strategy interaction and behavioral decision-making among game players in simulated confrontation scenarios within a random interference environment.It considers the possible risks that random disturbances may pose to the autonomous decision-making of game players,as well as the impact of participants’manipulative behaviors on the state changes of the players.A nonlinear mathematical model is established to describe the strategy decision-making process of the participants in this scenario.Subsequently,the strategy selection interaction relationship,strategy evolution stability,and dynamic decision-making process of the game players are investigated and verified by simulation experiments.The results show that maneuver-related parameters and random environmental interference factors have different effects on the selection and evolutionary speed of the agent’s strategies.Especially in a highly uncertain environment,even small information asymmetry or miscalculation may have a significant impact on decision-making.This also confirms the feasibility and effectiveness of the method proposed in the paper,which can better explain the behavioral decision-making process of the agent in the interaction process.This study provides feasibility analysis ideas and theoretical references for improving multi-agent interactive decision-making and the interpretability of the game system model.
基金supported by the Funds for the Central Universities。
文摘To solve the problem that multiple missiles should simultaneously attack unmeasurable maneuvering targets,a guidance law with temporal consistency constraint based on the super-twisting observer is proposed.Firstly,the relative motion equations between multiple missiles and targets are established,and the topological model among multiple agents is considered.Secondly,based on the temporal consistency constraint,a cooperative guidance law for simultaneous arrival with finite-time convergence is derived.Finally,the unknown target maneuver-ing is regarded as bounded interference.Based on the second-order sliding mode theory,a super-twisting sliding mode observer is devised to observe and track the bounded interfer-ence,and the stability of the observer is proved.Compared with the existing research,this approach only needs to obtain the sliding mode variable which simplifies the design process.The simulation results show that the designed cooperative guidance law for maneuvering targets achieves the expected effect.It ensures successful cooperative attacks,even when confronted with strong maneuvering targets.
基金supported by the National Natural Science Foundation of China (Project No.72301293)。
文摘Target maneuver recognition is a prerequisite for air combat situation awareness,trajectory prediction,threat assessment and maneuver decision.To get rid of the dependence of the current target maneuver recognition method on empirical criteria and sample data,and automatically and adaptively complete the task of extracting the target maneuver pattern,in this paper,an air combat maneuver pattern extraction based on time series segmentation and clustering analysis is proposed by combining autoencoder,G-G clustering algorithm and the selective ensemble clustering analysis algorithm.Firstly,the autoencoder is used to extract key features of maneuvering trajectory to remove the impacts of redundant variables and reduce the data dimension;Then,taking the time information into account,the segmentation of Maneuver characteristic time series is realized with the improved FSTS-AEGG algorithm,and a large number of maneuver primitives are extracted;Finally,the maneuver primitives are grouped into some categories by using the selective ensemble multiple time series clustering algorithm,which can prove that each class represents a maneuver action.The maneuver pattern extraction method is applied to small scale air combat trajectory and can recognize and correctly partition at least 71.3%of maneuver actions,indicating that the method is effective and satisfies the requirements for engineering accuracy.In addition,this method can provide data support for various target maneuvering recognition methods proposed in the literature,greatly reduce the workload and improve the recognition accuracy.
基金National Science and Technology Council,Taiwan,for financially supporting this research(Grant No.NSTC 113-2221-E-018-011)Ministry of Education’s Teaching Practice Research Program,Taiwan(PSK1120797 and PSK1134099).
文摘This paper explores the application of Model Predictive Control(MPC)to enhance safety and efficiency in autonomous vehicle(AV)navigation through optimized path planning.The evolution of AV technology has progressed rapidly,moving from basic driver-assistance systems(Level 1)to fully autonomous capabilities(Level 5).Central to this advancement are two key functionalities:Lane-Change Maneuvers(LCM)and Adaptive Cruise Control(ACC).In this study,a detailed simulation environment is created to replicate the road network between Nantun andWuri on National Freeway No.1 in Taiwan.The MPC controller is deployed to optimize vehicle trajectories,ensuring safe and efficient navigation.Simulated onboard sensors,including vehicle cameras and millimeterwave radar,are used to detect and respond to dynamic changes in the surrounding environment,enabling real-time decision-making for LCM and ACC.The simulation resultshighlight the superiority of the MPC-based approach in maintaining safe distances,executing controlled lane changes,and optimizing fuel efficiency.Specifically,the MPC controller effectively manages collision avoidance,reduces travel time,and contributes to smoother traffic flow compared to traditional path planning methods.These findings underscore the potential of MPC to enhance the reliability and safety of autonomous driving in complex traffic scenarios.Future research will focus on validating these results through real-world testing,addressing computational challenges for real-time implementation,and exploring the adaptability of MPC under various environmental conditions.This study provides a significant step towards achieving safer and more efficient autonomous vehicle navigation,paving the way for broader adoption of MPC in AV systems.
基金supported in part by the National Natural Science Foundation of China(No.12032012)the Key Discipline Construction Project of Colleges and Universities in Jiangsu Province.
文摘To enhance the stability of helicopter maneuvers during task execution,a composite trajectory tracking controller design based on the implicit model(IM)and linear active disturbance rejection control(LADRC)is proposed.Initially,aerodynamic models of the main and tail rotor are created using the blade element theory and the uniform inflow assumption.Subsequently,a comprehensive flight dynamic model of the helicopter is established through fitting aerodynamic force fitting.Subsequently,for precise helicopter maneuvering,including the spiral,spiral up,and Ranversman maneuver,a regular trim is undertaken,followed by minor perturbation linearization at the trim point.Utilizing the linearized model,controllers are created for the IM attitude inner loop and LADRC position outer loop of the helicopter.Ultimately,a comparison is made between the maneuver trajectory tracking results of the IM‑LADRC and the conventional proportional-integral-derivative(PID)control method is performed.Experimental results demonstrate that utilizing the post-trim minor perturbation linearized model in combination with the IM‑LADRC method can achieve higher precision in tracking results,thus enhancing the accuracy of helicopter maneuver execution.
文摘In modern warfare,unpowered glide munitions,represented by JDAM,are widely used.Accurately predicting the future trajectory of such targets is crucial for intercepting them.This paper proposes a future point prediction method for unpowered gliding targets based on attitude computation.By estimating the current state of the target,we derive the target’s attitude coordinate system.Subsequently,the paper analyzes the forces acting on the target and updates the state transition matrix,ultimately calculating the future position of the target.Experimental results show that,compared to traditional methods,this approach improves the accuracy of future point predictions by 9%to 45%.
文摘Thirty-seven years have passed since the first K-1 resuscitation maneuver implementation next to both basic and advanced CPR failure and Prof.Inchauspe has consistently continued such unique research recovering impending death situation victims in the most varied scenarios.After a dozen publications on the issue-mostly in World Journal of Critical Care Medicine and Hainan University Medical Editorial in China,the number of rescues increased to more than 195 cases.Having been contacted by experts in Ayurvedic medicine from India,the authors made a comparative analysis between said K-1 Yongquan and the Talahridaya points,and realized that not only are they located at the very same place for stimulation,but they are also integrated in the Reconciliation Vessel,a new Marvelous meridian discovered by Prof.Inchauspe within the Ancient Chinese classics.The following paper will show a statistical analysis made by Prof.Inchauspe and Dr.Saidman about the possible future impact that would result from the inclusion of the aforementioned maneuver in life support protocols.
文摘To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A Peters-He finite-state wake model is improved to incorporate the operating-state-dependent KR to embody maneuver-induced effects. The curvature parameter KR varies with rotor forward speed, thrust and maneuvering angular rate according to a smoking experiment. Moreover, aerodynamic force/moment experiment indicates that after a quasi-step angular input, both on-axis and off-axis rotor responses show that an overshoot and its amplitude increases with the pitching rate. The comparison between theoretical and experimental results shows that the operating-state-accurate curvature parameter must be adopted to obtain accurate aerodynamic forces/moments, especially for the off-axis response. Additionally, combined with a dynamic wake distortion model, the obtained correlation agrees well with experimental data.