Let b = (b1,…,bm) be a finite family of locally integrable functions. Then, we introduce generalized higher commutator of Marcinkiwicz integral as follows:( μΩ^b^→(f)(x)=(∫ 0^∞|FΩ^b^→,t(f)(x)|^2...Let b = (b1,…,bm) be a finite family of locally integrable functions. Then, we introduce generalized higher commutator of Marcinkiwicz integral as follows:( μΩ^b^→(f)(x)=(∫ 0^∞|FΩ^b^→,t(f)(x)|^2t/dt)^1/2,where(FΩ^b^→,t(f)(x)=1/t∫|x-y|≤t Ω(x-y)/|x-y|^n-1 Лj=1^m(bj(x)-bj(y))f(y)dy.)When(bj∈Aβj,1≤j≤m,0〈βj〈1∑j=1^mβj=β〈n)and Ω is homogeneous of degreezero and satisfies the cancelation condition, we prove that μΩ^b^→is bounded from L^p(R^n)to L^8(R^n),where1〈p〈βand 1/s=1/p-β/n,Moreover,if Ω also satisties some L^q -Dini condition,then μΩ^b^→ isbounded from L^p(R^n)to Fp^β,∞(R^n)and on certain Hardy spaces.The article extends some known results.展开更多
In the present paper, we consider the boundedness of Marcinkiewicz integral operator μΩ,h,Ф along a surface Г = {x = Ф(|y|)y/|y|)} on the Triebel-Lizorkin space Fq,q^α(R^n ) for Ω belonging to H1 (Sn-...In the present paper, we consider the boundedness of Marcinkiewicz integral operator μΩ,h,Ф along a surface Г = {x = Ф(|y|)y/|y|)} on the Triebel-Lizorkin space Fq,q^α(R^n ) for Ω belonging to H1 (Sn-1) and some class WFα(S^n-1), which relates to Grafakos-Stefanov class. Some previous results are extended and improved.展开更多
In this article, certain Marcinkiewicz integral operators associated to surfaces of revolution on product domains were studied. The Lp boundedness for these operators are established under some rather weak conditions ...In this article, certain Marcinkiewicz integral operators associated to surfaces of revolution on product domains were studied. The Lp boundedness for these operators are established under some rather weak conditions on kernels. The main results essentially improve and extend some known results.展开更多
In this paper, the weighted boundedness of parametric Marcinkiewicz integral and its commutator with rough kernels are considered. In addition, the weak type norm inequalities for parametric Marcinkiewicz integral and...In this paper, the weighted boundedness of parametric Marcinkiewicz integral and its commutator with rough kernels are considered. In addition, the weak type norm inequalities for parametric Marcinkiewicz integral and its commutator with different weight functions and Dini kernel are also discussed.展开更多
In this paper, we prove the Triebel-Lizorkin boundedness for the Marcinkiewicz integral with rough kernel. The method we apply here enables us to consider more general operators.
In this paper, the authors study the boundedness of the operator [μΩ,b], the commutator generated by a function b ∈ Lipβ(Rn)(0 <β≤1) and the Marcinkiewicz integrals μΩ, on the classical Hardy spaces and the...In this paper, the authors study the boundedness of the operator [μΩ,b], the commutator generated by a function b ∈ Lipβ(Rn)(0 <β≤1) and the Marcinkiewicz integrals μΩ, on the classical Hardy spaces and the Herz-type Hardy spaces in the case Ω ∈ Lipα(Sn-1)(0 <α≤ 1).展开更多
It provides the boundary proof of Marcnkiewicz integral μ Ω(f)(x) on Herz_type Hardy spaces. That is: if n(1-1q)≤α【n(1-1q)+β then μ Ω(f)(x) is boundendess from H K· α,p q(R n) to ...It provides the boundary proof of Marcnkiewicz integral μ Ω(f)(x) on Herz_type Hardy spaces. That is: if n(1-1q)≤α【n(1-1q)+β then μ Ω(f)(x) is boundendess from H K· α,p q(R n) to K· α,p q(R n); if α=n(1-1q)+β then μ Ω(f)(x) is boundedness from H K· α,p q(R n) to W K· α,p q(R n).展开更多
In this paper, we shall prove that the Marcinkiewicz integral operator #n, when its kernel Ω satisfies the L^1-Dini condition, is bounded on the Triehel-Lizorkin spaces. It is well known that the Triehel-Lizorkin spa...In this paper, we shall prove that the Marcinkiewicz integral operator #n, when its kernel Ω satisfies the L^1-Dini condition, is bounded on the Triehel-Lizorkin spaces. It is well known that the Triehel-Lizorkin spaces are generalizations of many familiar spaces such as the Lehesgue spaces and the Soholev spaces. Therefore, our result extends many known theorems on the Marcinkiewicz integral operator. Our method is to regard the Marcinkiewicz integral operator as a vector valued singular integral. We also use another characterization of the Triehel-Lizorkin space which makes our approach more clear.展开更多
In this paper, we prove the boundedness of the fractional maximal operator, Hardy-Littlewood maximal operator and marcinkiewicz integrals associated with Schrodinger operator on Morrey spaces with variable exponent.
This paper studies the mixed radial-angular integrability of parametric Marcinkiewicz integrals along"polynomial curves".Under the assumption that the kernels satisfy certain rather weak size conditions on t...This paper studies the mixed radial-angular integrability of parametric Marcinkiewicz integrals along"polynomial curves".Under the assumption that the kernels satisfy certain rather weak size conditions on the unit sphere with radial roughness,the authors prove that such operators are bounded on the mixed radial-angular spaces.Meanwhile,corresponding vector-valued versions are also obtained.展开更多
Let μΩ,b^m be the higher order commutator generated by Marcinkiewicz integral μΩ and a BMO(R^n) function b(x). In this paper, we will study the continuity of μΩ and μΩ,b^m on homogeneous Morrey-Herz spaces.
Let α≥ 0 and 0 〈 ρ ≤ n/2, the boundedness of hypersingular parameterized Marcinkiewicz integrals μΩ,α^ρ with variable kernels on Sobolev spaces Lα^ρ and HardySobolev spaces Hα^ρ is established.
In this paper, under natural regularity assumptions on the exponent function, we prove some boundedness results for the functions of Littlewood-Paley, Lusin and Marcinkiewicz on a new class of generalized Herz-Morrey ...In this paper, under natural regularity assumptions on the exponent function, we prove some boundedness results for the functions of Littlewood-Paley, Lusin and Marcinkiewicz on a new class of generalized Herz-Morrey spaces with weight and variable exponent, which essentially extend some known results.展开更多
Lp(Rn) boundedness is considered for the higher-dimensional Marcinkiewicz integral which was introduced by Stein. Some conditions implying the Lp(Rn) boundedness for the Marcinkiewicz integral are obtained.
Let μΩ,b be the commutator generalized by the n-dimensional Marcinkiewicz integral μΩ and a function b∈ BMO(R^n). It is proved that μΩ,bis bounded from the Hardy space H^1 (R^n) into the weak L^1(R^n) space.
In this paper,the L2-boundedness of a class of parametric Marcinkiewicz integral μρ Ω,h with kernel function Ω in B 0,0 q(S n-1) for some q>1,and the radial function h(x)∈l∞(Ls)(R +) for 1<s≤∞ are...In this paper,the L2-boundedness of a class of parametric Marcinkiewicz integral μρ Ω,h with kernel function Ω in B 0,0 q(S n-1) for some q>1,and the radial function h(x)∈l∞(Ls)(R +) for 1<s≤∞ are given.The Lp(Rn)(2≤p<∞) boundedness of μ *,ρ Ω,h,λ and μ ρ Ω,h,S with Ω in B 0,0 q(S n-1) and h(|x|)∈l∞(Ls)(R +) in application are obtained.Here μ *,ρ Ω,h,λ and μ ρ Ω,h,S are parametric Marcinkiewicz integrals corresponding to the Littlewood-Paley g* λ function and the Lusin area function S,respectively.展开更多
The boundedness of the commutator μΩ,b generalized by Marcinkiewicz integral μΩ and a function b(x) ∈ CBMOq (Rn) on homogeneous Morrey-Herz spaces is established.
In this paper, the authors study the boundedness of the operator μ^bΩ, the commutator generated by a function b ∈Lipβ (R^n) (0 〈β 〈 1) and the Marcinkiewicz integral μΩ on weighted Herz-type Hardy spaces.
基金Supported by National 973 Project(G.19990751)the SEDF of China(20040027001)
文摘Let b = (b1,…,bm) be a finite family of locally integrable functions. Then, we introduce generalized higher commutator of Marcinkiwicz integral as follows:( μΩ^b^→(f)(x)=(∫ 0^∞|FΩ^b^→,t(f)(x)|^2t/dt)^1/2,where(FΩ^b^→,t(f)(x)=1/t∫|x-y|≤t Ω(x-y)/|x-y|^n-1 Лj=1^m(bj(x)-bj(y))f(y)dy.)When(bj∈Aβj,1≤j≤m,0〈βj〈1∑j=1^mβj=β〈n)and Ω is homogeneous of degreezero and satisfies the cancelation condition, we prove that μΩ^b^→is bounded from L^p(R^n)to L^8(R^n),where1〈p〈βand 1/s=1/p-β/n,Moreover,if Ω also satisties some L^q -Dini condition,then μΩ^b^→ isbounded from L^p(R^n)to Fp^β,∞(R^n)and on certain Hardy spaces.The article extends some known results.
基金partially supported by Grant-in-Aid for Scientific Research(C)(No.23540228),Japan Society for the Promotion of Science
文摘In the present paper, we consider the boundedness of Marcinkiewicz integral operator μΩ,h,Ф along a surface Г = {x = Ф(|y|)y/|y|)} on the Triebel-Lizorkin space Fq,q^α(R^n ) for Ω belonging to H1 (Sn-1) and some class WFα(S^n-1), which relates to Grafakos-Stefanov class. Some previous results are extended and improved.
基金Supported by the NSF of China (G10571122) the NFS of Fujian Province of China (Z0511004)
文摘In this article, certain Marcinkiewicz integral operators associated to surfaces of revolution on product domains were studied. The Lp boundedness for these operators are established under some rather weak conditions on kernels. The main results essentially improve and extend some known results.
文摘In this paper, the weighted boundedness of parametric Marcinkiewicz integral and its commutator with rough kernels are considered. In addition, the weak type norm inequalities for parametric Marcinkiewicz integral and its commutator with different weight functions and Dini kernel are also discussed.
基金Supported by the National Science Foundation of China (Grants 10901043, 10701064, 10871173, and 10931001)Hangdian Foundation (KYS075608076)
文摘In this paper, we prove the Triebel-Lizorkin boundedness for the Marcinkiewicz integral with rough kernel. The method we apply here enables us to consider more general operators.
基金Supported by the National 973 Project (G.19990751) the SEDF (20010027002).
文摘In this paper, the authors study the boundedness of the operator [μΩ,b], the commutator generated by a function b ∈ Lipβ(Rn)(0 <β≤1) and the Marcinkiewicz integrals μΩ, on the classical Hardy spaces and the Herz-type Hardy spaces in the case Ω ∈ Lipα(Sn-1)(0 <α≤ 1).
文摘It provides the boundary proof of Marcnkiewicz integral μ Ω(f)(x) on Herz_type Hardy spaces. That is: if n(1-1q)≤α【n(1-1q)+β then μ Ω(f)(x) is boundendess from H K· α,p q(R n) to K· α,p q(R n); if α=n(1-1q)+β then μ Ω(f)(x) is boundedness from H K· α,p q(R n) to W K· α,p q(R n).
基金Project (No.10601046) supported by the National Natural Science Foundation of China
文摘In this paper, we shall prove that the Marcinkiewicz integral operator #n, when its kernel Ω satisfies the L^1-Dini condition, is bounded on the Triehel-Lizorkin spaces. It is well known that the Triehel-Lizorkin spaces are generalizations of many familiar spaces such as the Lehesgue spaces and the Soholev spaces. Therefore, our result extends many known theorems on the Marcinkiewicz integral operator. Our method is to regard the Marcinkiewicz integral operator as a vector valued singular integral. We also use another characterization of the Triehel-Lizorkin space which makes our approach more clear.
基金supported by NSFC (No. 11201003)University NSR Project of Anhui Province (No. KJ2014A087)
文摘In this paper, we prove the boundedness of the fractional maximal operator, Hardy-Littlewood maximal operator and marcinkiewicz integrals associated with Schrodinger operator on Morrey spaces with variable exponent.
基金supported by the NSFC(11771358,11701333,11871101)。
文摘This paper studies the mixed radial-angular integrability of parametric Marcinkiewicz integrals along"polynomial curves".Under the assumption that the kernels satisfy certain rather weak size conditions on the unit sphere with radial roughness,the authors prove that such operators are bounded on the mixed radial-angular spaces.Meanwhile,corresponding vector-valued versions are also obtained.
基金Supported by NSF of China (10371087)NSF of Anhui Province(07021019)Education Committee of Anhui Province(KJ2007A009)
文摘Let μΩ,b^m be the higher order commutator generated by Marcinkiewicz integral μΩ and a BMO(R^n) function b(x). In this paper, we will study the continuity of μΩ and μΩ,b^m on homogeneous Morrey-Herz spaces.
基金Supported by the National Natural Science Foundation of China(1057115610871173)
文摘Let α≥ 0 and 0 〈 ρ ≤ n/2, the boundedness of hypersingular parameterized Marcinkiewicz integrals μΩ,α^ρ with variable kernels on Sobolev spaces Lα^ρ and HardySobolev spaces Hα^ρ is established.
文摘In this paper, under natural regularity assumptions on the exponent function, we prove some boundedness results for the functions of Littlewood-Paley, Lusin and Marcinkiewicz on a new class of generalized Herz-Morrey spaces with weight and variable exponent, which essentially extend some known results.
基金The research was supported by the NSF of Henan Province.
文摘Lp(Rn) boundedness is considered for the higher-dimensional Marcinkiewicz integral which was introduced by Stein. Some conditions implying the Lp(Rn) boundedness for the Marcinkiewicz integral are obtained.
文摘Let μΩ,b be the commutator generalized by the n-dimensional Marcinkiewicz integral μΩ and a function b∈ BMO(R^n). It is proved that μΩ,bis bounded from the Hardy space H^1 (R^n) into the weak L^1(R^n) space.
文摘In this paper,the L2-boundedness of a class of parametric Marcinkiewicz integral μρ Ω,h with kernel function Ω in B 0,0 q(S n-1) for some q>1,and the radial function h(x)∈l∞(Ls)(R +) for 1<s≤∞ are given.The Lp(Rn)(2≤p<∞) boundedness of μ *,ρ Ω,h,λ and μ ρ Ω,h,S with Ω in B 0,0 q(S n-1) and h(|x|)∈l∞(Ls)(R +) in application are obtained.Here μ *,ρ Ω,h,λ and μ ρ Ω,h,S are parametric Marcinkiewicz integrals corresponding to the Littlewood-Paley g* λ function and the Lusin area function S,respectively.
基金NSFC(10571014)NSFC(10571156)+1 种基金the Growth Foundation of JXNU(1983)the Doctor Foun-dation of JXNU
文摘The boundedness of the commutator μΩ,b generalized by Marcinkiewicz integral μΩ and a function b(x) ∈ CBMOq (Rn) on homogeneous Morrey-Herz spaces is established.
基金Supported by the Natural Science Foundation of Xuzhou Normal University (09XLB02)
文摘In this paper, the authors study the boundedness of the operator μ^bΩ, the commutator generated by a function b ∈Lipβ (R^n) (0 〈β 〈 1) and the Marcinkiewicz integral μΩ on weighted Herz-type Hardy spaces.