Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the node...Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).展开更多
In order to improve robustness and efficiency of the radio frequency identification(RFID)network,a random mating mayfly algorithm(RMMA)was proposed.Firstly,RMMA introduced the mechanism of random mating into the mayfl...In order to improve robustness and efficiency of the radio frequency identification(RFID)network,a random mating mayfly algorithm(RMMA)was proposed.Firstly,RMMA introduced the mechanism of random mating into the mayfly algorithm(MA),which improved the population diversity and enhanced the exploration ability of the algorithm in the early stage,and find a better solution to the RFID nework planning(RNP)problem.Secondly,in RNP,tags are usually placed near the boundaries of the working space,so the minimum boundary mutation strategy was proposed to make sure the mayflies which beyond the boundary can keep the original search direction,as to enhance the ability of searching near the boundary.Lastly,in order to measure the performance of RMMA,the algorithm is then benchmarked on three well-known classic test functions,and the results are verified by a comparative study with particle swarm optimization(PSO),grey wolf optimization(GWO),and MA.The results show that the RMMA algorithm is able to provide very competitive results compared to these well-known meta-heuristics,RMMA is also applied to solve RNP problems.The performance evaluation shows that RMMA achieves higher coverage than the other three algorithms.When the number of readers is the same,RMMA can obtain lower interference and get a better load balance in each instance compared with other algorithms.RMMA can also solve RNP problem stably and efficiently when the number and position of tags change over time.展开更多
Signal processing based research was adopted with Electroencephalogram(EEG)for predicting the abnormality and cerebral activities.The proposed research work is intended to provide an automatic diagnostic system to det...Signal processing based research was adopted with Electroencephalogram(EEG)for predicting the abnormality and cerebral activities.The proposed research work is intended to provide an automatic diagnostic system to determine the EEG signal in order to classify the brain function which shows whether a person is affected with schizophrenia or not.Early detection and intervention are vital for better prognosis.However,the diagnosis of schizophrenia still depends on clinical observation to date.Without reliable biomarkers,schizophrenia is difficult to detect in its early phase and hence we have proposed this idea.In this work,the EEG signal series are divided into non-linear feature mining,classification and validation,and t-test integrated feature selection process.For this work,19-channel EEG signals are utilized from schizophrenia class and normal pattern.Here,the datasets initially execute the splitting process based on raw 19-channel EEG into 6250 sample point’s sequences.With this process,1142 features of normal and schizophrenia class patterns can be obtained.In other hand,157 features from each EEG patterns are utilized based on Non-linear feature extraction process where 14 principal features can be identified in terms of considering the essential features.At last,the Deep Learning(DL)technique incorporated with an effective optimization technique is adopted for classification process called a Deep Convolutional Neural Network(DCNN)with mayfly optimization algorithm.The proposed technique is implemented into the platform of MATLAB in order to obtain better results and is analyzed based on the performance analysis framework such as accuracy,Signal to Noise Ratio(SNR),Mean Square Error,Normalized Mean Square Error(NMSE)and Loss.Through comparison,the proposed technique is proved to a better technique than other existing techniques.展开更多
Internet of Vehicles(IoV)is an evolution of the Internet of Things(IoT)to improve the capabilities of vehicular ad-hoc networks(VANETs)in intelligence transport systems.The network topology in IoV paradigm is highly d...Internet of Vehicles(IoV)is an evolution of the Internet of Things(IoT)to improve the capabilities of vehicular ad-hoc networks(VANETs)in intelligence transport systems.The network topology in IoV paradigm is highly dynamic.Clustering is one of the promising solutions to maintain the route stability in the dynamic network.However,existing algorithms consume a considerable amount of time in the cluster head(CH)selection process.Thus,this study proposes a mobility aware dynamic clustering-based routing(MADCR)protocol in IoV to maximize the lifespan of networks and reduce the end-to-end delay of vehicles.The MADCR protocol consists of cluster formation and CH selection processes.A cluster is formed on the basis of Euclidean distance.The CH is then chosen using the mayfly optimization algorithm(MOA).The CH subsequently receives vehicle data and forwards such data to the Road Side Unit(RSU).The performance of the MADCR protocol is compared with that ofAnt Colony Optimization(ACO),Comprehensive Learning Particle Swarm Optimization(CLPSO),and Clustering Algorithm for Internet of Vehicles based on Dragonfly Optimizer(CAVDO).The proposed MADCR protocol decreases the end-toend delay by 5–80 ms and increases the packet delivery ratio by 5%–15%.展开更多
文摘Wireless Sensor Networks(WSNs)are a collection of sensor nodes distributed in space and connected through wireless communication.The sensor nodes gather and store data about the real world around them.However,the nodes that are dependent on batteries will ultimately suffer an energy loss with time,which affects the lifetime of the network.This research proposes to achieve its primary goal by reducing energy consumption and increasing the network’s lifetime and stability.The present technique employs the hybrid Mayfly Optimization Algorithm-Enhanced Ant Colony Optimization(MFOA-EACO),where the Mayfly Optimization Algorithm(MFOA)is used to select the best cluster head(CH)from a set of nodes,and the Enhanced Ant Colony Optimization(EACO)technique is used to determine an optimal route between the cluster head and base station.The performance evaluation of our suggested hybrid approach is based on many parameters,including the number of active and dead nodes,node degree,distance,and energy usage.Our objective is to integrate MFOA-EACO to enhance energy efficiency and extend the network life of the WSN in the future.The proposed method outcomes proved to be better than traditional approaches such as Hybrid Squirrel-Flying Fox Optimization Algorithm(HSFLBOA),Hybrid Social Reindeer Optimization and Differential Evolution-Firefly Algorithm(HSRODE-FFA),Social Spider Distance Sensitive-Iterative Antlion Butterfly Cockroach Algorithm(SADSS-IABCA),and Energy Efficient Clustering Hierarchy Strategy-Improved Social Spider Algorithm Differential Evolution(EECHS-ISSADE).
基金supported by the National Natural Science Foundation of China(61761004)。
文摘In order to improve robustness and efficiency of the radio frequency identification(RFID)network,a random mating mayfly algorithm(RMMA)was proposed.Firstly,RMMA introduced the mechanism of random mating into the mayfly algorithm(MA),which improved the population diversity and enhanced the exploration ability of the algorithm in the early stage,and find a better solution to the RFID nework planning(RNP)problem.Secondly,in RNP,tags are usually placed near the boundaries of the working space,so the minimum boundary mutation strategy was proposed to make sure the mayflies which beyond the boundary can keep the original search direction,as to enhance the ability of searching near the boundary.Lastly,in order to measure the performance of RMMA,the algorithm is then benchmarked on three well-known classic test functions,and the results are verified by a comparative study with particle swarm optimization(PSO),grey wolf optimization(GWO),and MA.The results show that the RMMA algorithm is able to provide very competitive results compared to these well-known meta-heuristics,RMMA is also applied to solve RNP problems.The performance evaluation shows that RMMA achieves higher coverage than the other three algorithms.When the number of readers is the same,RMMA can obtain lower interference and get a better load balance in each instance compared with other algorithms.RMMA can also solve RNP problem stably and efficiently when the number and position of tags change over time.
文摘Signal processing based research was adopted with Electroencephalogram(EEG)for predicting the abnormality and cerebral activities.The proposed research work is intended to provide an automatic diagnostic system to determine the EEG signal in order to classify the brain function which shows whether a person is affected with schizophrenia or not.Early detection and intervention are vital for better prognosis.However,the diagnosis of schizophrenia still depends on clinical observation to date.Without reliable biomarkers,schizophrenia is difficult to detect in its early phase and hence we have proposed this idea.In this work,the EEG signal series are divided into non-linear feature mining,classification and validation,and t-test integrated feature selection process.For this work,19-channel EEG signals are utilized from schizophrenia class and normal pattern.Here,the datasets initially execute the splitting process based on raw 19-channel EEG into 6250 sample point’s sequences.With this process,1142 features of normal and schizophrenia class patterns can be obtained.In other hand,157 features from each EEG patterns are utilized based on Non-linear feature extraction process where 14 principal features can be identified in terms of considering the essential features.At last,the Deep Learning(DL)technique incorporated with an effective optimization technique is adopted for classification process called a Deep Convolutional Neural Network(DCNN)with mayfly optimization algorithm.The proposed technique is implemented into the platform of MATLAB in order to obtain better results and is analyzed based on the performance analysis framework such as accuracy,Signal to Noise Ratio(SNR),Mean Square Error,Normalized Mean Square Error(NMSE)and Loss.Through comparison,the proposed technique is proved to a better technique than other existing techniques.
基金This work was supported by National Natural Science Foundation of China(No.61821001)Science and Tech-nology Key Project of Guangdong Province,China(2019B010157001).
文摘Internet of Vehicles(IoV)is an evolution of the Internet of Things(IoT)to improve the capabilities of vehicular ad-hoc networks(VANETs)in intelligence transport systems.The network topology in IoV paradigm is highly dynamic.Clustering is one of the promising solutions to maintain the route stability in the dynamic network.However,existing algorithms consume a considerable amount of time in the cluster head(CH)selection process.Thus,this study proposes a mobility aware dynamic clustering-based routing(MADCR)protocol in IoV to maximize the lifespan of networks and reduce the end-to-end delay of vehicles.The MADCR protocol consists of cluster formation and CH selection processes.A cluster is formed on the basis of Euclidean distance.The CH is then chosen using the mayfly optimization algorithm(MOA).The CH subsequently receives vehicle data and forwards such data to the Road Side Unit(RSU).The performance of the MADCR protocol is compared with that ofAnt Colony Optimization(ACO),Comprehensive Learning Particle Swarm Optimization(CLPSO),and Clustering Algorithm for Internet of Vehicles based on Dragonfly Optimizer(CAVDO).The proposed MADCR protocol decreases the end-toend delay by 5–80 ms and increases the packet delivery ratio by 5%–15%.