Research in spreadsheet management proved that the overuse of slow thinking, rather than fast thinking, is the primary source of erroneous end-user computing. However, we found that the reality is not that simple. To ...Research in spreadsheet management proved that the overuse of slow thinking, rather than fast thinking, is the primary source of erroneous end-user computing. However, we found that the reality is not that simple. To view end-user computing in its full complexity, we launched a project to investigate end-user education, training, support, activities, and computer problem solving. In this project we also set up the base and mathability-extended typology of computer problem solving approaches, where quantitative values are assigned to the different problem solving methods and activities. In this paper we present the results of our analyses of teaching materials collected in different languages from all over the world and our findings considering the different problem solving approaches, set in the frame of different thinking modes, the characteristics of expert teachers, and the meaning system model of teaching approaches. Based on our research, we argue that the proportions of fast and slow thinking and most importantly their manifestation are responsible for erroneous end-user activities. Applying the five-point mathability scale of computer problem solving, we recognized slow thinking activities on both tails and one fast thinking approach between them. The low mathability slow thinking activities, where surface navigation and language details are focused on, are widely accepted in end-user computing. The high mathability slow thinking problem solving activities, where the utilization of concept based approaches and schema construction take place, is hardly detectable in end-user activities. Instead of building up knowledge which requires slow thinking and then using the tools with fast thinking, end-users use up their slow thinking in aimless wandering in huge programs, making wrong decisions based on their untrained, clueless intuition, and distributing erroneous end-user documents. We also found that the dominance of low mathability slow thinking activities has its roots in the education system and through this we point out that we are in great need of expert teachers and institutions and their widely accepted approaches and methods.展开更多
文摘人体行为识别(Human Activity Recognition,HAR)是当前众多研究工作的基石,对于推动人机交互和智能数字化转型具有巨大潜力。由于目标域样本较难采集,现有方法在跨域识别方面表现不佳。为解决这一问题,提出一种新的WiFi使能跨域HAR方法,从WiFi信号中获取信道状态信息(Channel State Information,CSI)并转化为图像,在基于Wasserstein距离和梯度的生成对抗网络(Wasserstein Generative Adversarial Network with Gradient Penalty,WGAN-GP)中引入双判别器,通过与源域样本和单目标域样本特征联合对抗,生成同时带有双域特征的虚拟样本。该方法还结合基于Mean Teacher的半监督学习设计识别分类(Recognition and Classification,RC)模块,通过对有标记样本与无标记样本分别构造损失函数,进行整体一致性损失的评估,实现对目标域样本的识别。实验结果证明了所提方法能够在减轻目标域样本采集压力的同时,实现较高的检测精度,在手势与动作的数据集上测试准确率分别达到92.71%和86.65%。
文摘Research in spreadsheet management proved that the overuse of slow thinking, rather than fast thinking, is the primary source of erroneous end-user computing. However, we found that the reality is not that simple. To view end-user computing in its full complexity, we launched a project to investigate end-user education, training, support, activities, and computer problem solving. In this project we also set up the base and mathability-extended typology of computer problem solving approaches, where quantitative values are assigned to the different problem solving methods and activities. In this paper we present the results of our analyses of teaching materials collected in different languages from all over the world and our findings considering the different problem solving approaches, set in the frame of different thinking modes, the characteristics of expert teachers, and the meaning system model of teaching approaches. Based on our research, we argue that the proportions of fast and slow thinking and most importantly their manifestation are responsible for erroneous end-user activities. Applying the five-point mathability scale of computer problem solving, we recognized slow thinking activities on both tails and one fast thinking approach between them. The low mathability slow thinking activities, where surface navigation and language details are focused on, are widely accepted in end-user computing. The high mathability slow thinking problem solving activities, where the utilization of concept based approaches and schema construction take place, is hardly detectable in end-user activities. Instead of building up knowledge which requires slow thinking and then using the tools with fast thinking, end-users use up their slow thinking in aimless wandering in huge programs, making wrong decisions based on their untrained, clueless intuition, and distributing erroneous end-user documents. We also found that the dominance of low mathability slow thinking activities has its roots in the education system and through this we point out that we are in great need of expert teachers and institutions and their widely accepted approaches and methods.