A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The sw...A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.展开更多
Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and...Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.展开更多
Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the co...Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the context of projective measurements,focusing on the quantification of such coherence.Firstly,we define the correlation function between the two general projective measurements P and Q,and analyze the connection between sets of block incoherent states related to two compatible projective measurements P and Q.Secondly,we discuss the measure of quantum block coherence with respect to projective measurements.Based on a given measure of quantum block coherence,we characterize the existence of maximal block coherent states through projective measurements.This research integrates the compatibility of projective measurements with the framework of quantum block coherence,contributing to the advancement of block coherence measurement theory.展开更多
Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we...Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.展开更多
We performed ultrasonic measurements on a quaternary cubic compound PrRu_(2)In_(2)Zn_(18) to explore the ground state properties derived from non-Kramers Γ_(3) doublet of Pr^(3+).PrRu_(2)In_(2)Zn_(18) is a quaternary...We performed ultrasonic measurements on a quaternary cubic compound PrRu_(2)In_(2)Zn_(18) to explore the ground state properties derived from non-Kramers Γ_(3) doublet of Pr^(3+).PrRu_(2)In_(2)Zn_(18) is a quaternary derivative of the ternary compound PrRu_(2)Zn_(20) that exhibits a structural phase transition at T_S=138 K.In PrRu_(2)In_(2)Zn_(18),the Zn atoms at the 16c site in PrRu_(2)Zn_(20) are selectively replaced by In atoms.A monotonic increase was observed in the temperature dependence of elastic constants C_L=(C_(11)+2C_(12)+4C_(44))/3 and C_(T)=(C_(11)-C_(12)+C_(44))/3 in the temperature range around T_(S) to which an elastic softening was observed in(C_(11)-C_(12))/2 for PrRu_(2)Zn_(20).The disappearance of the softening indicates that the structural transition in PrRu_(2)Zn_(20) is suppressed by the substitution of Zn ions by In ones with a larger ionic radius.Alternatively,the C_(T) of PrRu_(2)In_(2)Zn_(18) exhibits a precursor Curie-type elastic softening toward low temperatures being responsible for the non-Kramers Γ_(3) ground state.We discuss the ground state and the evolution of the elastic properties of the different single-crystal samples of PrRu_(2)In_(2)Zn_(18) grown under different conditions.展开更多
Snow is important in Türkiye especially in the mountainous eastern areas where it may stay on the ground for more than half of the year.This region plays a vital role in feeding the water resources of the trans-b...Snow is important in Türkiye especially in the mountainous eastern areas where it may stay on the ground for more than half of the year.This region plays a vital role in feeding the water resources of the trans-boundary Euphrates-Tigris Basin,supporting crucial dams for water supply,irrigation and energy production.Thus,easy,frequent,correct and economical ways of measuring the snowpack is crucial.The snow properties at specific locations in the mountainous eastern regions over the two snow seasons(2018 and 2019)were studied by using different instruments and techniques,snow pit(box/cylinder/wedge cutter types),snow tube(Federal Sampler)and SnoTel(Snowpack Analyzer).The results point out a 1.7%-7.1%variation between different cutter type snow density measurements within snow pit analysis and the long-term utilized snow tube observations show a closer relation to box/cylinder type cutters.As for the continuous SnoTel observations,a variation of 2.4%-9.8%with various cutter types and a 5.9%difference regarding the snow tube density results are detected.These findings indicate a close range among different instruments,but it is the best when all three systems complement each other to characterize the snowpack effectively in the complex terrain since each has its own advantages.展开更多
In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measuremen...In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process.展开更多
We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is know...We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is known to Alice while the two-qubit state which is a non-maximally entangled Bell state is known to Candy. The three parties are connected through a single entangled state which acts as a quantum channel. We first describe the protocol in the ideal case when the entangled channel under use is in a pure state. After that, we consider the effect of amplitude damping(AD) noise on the quantum channel and describe the protocol executed through the noisy channel. The decrement of the fidelity is shown to occur with the increment in the noise parameter. This is shown by numerical computation in specific examples of the states to be created. Finally, we show that it is possible to maintain the label of fidelity to some extent and hence to decrease the effect of noise by the application of weak and reversal measurements. We also present a scheme for the generation of the five-qubit entangled resource which we require as a quantum channel. The generation scheme is run on the IBMQ platform.展开更多
Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stre...Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.展开更多
To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is...To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.展开更多
BACKGROUND Hip dysplasia(HD)is characterized by insufficient acetabular coverage of the femoral head,leading to a predisposition for osteoarthritis.While radiographic measurements such as the lateral center edge angle...BACKGROUND Hip dysplasia(HD)is characterized by insufficient acetabular coverage of the femoral head,leading to a predisposition for osteoarthritis.While radiographic measurements such as the lateral center edge angle(LCEA)and Tönnis angle are essential in evaluating HD severity,patient-reported outcome measures(PROMs)offer insights into the subjective health impact on patients.AIM To investigate the correlations between machine-learning automated and manual radiographic measurements of HD and PROMs with the hypothesis that artificial intelligence(AI)-generated HD measurements indicating less severe dysplasia correlate with better PROMs.METHODS Retrospective study evaluating 256 hips from 130 HD patients from a hip preservation clinic database.Manual and AI-derived radiographic measurements were collected and PROMs such as the Harris hip score(HHS),international hip outcome tool(iHOT-12),short form(SF)12(SF-12),and Visual Analogue Scale of the European Quality of Life Group survey were correlated using Spearman's rank-order correlation.RESULTS The median patient age was 28.6 years(range 15.7-62.3 years)with 82.3%of patients being women and 17.7%being men.The median interpretation time for manual readers and AI ranged between 4-12 minutes per patient and 31 seconds,respectively.Manual measurements exhibited weak correlations with HHS,including LCEA(r=0.18)and Tönnis angle(r=-0.24).AI-derived metrics showed similar weak correlations,with the most significant being Caput-Collum-Diaphyseal(CCD)with iHOT-12 at r=-0.25(P=0.042)and CCD with SF-12 at r=0.25(P=0.048).Other measured correlations were not significant(P>0.05).CONCLUSION This study suggests AI can aid in HD assessment,but weak PROM correlations highlight their continued importance in predicting subjective health and outcomes,complementing AI-derived measurements in HD management.展开更多
Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where T...Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where TBMs are increasingly large in diameter and shallow in depth.In response to this problem,four experimental campaigns were carried out in different geotechnical contexts in France.The vibration measurements were acquired on the surface and inside the TBMs.These measurements are also complemented by few data in the literature.An original methodology of signal processing is pro-posed to characterize the amplitude of the particle velocities,as well as the frequency content of the signals to highlight the most energetic bands.The levels of vibrations are also compared with the thresholds existing in various European regulations concerning the impact on neighbouring structures and the disturbance to local residents.展开更多
A novel method to measure the flow rate in a wet gas is presented.Due to the presence of liquid,there is a deviation in the measurement of the gas volume flow rate obtained with standard vortex flow-meters.The propose...A novel method to measure the flow rate in a wet gas is presented.Due to the presence of liquid,there is a deviation in the measurement of the gas volume flow rate obtained with standard vortex flow-meters.The proposed method is based on a correction factor determined through the application of an over-reading approach to a bluff body in mist flow.The correction factor is obtained from the slip velocity ratio,i.e.,the ratio of droplet velocity to gas velocity,based on the analysis of the fluid velocity distribution in the pipeline section.It also takes into account relevant theoretical arguments.It is shown that the predicted results fit the experimental results well.展开更多
In dielectrometry,traditional analytical and numerical algorithms are difficultly employed in complex resonant cavities.For a special kind of structure(a rotating resonant cavity),the body of revolution finite-element...In dielectrometry,traditional analytical and numerical algorithms are difficultly employed in complex resonant cavities.For a special kind of structure(a rotating resonant cavity),the body of revolution finite-element method(BOR-FEM)is employed to calculate the resonant parameters and dielectric parameters.In this paper,several typical resonant structures are selected for analysis and verification.Compared with the resonance parameter values in the literature and the simulation results of commercial software,the error of the BOR-FEM calculation is less than 0.9%and a single solution time is less than 1 s.Reentrant coaxial resonant cavities loaded with dielectric materials are analyzed using this method and compared with simulation results,showing good agreement.Finally,in this paper,the established BOR-FEM method is successfully applied with a machined cavity for the accurate measurement of the complex dielectric constant of dielectric materials.The test specimens were machined from polytetrafluoroethylene,fused silica and Al_(2)O_(3),and the test results showed good agreement with the literature reference values.展开更多
Optical and visual measurement technology is used widely in fields that involve geometric measurements,and among such technology are laser and vision-based displacement measuring modules(LVDMMs).The displacement trans...Optical and visual measurement technology is used widely in fields that involve geometric measurements,and among such technology are laser and vision-based displacement measuring modules(LVDMMs).The displacement transformation coefficient(DTC)of an LVDMM changes with the coordinates in the camera image coordinate system during the displacement measuring process,and these changes affect the displacement measurement accuracy of LVDMMs in the full field of view(FFOV).To give LVDMMs higher accuracy in the FFOV and make them adaptable to widely varying measurement demands,a new calibration method is proposed to improve the displacement measurement accuracy of LVDMMs in the FFOV.First,an image coordinate system,a pixel measurement coordinate system,and a displacement measurement coordinate system are established on the laser receiving screen of the LVDMM.In addition,marker spots in the FFOV are selected,and the DTCs at the marker spots are obtained from calibration experiments.Also,a fitting method based on locally weighted scatterplot smoothing(LOWESS)is selected,and with this fitting method the distribution functions of the DTCs in the FFOV are obtained based on the DTCs at the marker spots.Finally,the calibrated distribution functions of the DTCs are applied to the LVDMM,and experiments conducted to verify the displacement measurement accuracies are reported.The results show that the FFOV measurement accuracies for horizontal and vertical displacements are better than±15μm and±19μm,respectively,and that for oblique displacement is better than±24μm.Compared with the traditional calibration method,the displacement measurement error in the FFOV is now 90%smaller.This research on an improved calibration method has certain significance for improving the measurement accuracy of LVDMMs in the FFOV,and it provides a new method and idea for other vision-based fields in which camera parameters must be calibrated.展开更多
State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performan...State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes.展开更多
A kicker is a critical component for beam injection and accumulation in circular particle accelerators. A ceramic slat kicker plated with a TiN conductive coating was applied in the Beijing Electron Positron Collider ...A kicker is a critical component for beam injection and accumulation in circular particle accelerators. A ceramic slat kicker plated with a TiN conductive coating was applied in the Beijing Electron Positron Collider (BEPCII). However, the ceramic slat kicker has experienced several sudden malfunctions during the operation of the BEPCII in the past. With a reliable kicker structure, a three-metal-strip kicker can substitute the original ceramic slat kicker to maintain the operational stability of the BEPCII. A comparison of the numerical simulation was conducted for three kicker models, demonstrating the comprehensive advantage of the three-metal-strip kicker. Furthermore, impedance bench measurements were conducted on a prototype of a three-metal-strip kicker. The longitudinal beam-coupling impedance was measured using a vector network analyzer via the coaxial wire method. A satisfactory agreement was obtained between the numerical simulations and measurements. Based on the numerical simulation data, the loss factor was 0.01721 V/pC, and the effective impedance was 3.59 mΩ(σ=10 mm).The simulation of the heat deposition on each part of the kicker demonstrated that 84.4%of the parasitic loss of the beam was deposited on the metal strips, and the total heat deposition power on the kicker was between 113.3 and 131.5 W. The obtained heat deposition powers can be considered as a reference for establishing the cooling system.展开更多
基金Supported By Open Fund of Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering(Yangtze University),YQZC202309.
文摘A new measurement device,consisting of swirling blades and capsule-shaped throttling elements,is proposed in this study to eliminate typical measurement errors caused by complex flow patterns in gas-liquid flow.The swirling blades are used to transform the complex flow pattern into a forced annular flow.Drawing on the research of existing blockage flow meters and also exploiting the single-phase flow measurement theory,a formula is introduced to measure the phase-separated flow of gas and liquid.The formula requires the pressure ratio,Lockhart-Martinelli number(L-M number),and the gas phase Froude number.The unknown parameters appearing in the formula are fitted through numerical simulation using computational fluid dynamics(CFD),which involves a comprehensive analysis of the flow field inside the device from multiple perspectives,and takes into account the influence of pressure fluctuations.Finally,the measurement model is validated through an experimental error analysis.The results demonstrate that the measurement error can be maintained within±8%for various flow patterns,including stratified flow,bubble flow,and wave flow.
基金The authors would like to acknowledge financial support from NSFC Basic Research Program on Deep Petroleum Resource Accumulation and Key Engineering Technologies(U19B6003-04-03)National Natural Science Foundation of China(41930425)+2 种基金Beijing Natural Science Foundation(8222073),R&D Department of China National Petroleum Corporation(Investigations on fundamental experiments and advanced theoretical methods in geophysical prospecting applications,2022DQ0604-01)Scientific Research and Technology Development Project of PetroChina(2021DJ1206)National Key Research and Development Program of China(2018YFA0702504).
文摘Knowledge about the seismic elastic modulus dispersion,and associated attenuation,in fluid-saturated rocks is essential for better interpretation of seismic observations taken as part of hydrocarbon identification and time-lapse seismic surveillance of both conventional and unconventional reservoir and overburden performances.A Seismic Elastic Moduli Module has been developed,based on the forced-oscillations method,to experimentally investigate the frequency dependence of Young's modulus and Poisson's ratio,as well as the inferred attenuation,of cylindrical samples under different confining pressure conditions.Calibration with three standard samples showed that the measured elastic moduli were consistent with the published data,indicating that the new apparatus can operate reliably over a wide frequency range of f∈[1-2000,10^(6)]Hz.The Young's modulus and Poisson's ratio of the shale and the tight sandstone samples were measured under axial stress oscillations to assess the frequency-and pressure-dependent effects.Under dry condition,both samples appear to be nearly frequency independent,with weak pressure dependence for the shale and significant pressure dependence for the sandstone.In particular,it was found that the tight sandstone with complex pore microstructure exhibited apparent dispersion and attenuation under brine or glycerin saturation conditions,the levels of which were strongly influenced by the increased effective pressure.In addition,the measured Young's moduli results were compared with the theoretical predictions from a scaled poroelastic model with a reasonably good agreement,revealing that the combined fluid flow mechanisms at both mesoscopic and microscopic scales possibly responsible for the measured dispersion.
基金partially supported by the National Natural Science Foundations of China (Grant No.11901317)the China Postdoctoral Science Foundation (Grant No.2020M680480)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No.2023MS078)the Beijing Natural Science Foundation (Grant No.1232021)。
文摘Quantum coherence serves as a defining characteristic of quantum mechanics,finding extensive applications in quantum computing and quantum communication processing.This study explores quantum block coherence in the context of projective measurements,focusing on the quantification of such coherence.Firstly,we define the correlation function between the two general projective measurements P and Q,and analyze the connection between sets of block incoherent states related to two compatible projective measurements P and Q.Secondly,we discuss the measure of quantum block coherence with respect to projective measurements.Based on a given measure of quantum block coherence,we characterize the existence of maximal block coherent states through projective measurements.This research integrates the compatibility of projective measurements with the framework of quantum block coherence,contributing to the advancement of block coherence measurement theory.
基金supported by the National Science Fund for Distinguished Young Scholars(No.61925102)the National Natural Science Foundation of China(No.62201086,92167202,62201087,62101069)BUPT-CMCC Joint Innovation Center,and State Key Laboratory of IPOC(BUPT)(No.IPOC2023ZT02),China。
文摘Visible light communication(VLC)has attracted much attention in the research of sixthgeneration(6G)systems.Furthermore,channel modeling is the foundation for designing efficient and robust VLC systems.In this paper,we present extensive VLC channel measurement campaigns in indoor environments,i.e.,an office and a corridor.Based on the measured data,the large-scale fading characteristics and multipath-related characteristics,including omnidirectional optical path loss(OPL),K-factor,power angular spectrum(PAS),angle spread(AS),and clustering characteristics,are analyzed and modeled through a statistical method.Based on the extracted statistics of the above-mentioned channel characteristics,we propose a statistical spatial channel model(SSCM)capable of modeling multipath in the spatial domain.Furthermore,the simulated statistics of the proposed model are compared with the measured statistics.For instance,in the office,the simulated path loss exponent(PLE)and the measured PLE are 1.96and 1.97,respectively.And,the simulated medians of AS and measured medians of AS are 25.94°and 24.84°,respectively.Generally,the fact that the simulated results fit well with measured results has demonstrated the accuracy of our SSCM.
基金Project supported by the Soft-Path Science and Engineering Research Center (SPERC),Iwate Universitythe JSPS KAKENHI (Grant Nos. JP18K03530,JP21K04622, and JP21K13869)。
文摘We performed ultrasonic measurements on a quaternary cubic compound PrRu_(2)In_(2)Zn_(18) to explore the ground state properties derived from non-Kramers Γ_(3) doublet of Pr^(3+).PrRu_(2)In_(2)Zn_(18) is a quaternary derivative of the ternary compound PrRu_(2)Zn_(20) that exhibits a structural phase transition at T_S=138 K.In PrRu_(2)In_(2)Zn_(18),the Zn atoms at the 16c site in PrRu_(2)Zn_(20) are selectively replaced by In atoms.A monotonic increase was observed in the temperature dependence of elastic constants C_L=(C_(11)+2C_(12)+4C_(44))/3 and C_(T)=(C_(11)-C_(12)+C_(44))/3 in the temperature range around T_(S) to which an elastic softening was observed in(C_(11)-C_(12))/2 for PrRu_(2)Zn_(20).The disappearance of the softening indicates that the structural transition in PrRu_(2)Zn_(20) is suppressed by the substitution of Zn ions by In ones with a larger ionic radius.Alternatively,the C_(T) of PrRu_(2)In_(2)Zn_(18) exhibits a precursor Curie-type elastic softening toward low temperatures being responsible for the non-Kramers Γ_(3) ground state.We discuss the ground state and the evolution of the elastic properties of the different single-crystal samples of PrRu_(2)In_(2)Zn_(18) grown under different conditions.
基金supported by the Scientific Research Project(BAP)of Eskişehir Technical University,project number 1610F676.
文摘Snow is important in Türkiye especially in the mountainous eastern areas where it may stay on the ground for more than half of the year.This region plays a vital role in feeding the water resources of the trans-boundary Euphrates-Tigris Basin,supporting crucial dams for water supply,irrigation and energy production.Thus,easy,frequent,correct and economical ways of measuring the snowpack is crucial.The snow properties at specific locations in the mountainous eastern regions over the two snow seasons(2018 and 2019)were studied by using different instruments and techniques,snow pit(box/cylinder/wedge cutter types),snow tube(Federal Sampler)and SnoTel(Snowpack Analyzer).The results point out a 1.7%-7.1%variation between different cutter type snow density measurements within snow pit analysis and the long-term utilized snow tube observations show a closer relation to box/cylinder type cutters.As for the continuous SnoTel observations,a variation of 2.4%-9.8%with various cutter types and a 5.9%difference regarding the snow tube density results are detected.These findings indicate a close range among different instruments,but it is the best when all three systems complement each other to characterize the snowpack effectively in the complex terrain since each has its own advantages.
文摘In this paper,to study the mechanical responses of a solid propellant subjected to ultrahigh acceleration overload during the gun-launch process,specifically designed projectile flight tests with an onboard measurement system were performed.Two projectiles containing dummy HTPB propellant grains were successfully recovered after the flight tests with an ultrahigh acceleration overload value of 8100 g.The onboard-measured time-resolved axial displacement,contact stress and overload values were successfully obtained and analysed.Uniaxial compression tests of the dummy HTPB propellant used in the gunlaunched tests were carried out at low and intermediate strain rates to characterize the propellant's dynamic properties.A linear viscoelastic constitutive model was employed and applied in finite-element simulations of the projectile-launching process.During the launch process,the dummy propellant grain exhibited large deformation due to the high acceleration overload,possibly leading to friction between the motor case and propellant grain.The calculated contact stress showed good agreement with the experimental results,though discrepancies in the overall displacement of the dummy propellant grain were observed.The dynamic mechanical response process of the dummy propellant grain was analysed in detail.The results can be used to estimate the structural integrity of the analysed dummy propellant grain during the gun-launch process.
基金Project supported by Indian Institute of Engineering Science and Technology, Shibpur, India
文摘We discuss a quantum remote state preparation protocol by which two parties, Alice and Candy, prepare a single-qubit and a two-qubit state, respectively, at the site of the receiver Bob. The single-qubit state is known to Alice while the two-qubit state which is a non-maximally entangled Bell state is known to Candy. The three parties are connected through a single entangled state which acts as a quantum channel. We first describe the protocol in the ideal case when the entangled channel under use is in a pure state. After that, we consider the effect of amplitude damping(AD) noise on the quantum channel and describe the protocol executed through the noisy channel. The decrement of the fidelity is shown to occur with the increment in the noise parameter. This is shown by numerical computation in specific examples of the states to be created. Finally, we show that it is possible to maintain the label of fidelity to some extent and hence to decrease the effect of noise by the application of weak and reversal measurements. We also present a scheme for the generation of the five-qubit entangled resource which we require as a quantum channel. The generation scheme is run on the IBMQ platform.
基金financially supported by the National Natural Science Foundation of China(No.52204084)the Open Research Fund of the State Key Laboratory of Coal Resources and safe Mining,CUMT,China(No.SKLCRSM 23KF004)+3 种基金the Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities),China(No.FRF-IDRY-GD22-002)the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange and Growth Program,China(No.QNXM20220009)the National Key R&D Program of China(Nos.2022YFC2905600 and 2022 YFC3004601)the Science,Technology&Innovation Project of Xiongan New Area,China(No.2023XAGG0061)。
文摘Understanding the mechanical properties of the lithologies is crucial to accurately determine the horizontal stress magnitude.To investigate the correlation between the rock mass properties and maximum horizontal stress,the three-dimensional(3D)stress tensors at 89 measuring points determined using an improved overcoring technique in nine mines in China were adopted,a newly defined characteristic parameter C_(ERP)was proposed as an indicator for evaluating the structural properties of rock masses,and a fuzzy relation matrix was established using the information distribution method.The results indicate that both the vertical stress and horizontal stress exhibit a good linear growth relationship with depth.There is no remarkable correlation between the elastic modulus,Poisson's ratio and depth,and the distribution of data points is scattered and messy.Moreover,there is no obvious relationship between the rock quality designation(RQD)and depth.The maximum horizontal stress σ_(H) is a function of rock properties,showing a certain linear relationship with the C_(ERP)at the same depth.In addition,the overall change trend of σ_(H) determined by the established fuzzy identification method is to increase with the increase of C_(ERP).The fuzzy identification method also demonstrates a relatively detailed local relationship betweenσ_H and C_(ERP),and the predicted curve rises in a fluctuating way,which is in accord well with the measured stress data.
基金Financial support provided by Correlated Solutions Incorporated to perform StereoDIC experimentsthe Department of Mechanical Engineering at the University of South Carolina for simulation studies is deeply appreciated.
文摘To compare finite element analysis(FEA)predictions and stereovision digital image correlation(StereoDIC)strain measurements at the same spatial positions throughout a region of interest,a field comparison procedure is developed.The procedure includes(a)conversion of the finite element data into a triangular mesh,(b)selection of a common coordinate system,(c)determination of the rigid body transformation to place both measurements and FEA data in the same system and(d)interpolation of the FEA nodal information to the same spatial locations as the StereoDIC measurements using barycentric coordinates.For an aluminum Al-6061 double edge notched tensile specimen,FEA results are obtained using both the von Mises isotropic yield criterion and Hill’s quadratic anisotropic yield criterion,with the unknown Hill model parameters determined using full-field specimen strain measurements for the nominally plane stress specimen.Using Hill’s quadratic anisotropic yield criterion,the point-by-point comparison of experimentally based full-field strains and stresses to finite element predictions are shown to be in excellent agreement,confirming the effectiveness of the field comparison process.
基金the University of Texas Southwestern Institutional Review Board(approval No.Stu-2022-1014).
文摘BACKGROUND Hip dysplasia(HD)is characterized by insufficient acetabular coverage of the femoral head,leading to a predisposition for osteoarthritis.While radiographic measurements such as the lateral center edge angle(LCEA)and Tönnis angle are essential in evaluating HD severity,patient-reported outcome measures(PROMs)offer insights into the subjective health impact on patients.AIM To investigate the correlations between machine-learning automated and manual radiographic measurements of HD and PROMs with the hypothesis that artificial intelligence(AI)-generated HD measurements indicating less severe dysplasia correlate with better PROMs.METHODS Retrospective study evaluating 256 hips from 130 HD patients from a hip preservation clinic database.Manual and AI-derived radiographic measurements were collected and PROMs such as the Harris hip score(HHS),international hip outcome tool(iHOT-12),short form(SF)12(SF-12),and Visual Analogue Scale of the European Quality of Life Group survey were correlated using Spearman's rank-order correlation.RESULTS The median patient age was 28.6 years(range 15.7-62.3 years)with 82.3%of patients being women and 17.7%being men.The median interpretation time for manual readers and AI ranged between 4-12 minutes per patient and 31 seconds,respectively.Manual measurements exhibited weak correlations with HHS,including LCEA(r=0.18)and Tönnis angle(r=-0.24).AI-derived metrics showed similar weak correlations,with the most significant being Caput-Collum-Diaphyseal(CCD)with iHOT-12 at r=-0.25(P=0.042)and CCD with SF-12 at r=0.25(P=0.048).Other measured correlations were not significant(P>0.05).CONCLUSION This study suggests AI can aid in HD assessment,but weak PROM correlations highlight their continued importance in predicting subjective health and outcomes,complementing AI-derived measurements in HD management.
文摘Excavation with tunnel boring machine(TBM)can generate vibrations,causing damages to neighbouring buildings and disturbing the residents or the equipment.This problem is particularly challenging in urban areas,where TBMs are increasingly large in diameter and shallow in depth.In response to this problem,four experimental campaigns were carried out in different geotechnical contexts in France.The vibration measurements were acquired on the surface and inside the TBMs.These measurements are also complemented by few data in the literature.An original methodology of signal processing is pro-posed to characterize the amplitude of the particle velocities,as well as the frequency content of the signals to highlight the most energetic bands.The levels of vibrations are also compared with the thresholds existing in various European regulations concerning the impact on neighbouring structures and the disturbance to local residents.
基金supported by the Leading Talent Training Project for Young and Middle-Aged Teacher(A2-0265-22-41).
文摘A novel method to measure the flow rate in a wet gas is presented.Due to the presence of liquid,there is a deviation in the measurement of the gas volume flow rate obtained with standard vortex flow-meters.The proposed method is based on a correction factor determined through the application of an over-reading approach to a bluff body in mist flow.The correction factor is obtained from the slip velocity ratio,i.e.,the ratio of droplet velocity to gas velocity,based on the analysis of the fluid velocity distribution in the pipeline section.It also takes into account relevant theoretical arguments.It is shown that the predicted results fit the experimental results well.
基金the National Natural Science Foundation of China(Grant No.62001083)the Guangdong Provincial Key Research and Development Project,China(Grant No.2020B010179002).
文摘In dielectrometry,traditional analytical and numerical algorithms are difficultly employed in complex resonant cavities.For a special kind of structure(a rotating resonant cavity),the body of revolution finite-element method(BOR-FEM)is employed to calculate the resonant parameters and dielectric parameters.In this paper,several typical resonant structures are selected for analysis and verification.Compared with the resonance parameter values in the literature and the simulation results of commercial software,the error of the BOR-FEM calculation is less than 0.9%and a single solution time is less than 1 s.Reentrant coaxial resonant cavities loaded with dielectric materials are analyzed using this method and compared with simulation results,showing good agreement.Finally,in this paper,the established BOR-FEM method is successfully applied with a machined cavity for the accurate measurement of the complex dielectric constant of dielectric materials.The test specimens were machined from polytetrafluoroethylene,fused silica and Al_(2)O_(3),and the test results showed good agreement with the literature reference values.
基金supported financially by the National Natural Science Foundation of China (NSFC) (Grant No.51775378)the Key Projects in Tianjin Science&Technology Support Program (Grant No.19YFZC GX00890).
文摘Optical and visual measurement technology is used widely in fields that involve geometric measurements,and among such technology are laser and vision-based displacement measuring modules(LVDMMs).The displacement transformation coefficient(DTC)of an LVDMM changes with the coordinates in the camera image coordinate system during the displacement measuring process,and these changes affect the displacement measurement accuracy of LVDMMs in the full field of view(FFOV).To give LVDMMs higher accuracy in the FFOV and make them adaptable to widely varying measurement demands,a new calibration method is proposed to improve the displacement measurement accuracy of LVDMMs in the FFOV.First,an image coordinate system,a pixel measurement coordinate system,and a displacement measurement coordinate system are established on the laser receiving screen of the LVDMM.In addition,marker spots in the FFOV are selected,and the DTCs at the marker spots are obtained from calibration experiments.Also,a fitting method based on locally weighted scatterplot smoothing(LOWESS)is selected,and with this fitting method the distribution functions of the DTCs in the FFOV are obtained based on the DTCs at the marker spots.Finally,the calibrated distribution functions of the DTCs are applied to the LVDMM,and experiments conducted to verify the displacement measurement accuracies are reported.The results show that the FFOV measurement accuracies for horizontal and vertical displacements are better than±15μm and±19μm,respectively,and that for oblique displacement is better than±24μm.Compared with the traditional calibration method,the displacement measurement error in the FFOV is now 90%smaller.This research on an improved calibration method has certain significance for improving the measurement accuracy of LVDMMs in the FFOV,and it provides a new method and idea for other vision-based fields in which camera parameters must be calibrated.
文摘State departments of transportation’s (DOTs) decisions to invest resources to expand or implement intelligent transportation systems (ITS) programs or even retire existing infrastructure need to be based on performance evaluations. Nonetheless, an apparent gap exists between the need for ITS performance measurements and the actual implementation. The evidence available points to challenges in the ITS performance measurement processes. This paper evaluated the state of practice of performance measurement for ITS across the US and provided insights. A comprehensive literature review assessed the use of performance measures by DOTs for monitoring implemented ITS programs. Based on the gaps identified through the literature review, a nationwide qualitative survey was used to gather insights from key stakeholders on the subject matter and presented in this paper. From the data gathered, performance measurement of ITS is fairly integrated into ITS programs by DOTs, with most agencies considering the process beneficial. There, however, exist reasons that prevent agencies from measuring ITS performance to greater detail and quality. These include lack of data, fragmented or incomparable data formats, the complexity of the endeavor, lack of data scientists, and difficulty assigning responsibilities when inter-agency collaboration is required. Additionally, DOTs do not benchmark or compare their ITS performance with others for reasons that include lack of data, lack of guidance or best practices, and incomparable data formats. This paper is relevant as it provides insights expected to guide DOTs and other agencies in developing or reevaluating their ITS performance measurement processes.
基金supported by the National Natural Science Foundation of China (Nos.Y8113C005C and U1832132)。
文摘A kicker is a critical component for beam injection and accumulation in circular particle accelerators. A ceramic slat kicker plated with a TiN conductive coating was applied in the Beijing Electron Positron Collider (BEPCII). However, the ceramic slat kicker has experienced several sudden malfunctions during the operation of the BEPCII in the past. With a reliable kicker structure, a three-metal-strip kicker can substitute the original ceramic slat kicker to maintain the operational stability of the BEPCII. A comparison of the numerical simulation was conducted for three kicker models, demonstrating the comprehensive advantage of the three-metal-strip kicker. Furthermore, impedance bench measurements were conducted on a prototype of a three-metal-strip kicker. The longitudinal beam-coupling impedance was measured using a vector network analyzer via the coaxial wire method. A satisfactory agreement was obtained between the numerical simulations and measurements. Based on the numerical simulation data, the loss factor was 0.01721 V/pC, and the effective impedance was 3.59 mΩ(σ=10 mm).The simulation of the heat deposition on each part of the kicker demonstrated that 84.4%of the parasitic loss of the beam was deposited on the metal strips, and the total heat deposition power on the kicker was between 113.3 and 131.5 W. The obtained heat deposition powers can be considered as a reference for establishing the cooling system.