Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineeri...Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.展开更多
Multidisciplinary collaborative simulation (MCS) is an important area of research in the domain of multidisciplinary design optimization (MDO).Although previous research for MCS has to some extent addressed some i...Multidisciplinary collaborative simulation (MCS) is an important area of research in the domain of multidisciplinary design optimization (MDO).Although previous research for MCS has to some extent addressed some issues like using of multiple tools,integration stability,control of step size,data synchronization,etc,further work is still necessary to study how to achieve improved precision.A theoretical model is formulated to describe and analyze the integration process of MCS.A basic algorithm with equal major steps is proposed based on the model,along with two methods of implementation for the model,namely the serial method and the parallel method.A further algorithm based on convergent integration step is proposed,which has a more flexible strategy for run-time integration.The influence of interpolation techniques on simulation performance is studied as well.Simulations of the performance of various algorithms with different interpolation techniques are performed for both a simple numerical example and a complex mechatronic product.The novel algorithm based on convergent integration step,when used with a high-order interpolation technique,has better performance in terms of precision and efficiency.The innovation of this paper is mainly on the validation of high precision of the proposed convergent integration step algorithm.展开更多
The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.B...The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.Based on the demands of development of modern industries and technologies such as international industry 4.0,Made-in-China 2025 and Internet + and so on,this paper started from revealing the regularity of evolution of running state of equipment and the methods of signal processing of low signal noise ratio,proposed the key information technology of state monitoring and earlyfault-warning for equipment,put forward the typical technical line and major technical content,introduced the application of the technology to realize modern predictive maintenance of equipment and introduced the development of relevant safety monitoring instruments.The technology will play an important role in ensuring the safety of equipment in service,preventing accidents and realizing scientific maintenance.展开更多
Human Adaptive Mechatronics(HAM)includes human and computer system in a closed loop.Elderly person with disabilities,normally carry out their daily routines with some assistance to move their limbs.With the short fall...Human Adaptive Mechatronics(HAM)includes human and computer system in a closed loop.Elderly person with disabilities,normally carry out their daily routines with some assistance to move their limbs.With the short fall of human care takers,mechatronics devices are used with the likes of exoskeleton and exosuits to assist them.The rehabilitation and occupational therapy equipments utilize the electromyography(EMG)signals to measure the muscle activity potential.This paper focuses on optimizing the HAM model in prediction of intended motion of upper limb with high accuracy and to increase the response time of the system.Limb characteristics extraction from EMG signal and prediction of optimal controller parameters are modeled.Time and frequency based approach of EMG signal are considered for feature extraction.The models used for estimating motion and muscle parameters from EMG signal for carrying out limb movement predictions are validated.Based on the extracted features,optimal parameters are selected by Modified Lion Optimization(MLO)for controlling the HAM system.Finally,supervised machine learning makes predictions at different points in time for individual sensing using Support Vector Neural Network(SVNN).This model is also evaluated based on optimal parameters of motion estimation and the accuracy level along with different optimization models for various upper limb movements.The proposed model of human adaptive controller predicts the limb movement by 96%accuracy.展开更多
The paper briefly addresses DLR' s ( German Aerospace Center) expertise in space robotics by handof corresponding milestone projects including systems on the International Space Station ISS. It then discussesthe k...The paper briefly addresses DLR' s ( German Aerospace Center) expertise in space robotics by handof corresponding milestone projects including systems on the International Space Station ISS. It then discussesthe key technologies needed for the development of an artificial "robonaut" generation with mechatronic ultra-light weight arms and multifingered hands. The third arm generation is nearly finished now, approaching thelimits of what is technologically achievable today with respect to light-weight and power losses. In a similar wayDLR' s second generation of artificial 4-fingered hands was a big step towards higher reliability, manipulabilityand overall performance.展开更多
Software is becoming the driving force in today’s mechatronic systems. It does not only realize a significant part of their functionality but it is also used to realize their most competitive advantages. However, the...Software is becoming the driving force in today’s mechatronic systems. It does not only realize a significant part of their functionality but it is also used to realize their most competitive advantages. However, the traditional development process is wholly inappropriate for the development of these systems that impose a tighter coupling of software with electronics and mechanics. In this paper, a synergistic integration of the constituent parts of mechatronic systems, i.e. mechanical, electronic and software is proposed though the 3+1 SysML view-model. SysML is used to specify the cen-tral view-model of the mechatronic system while the other three views are for the different disciplines involved. The widely used in software engineering V-model is extended to address the requirements set by the 3+1 SysML view-model and the Model Integrated Mechatronics (MIM) paradigm. A SysML profile is described to facilitate the application of the proposed view-model in the development of mechatronic systems.展开更多
Middle Tennessee State University(MTSU)started a Mechatronics Engineering program four years ago.Over those four years,enrollment has grown exponentially and has increased to over 400 students.One major factor that dr...Middle Tennessee State University(MTSU)started a Mechatronics Engineering program four years ago.Over those four years,enrollment has grown exponentially and has increased to over 400 students.One major factor that draws interest to this new program is the university’s Experimental Vehicles Program(EVP),created by Dr.Saeed Foroudastan.The EVP includes different student teams that work to design and build the four projects the EVP has evolved to:human-powered lunar rover(formerly known as The Great Moonbuggy Race),powered off-road Baja,gasoline-powered formula car,and all-electric solar boat.These projects are designed to greatly enhance each student’s classroom experience.The EVP provides students hands-on experience that allows them to apply what they have learned in the classroom to something in real life.The students are responsible for designing and building each project with their team,which also provides them with skills like effective communication,teamwork,project management and more.Each project also has a competition that members of the team normally travel to and are able to compete on an international level.The Mechatronics Engineering program and the EVP at MTSU are both providing truly great opportunities and preparing students well that wish to enter the engineering field after college.展开更多
The development of modern science and technology has promoted the overlapping and mutual penetration among different disciplines, which led to the technological innovations in the field of mechanical engineering. The ...The development of modern science and technology has promoted the overlapping and mutual penetration among different disciplines, which led to the technological innovations in the field of mechanical engineering. The mechatronics technology conforms to the law of development of science and technology in today, and combines the mechanical technology and electronic technology together to integrate the logistics, energy flow and information flow. This paper briefly describes the concept of mechatronics and the elements of mechatronics technology, and elaborates on the application of mechatronics technology in three different areas of the Machinery Industry in the form of living examples, finally introduces the future developing direction of mechatronics technology.展开更多
Health facilities are generally short-staffed and overworked. This has a significant impact on the reliability of the acquisition of health constants required at the start of diagnosis. Manual acquisition and transmis...Health facilities are generally short-staffed and overworked. This has a significant impact on the reliability of the acquisition of health constants required at the start of diagnosis. Manual acquisition and transmission of these constants and other data leads to delays in the execution of successive care-related tasks. What’s more, the quality of service is sometimes compromised by a lack of communication between patients and staff. In pediatrics, this is compounded by the difficulty of diagnosis in the face of children’s silence, intimidated by the hospital environment. Technological assistance would relieve healthcare staff of the need to perform certain repetitive tasks. The solution proposed in this document studies a robot, based on electrical, electronic, computer and artificial intelligence resources, with human-machine interaction for taking vitals and health data in health facilities. This system enables height, mass and temperature to be taken autonomously and without contact. The algorithm we’ve developed uses artificial intelligence to check the conditions for correct measurements, both bareheaded and barefoot. This solution also alerts you to epidemic trends such as obesity. This health data is made available in the healthcare facility on terminals such as tablets, smartphones and computers used by nursing staff. This work will help healthcare staff to take automatic health vitals without contact, and to acquire and circulate data via a computer network.展开更多
The COVID-19 pandemic has exposed vulnerabilities within our healthcare structures. Healthcare facilities are often faced with staff shortages and work overloads, which can have an impact on the collection of health d...The COVID-19 pandemic has exposed vulnerabilities within our healthcare structures. Healthcare facilities are often faced with staff shortages and work overloads, which can have an impact on the collection of health data and constants essential for early diagnosis. In order to minimize the risk of error and optimize data collection, we have developed a robot incorporating artificial intelligence. This robot has been designed to automate and collect health data and constants in a contactless way, while at the same time verifying the conditions for correct measurements, such as the absence of hats and shoes. Furthermore, this health information needs to be transmitted to services for processing. Thus, this article addresses the aspect of reception and collection of health data and constants through various modules: for taking height, temperature and weight, as well as the module for entering patient identification data. The article also deals with orientation, presenting a module for selecting the patient’s destination department. This data is then routed via a wireless network and an application integrated into the doctors’ tablets. This application will enable efficient queue management by classifying patients according to their order of arrival. The system’s infrastructure is easily deployable, taking advantage of the healthcare facility’s local wireless network, and includes encryption mechanisms to reinforce the security of data circulating over the network. In short, this innovative system will offer an autonomous, contactless method for collecting vital constants such as size, mass, and temperature. What’s more, it will facilitate the flow of data, including identification information, across a network, simplifying the implementation of this solution within healthcare facilities.展开更多
Many patients with spinal injures are confined to wheelchairs, leading to a sedentary lifestyle with secondary pathologies and increased dependence on a carer. Increasing evidence has shown that locomotor training red...Many patients with spinal injures are confined to wheelchairs, leading to a sedentary lifestyle with secondary pathologies and increased dependence on a carer. Increasing evidence has shown that locomotor training reduces the incidence of these secondary pathologies, but the physical effort involved in this training is such that there is poor compliance. This paper reports on the design and control of a new "human friendly" orthosis (exoskeleton), powered by high power pneumatic Muscle Actuators (pMAs). The combination of a highly compliant actuation system, with an intelligent embedded control mechanism which senses hip, knee, and ankle positions, velocity, acceleration and force, produces powerful yet inherently safe operation for paraplegic patients. This paper analyzes the motion of ankle, knee, and hip joints under zero loading, and loads which simulate human limb mass, showing that the use of "soft" actuators can provide a smooth user friendly motion. The application of this technology will greatly improve the rehabilitative protocols for paraplegic patients.展开更多
With the increasing of complexity of complex mechatronic products, it is necessary to involve multidis- ciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes...With the increasing of complexity of complex mechatronic products, it is necessary to involve multidis- ciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers' requirements. A new synthesized multidisci- plinary customer requirements modeling method is pro- vided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with dif- ferent team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product.展开更多
This paper presents the results of an on-going project and investigates modelling and remote control issues of an industry excavator. The details of modelling, communication, and control of a remotely controllable exc...This paper presents the results of an on-going project and investigates modelling and remote control issues of an industry excavator. The details of modelling, communication, and control of a remotely controllable excavator are studied. The paper mainly focuses on trajectory tracking control of the excavator base and robust control of the excavator arm. These will provide the fundamental base for our next research step. In addition, extensive simulation results for trajectory tracking of the excavator base and robust control of the excavator arm are given. Finally, conclusions and further work have been identified.展开更多
Since the concept of active suspensions appeared,its large possible benefits has attracted continuous exploration in the field of railway engineering.With new demands of higher speed,better ride comfort and lower main...Since the concept of active suspensions appeared,its large possible benefits has attracted continuous exploration in the field of railway engineering.With new demands of higher speed,better ride comfort and lower maintenance cost for railway vehicles,active suspensions are very promising technologies.Being the starting point of commercial application of active suspensions in rail vehicles,tilting trains have become a great success in some countries.With increased technical maturity of sensors and actuators,active suspension has unprecedented development opportunities.In this work,the basic concepts are summarized with new theories and solutions that have appeared over the last decade.Experimental studies and the implementation status of different active suspension technologies are described as well.Firstly,tilting trains are briefly described.Thereafter,an indepth study for active secondary and primary suspensions is performed.For both topics,after an introductory section an explanation of possible solutions existing in the literature is given.The implementation status is reported.Active secondary suspensions are categorized into active and semi-active suspensions.Primary suspensions are instead divided between acting on solid-axle wheelsets and independently rotating wheels.Lastly,a brief summary and outlook is presented in terms of benefits,research status and challenges.The potential for active suspensions in railway applications is outlined.展开更多
In this paper,the mechatronic design and maneuverability analysis of a novel robotic shark are presented.To obtain good maneuverability,a barycenter regulating device is designed to assist the posture adjustment at lo...In this paper,the mechatronic design and maneuverability analysis of a novel robotic shark are presented.To obtain good maneuverability,a barycenter regulating device is designed to assist the posture adjustment at low speeds.Based on the Newton-Euler approach,an analytical dynamic model is established with particular consideration of pectoral fins for threedimensional motions.The hydrodynamic coefficients are computed using computational fluid dynamics(CFD)methods.Oscillation amplitudes and phases are determined by fitting an optimized fish body wave.The performance of the robotic shark is estimated by varying the oscillation frequency and offset angle.The results show that with oscillation frequency increasing,the swimming speed increases linearly.The robotic shark reaches the maximum swimming speed of 1.05 m/s with an oscillation frequency of 1.2 Hz.Furthermore,the turning radius decreases nonlinearly as the offset angle increased.The robotic shark reaches the minimum turning radius of 1.4 times the body length with 0.2 Hz frequency and 12°offset angle.In the vertical plane,as the pectoral fin angle increases,the diving velocity increases nonlinearly with increase rate slowing down.展开更多
In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propag...In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propagation paths with their lengths if faults occur.First,the physical structure system,function behavior,and complex network theory are integrated to define a system structural-action network(SSAN).Second,based on the concept of SSAN,two properties of nodes and edges,i.e.,the topological property and reliability property,are combined to define the failure propagation property.Third,the proposed MPPS model provides all fault propagation paths and possible failure rates of nodes on these paths.Finally,numerical experiments have been implemented to show the accuracy and advancement compared with the methods of Function Space Iteration(FSI)and the algorithm of Ant Colony Optimization(ACO).展开更多
Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a ...Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a personal transporter ridden in cities.Mechanical designing and control structures as well as control strategies were described and compared in order to get a general way to develop such robots.A state feedback controller and a fuzzy controller were designed for the robot using DC servo motors and the robot using torque motors,respectively.The experiments indicate that the robots can realize various desired operations smoothly and agilely at the velocity of 0.6 m/s with an operator of 65 kg.Furthermore,the robustness of the controllers is revealed since these controllers can stabilize the robot even with unknown external disturbances.展开更多
Nowadays, rapid technological progress influences the dependability of equipments and also causes rapid obsolescence. The mechatronic and electronic equipment components are mostly affected by obsolescence. A new chal...Nowadays, rapid technological progress influences the dependability of equipments and also causes rapid obsolescence. The mechatronic and electronic equipment components are mostly affected by obsolescence. A new challenger unit possesses identical functionalities, but with higher performances. This work aims to find the optimal number of components which should be replaced by new-type units, under budgetary constraints. In this work, the new challenger unit is characterized by lower energy consumption and the optimization steps are based on genetic algorithm (GA). The result shows the importance of this type of replacement in order to economize energy consumption and to deal with obsolescence.展开更多
文摘Mechatronic product development is a complex and multidisciplinary field that encompasses various domains, including, among others, mechanical engineering, electrical engineering, control theory and software engineering. The integration of artificial intelligence technologies is revolutionizing this domain, offering opportunities to enhance design processes, optimize performance, and leverage vast amounts of knowledge. However, human expertise remains essential in contextualizing information, considering trade-offs, and ensuring ethical and societal implications are taken into account. This paper therefore explores the existing literature regarding the application of artificial intelligence as a comprehensive database, decision support system, and modeling tool in mechatronic product development. It analyzes the benefits of artificial intelligence in enabling domain linking, replacing human expert knowledge, improving prediction quality, and enhancing intelligent control systems. For this purpose, a consideration of the V-cycle takes place, a standard in mechatronic product development. Along this, an initial assessment of the AI potential is shown and important categories of AI support are formed. This is followed by an examination of the literature with regard to these aspects. As a result, the integration of artificial intelligence in mechatronic product development opens new possibilities and transforms the way innovative mechatronic systems are conceived, designed, and deployed. However, the approaches are only taking place selectively, and a holistic view of the development processes and the potential for robust and context-sensitive artificial intelligence along them is still needed.
基金supported by National Natural Science Foundation of China (Grant No. 61074110)National Defense Pre-Research Foundation of China (Grant No. B0420060524)
文摘Multidisciplinary collaborative simulation (MCS) is an important area of research in the domain of multidisciplinary design optimization (MDO).Although previous research for MCS has to some extent addressed some issues like using of multiple tools,integration stability,control of step size,data synchronization,etc,further work is still necessary to study how to achieve improved precision.A theoretical model is formulated to describe and analyze the integration process of MCS.A basic algorithm with equal major steps is proposed based on the model,along with two methods of implementation for the model,namely the serial method and the parallel method.A further algorithm based on convergent integration step is proposed,which has a more flexible strategy for run-time integration.The influence of interpolation techniques on simulation performance is studied as well.Simulations of the performance of various algorithms with different interpolation techniques are performed for both a simple numerical example and a complex mechatronic product.The novel algorithm based on convergent integration step,when used with a high-order interpolation technique,has better performance in terms of precision and efficiency.The innovation of this paper is mainly on the validation of high precision of the proposed convergent integration step algorithm.
基金supported by National Natural Science Foundation of China(No.51275052)Beijing Natural Science Foundation(No.3131002)
文摘The safety and reliability of mechatronics systems,particularly the high-end,large and key mechatronics equipment in service,can strongly influence on production efficiency,personnel safety,resources and environment.Based on the demands of development of modern industries and technologies such as international industry 4.0,Made-in-China 2025 and Internet + and so on,this paper started from revealing the regularity of evolution of running state of equipment and the methods of signal processing of low signal noise ratio,proposed the key information technology of state monitoring and earlyfault-warning for equipment,put forward the typical technical line and major technical content,introduced the application of the technology to realize modern predictive maintenance of equipment and introduced the development of relevant safety monitoring instruments.The technology will play an important role in ensuring the safety of equipment in service,preventing accidents and realizing scientific maintenance.
基金This work was supported by the Deanship of Scientific Research,King Khalid University,Kingdom of Saudi Arabia under research Grant Number(R.G.P.2/100/41).
文摘Human Adaptive Mechatronics(HAM)includes human and computer system in a closed loop.Elderly person with disabilities,normally carry out their daily routines with some assistance to move their limbs.With the short fall of human care takers,mechatronics devices are used with the likes of exoskeleton and exosuits to assist them.The rehabilitation and occupational therapy equipments utilize the electromyography(EMG)signals to measure the muscle activity potential.This paper focuses on optimizing the HAM model in prediction of intended motion of upper limb with high accuracy and to increase the response time of the system.Limb characteristics extraction from EMG signal and prediction of optimal controller parameters are modeled.Time and frequency based approach of EMG signal are considered for feature extraction.The models used for estimating motion and muscle parameters from EMG signal for carrying out limb movement predictions are validated.Based on the extracted features,optimal parameters are selected by Modified Lion Optimization(MLO)for controlling the HAM system.Finally,supervised machine learning makes predictions at different points in time for individual sensing using Support Vector Neural Network(SVNN).This model is also evaluated based on optimal parameters of motion estimation and the accuracy level along with different optimization models for various upper limb movements.The proposed model of human adaptive controller predicts the limb movement by 96%accuracy.
文摘The paper briefly addresses DLR' s ( German Aerospace Center) expertise in space robotics by handof corresponding milestone projects including systems on the International Space Station ISS. It then discussesthe key technologies needed for the development of an artificial "robonaut" generation with mechatronic ultra-light weight arms and multifingered hands. The third arm generation is nearly finished now, approaching thelimits of what is technologically achievable today with respect to light-weight and power losses. In a similar wayDLR' s second generation of artificial 4-fingered hands was a big step towards higher reliability, manipulabilityand overall performance.
文摘Software is becoming the driving force in today’s mechatronic systems. It does not only realize a significant part of their functionality but it is also used to realize their most competitive advantages. However, the traditional development process is wholly inappropriate for the development of these systems that impose a tighter coupling of software with electronics and mechanics. In this paper, a synergistic integration of the constituent parts of mechatronic systems, i.e. mechanical, electronic and software is proposed though the 3+1 SysML view-model. SysML is used to specify the cen-tral view-model of the mechatronic system while the other three views are for the different disciplines involved. The widely used in software engineering V-model is extended to address the requirements set by the 3+1 SysML view-model and the Model Integrated Mechatronics (MIM) paradigm. A SysML profile is described to facilitate the application of the proposed view-model in the development of mechatronic systems.
文摘Middle Tennessee State University(MTSU)started a Mechatronics Engineering program four years ago.Over those four years,enrollment has grown exponentially and has increased to over 400 students.One major factor that draws interest to this new program is the university’s Experimental Vehicles Program(EVP),created by Dr.Saeed Foroudastan.The EVP includes different student teams that work to design and build the four projects the EVP has evolved to:human-powered lunar rover(formerly known as The Great Moonbuggy Race),powered off-road Baja,gasoline-powered formula car,and all-electric solar boat.These projects are designed to greatly enhance each student’s classroom experience.The EVP provides students hands-on experience that allows them to apply what they have learned in the classroom to something in real life.The students are responsible for designing and building each project with their team,which also provides them with skills like effective communication,teamwork,project management and more.Each project also has a competition that members of the team normally travel to and are able to compete on an international level.The Mechatronics Engineering program and the EVP at MTSU are both providing truly great opportunities and preparing students well that wish to enter the engineering field after college.
文摘The development of modern science and technology has promoted the overlapping and mutual penetration among different disciplines, which led to the technological innovations in the field of mechanical engineering. The mechatronics technology conforms to the law of development of science and technology in today, and combines the mechanical technology and electronic technology together to integrate the logistics, energy flow and information flow. This paper briefly describes the concept of mechatronics and the elements of mechatronics technology, and elaborates on the application of mechatronics technology in three different areas of the Machinery Industry in the form of living examples, finally introduces the future developing direction of mechatronics technology.
文摘Health facilities are generally short-staffed and overworked. This has a significant impact on the reliability of the acquisition of health constants required at the start of diagnosis. Manual acquisition and transmission of these constants and other data leads to delays in the execution of successive care-related tasks. What’s more, the quality of service is sometimes compromised by a lack of communication between patients and staff. In pediatrics, this is compounded by the difficulty of diagnosis in the face of children’s silence, intimidated by the hospital environment. Technological assistance would relieve healthcare staff of the need to perform certain repetitive tasks. The solution proposed in this document studies a robot, based on electrical, electronic, computer and artificial intelligence resources, with human-machine interaction for taking vitals and health data in health facilities. This system enables height, mass and temperature to be taken autonomously and without contact. The algorithm we’ve developed uses artificial intelligence to check the conditions for correct measurements, both bareheaded and barefoot. This solution also alerts you to epidemic trends such as obesity. This health data is made available in the healthcare facility on terminals such as tablets, smartphones and computers used by nursing staff. This work will help healthcare staff to take automatic health vitals without contact, and to acquire and circulate data via a computer network.
文摘The COVID-19 pandemic has exposed vulnerabilities within our healthcare structures. Healthcare facilities are often faced with staff shortages and work overloads, which can have an impact on the collection of health data and constants essential for early diagnosis. In order to minimize the risk of error and optimize data collection, we have developed a robot incorporating artificial intelligence. This robot has been designed to automate and collect health data and constants in a contactless way, while at the same time verifying the conditions for correct measurements, such as the absence of hats and shoes. Furthermore, this health information needs to be transmitted to services for processing. Thus, this article addresses the aspect of reception and collection of health data and constants through various modules: for taking height, temperature and weight, as well as the module for entering patient identification data. The article also deals with orientation, presenting a module for selecting the patient’s destination department. This data is then routed via a wireless network and an application integrated into the doctors’ tablets. This application will enable efficient queue management by classifying patients according to their order of arrival. The system’s infrastructure is easily deployable, taking advantage of the healthcare facility’s local wireless network, and includes encryption mechanisms to reinforce the security of data circulating over the network. In short, this innovative system will offer an autonomous, contactless method for collecting vital constants such as size, mass, and temperature. What’s more, it will facilitate the flow of data, including identification information, across a network, simplifying the implementation of this solution within healthcare facilities.
文摘Many patients with spinal injures are confined to wheelchairs, leading to a sedentary lifestyle with secondary pathologies and increased dependence on a carer. Increasing evidence has shown that locomotor training reduces the incidence of these secondary pathologies, but the physical effort involved in this training is such that there is poor compliance. This paper reports on the design and control of a new "human friendly" orthosis (exoskeleton), powered by high power pneumatic Muscle Actuators (pMAs). The combination of a highly compliant actuation system, with an intelligent embedded control mechanism which senses hip, knee, and ankle positions, velocity, acceleration and force, produces powerful yet inherently safe operation for paraplegic patients. This paper analyzes the motion of ankle, knee, and hip joints under zero loading, and loads which simulate human limb mass, showing that the use of "soft" actuators can provide a smooth user friendly motion. The application of this technology will greatly improve the rehabilitative protocols for paraplegic patients.
基金Supported by Open Outreach Project of A New Biomimicry and Crowdsourcing Based Digital Design Platform for High Speed Train from State Key Laboratory of Traction PowerNational Natural Science Foundation of China(Grant No.51575461)
文摘With the increasing of complexity of complex mechatronic products, it is necessary to involve multidis- ciplinary design teams, thus, the traditional customer requirements modeling for a single discipline team becomes difficult to be applied in a multidisciplinary team and project since team members with various disciplinary backgrounds may have different interpretations of the customers' requirements. A new synthesized multidisci- plinary customer requirements modeling method is pro- vided for obtaining and describing the common understanding of customer requirements (CRs) and more importantly transferring them into a detailed and accurate product design specifications (PDS) to interact with dif- ferent team members effectively. A case study of designing a high speed train verifies the rationality and feasibility of the proposed multidisciplinary requirement modeling method for complex mechatronic product development. This proposed research offersthe instruction to realize the customer-driven personalized customization of complex mechatronic product.
文摘This paper presents the results of an on-going project and investigates modelling and remote control issues of an industry excavator. The details of modelling, communication, and control of a remotely controllable excavator are studied. The paper mainly focuses on trajectory tracking control of the excavator base and robust control of the excavator arm. These will provide the fundamental base for our next research step. In addition, extensive simulation results for trajectory tracking of the excavator base and robust control of the excavator arm are given. Finally, conclusions and further work have been identified.
基金Funding was provided by Horizon 2020 Framework Programme(Grant No.777564).
文摘Since the concept of active suspensions appeared,its large possible benefits has attracted continuous exploration in the field of railway engineering.With new demands of higher speed,better ride comfort and lower maintenance cost for railway vehicles,active suspensions are very promising technologies.Being the starting point of commercial application of active suspensions in rail vehicles,tilting trains have become a great success in some countries.With increased technical maturity of sensors and actuators,active suspension has unprecedented development opportunities.In this work,the basic concepts are summarized with new theories and solutions that have appeared over the last decade.Experimental studies and the implementation status of different active suspension technologies are described as well.Firstly,tilting trains are briefly described.Thereafter,an indepth study for active secondary and primary suspensions is performed.For both topics,after an introductory section an explanation of possible solutions existing in the literature is given.The implementation status is reported.Active secondary suspensions are categorized into active and semi-active suspensions.Primary suspensions are instead divided between acting on solid-axle wheelsets and independently rotating wheels.Lastly,a brief summary and outlook is presented in terms of benefits,research status and challenges.The potential for active suspensions in railway applications is outlined.
基金financially supported by the National Natural Science Foundation of China(Grant No.51909040)the Natural Science Foundation of Heilongjiang Province(Grant No.LH2020E073)the Key Technology Research and Development Program of Shandong(Grant No.2020CXGC010702).
文摘In this paper,the mechatronic design and maneuverability analysis of a novel robotic shark are presented.To obtain good maneuverability,a barycenter regulating device is designed to assist the posture adjustment at low speeds.Based on the Newton-Euler approach,an analytical dynamic model is established with particular consideration of pectoral fins for threedimensional motions.The hydrodynamic coefficients are computed using computational fluid dynamics(CFD)methods.Oscillation amplitudes and phases are determined by fitting an optimized fish body wave.The performance of the robotic shark is estimated by varying the oscillation frequency and offset angle.The results show that with oscillation frequency increasing,the swimming speed increases linearly.The robotic shark reaches the maximum swimming speed of 1.05 m/s with an oscillation frequency of 1.2 Hz.Furthermore,the turning radius decreases nonlinearly as the offset angle increased.The robotic shark reaches the minimum turning radius of 1.4 times the body length with 0.2 Hz frequency and 12°offset angle.In the vertical plane,as the pectoral fin angle increases,the diving velocity increases nonlinearly with increase rate slowing down.
基金Project(2017JBZ103)supported by the Fundamental Research Funds for the Central Universities,China
文摘In view of the structure and action behavior of mechatronic systems,a method of searching fault propagation paths called maximum-probability path search(MPPS)is proposed,aiming to determine all possible failure propagation paths with their lengths if faults occur.First,the physical structure system,function behavior,and complex network theory are integrated to define a system structural-action network(SSAN).Second,based on the concept of SSAN,two properties of nodes and edges,i.e.,the topological property and reliability property,are combined to define the failure propagation property.Third,the proposed MPPS model provides all fault propagation paths and possible failure rates of nodes on these paths.Finally,numerical experiments have been implemented to show the accuracy and advancement compared with the methods of Function Space Iteration(FSI)and the algorithm of Ant Colony Optimization(ACO).
基金Project(61273344)supported by the National Natural Science Foundation of ChinaProject(SKLRS-2010-ZD-40)supported by the StateKey Laboratory of Robotics and Systems(HIT),China+1 种基金Project(2008AA04Z208)supported by the National Hi-tech Research and Development Program of ChinaProject(20121101110011)supported by PhD Program Foundation of Ministry of Education,China
文摘Two types of coaxial self-balancing robots(CSBR)were proposed,one can be used as a mobile robot platform for parts transporting in unmanned factory or as an inspector in dangerous areas,and the other can be used as a personal transporter ridden in cities.Mechanical designing and control structures as well as control strategies were described and compared in order to get a general way to develop such robots.A state feedback controller and a fuzzy controller were designed for the robot using DC servo motors and the robot using torque motors,respectively.The experiments indicate that the robots can realize various desired operations smoothly and agilely at the velocity of 0.6 m/s with an operator of 65 kg.Furthermore,the robustness of the controllers is revealed since these controllers can stabilize the robot even with unknown external disturbances.
文摘Nowadays, rapid technological progress influences the dependability of equipments and also causes rapid obsolescence. The mechatronic and electronic equipment components are mostly affected by obsolescence. A new challenger unit possesses identical functionalities, but with higher performances. This work aims to find the optimal number of components which should be replaced by new-type units, under budgetary constraints. In this work, the new challenger unit is characterized by lower energy consumption and the optimization steps are based on genetic algorithm (GA). The result shows the importance of this type of replacement in order to economize energy consumption and to deal with obsolescence.