期刊文献+
共找到7,025篇文章
< 1 2 250 >
每页显示 20 50 100
Real-time UAV path planning based on LSTM network
1
作者 ZHANG Jiandong GUO Yukun +3 位作者 ZHENG Lihui YANG Qiming SHI Guoqing WU Yong 《Journal of Systems Engineering and Electronics》 SCIE CSCD 2024年第2期374-385,共12页
To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on... To address the shortcomings of single-step decision making in the existing deep reinforcement learning based unmanned aerial vehicle(UAV)real-time path planning problem,a real-time UAV path planning algorithm based on long shortterm memory(RPP-LSTM)network is proposed,which combines the memory characteristics of recurrent neural network(RNN)and the deep reinforcement learning algorithm.LSTM networks are used in this algorithm as Q-value networks for the deep Q network(DQN)algorithm,which makes the decision of the Q-value network has some memory.Thanks to LSTM network,the Q-value network can use the previous environmental information and action information which effectively avoids the problem of single-step decision considering only the current environment.Besides,the algorithm proposes a hierarchical reward and punishment function for the specific problem of UAV real-time path planning,so that the UAV can more reasonably perform path planning.Simulation verification shows that compared with the traditional feed-forward neural network(FNN)based UAV autonomous path planning algorithm,the RPP-LSTM proposed in this paper can adapt to more complex environments and has significantly improved robustness and accuracy when performing UAV real-time path planning. 展开更多
关键词 deep Q network path planning neural network unmanned aerial vehicle(UAV) long short-term memory(lstm)
下载PDF
Optimized operation scheme of flash-memory-based neural network online training with ultra-high endurance
2
作者 Yang Feng Zhaohui Sun +6 位作者 Yueran Qi Xuepeng Zhan Junyu Zhang Jing Liu Masaharu Kobayashi Jixuan Wu Jiezhi Chen 《Journal of Semiconductors》 EI CAS CSCD 2024年第1期33-37,共5页
With the rapid development of machine learning,the demand for high-efficient computing becomes more and more urgent.To break the bottleneck of the traditional Von Neumann architecture,computing-in-memory(CIM)has attra... With the rapid development of machine learning,the demand for high-efficient computing becomes more and more urgent.To break the bottleneck of the traditional Von Neumann architecture,computing-in-memory(CIM)has attracted increasing attention in recent years.In this work,to provide a feasible CIM solution for the large-scale neural networks(NN)requiring continuous weight updating in online training,a flash-based computing-in-memory with high endurance(10^(9) cycles)and ultrafast programming speed is investigated.On the one hand,the proposed programming scheme of channel hot electron injection(CHEI)and hot hole injection(HHI)demonstrate high linearity,symmetric potentiation,and a depression process,which help to improve the training speed and accuracy.On the other hand,the low-damage programming scheme and memory window(MW)optimizations can suppress cell degradation effectively with improved computing accuracy.Even after 109 cycles,the leakage current(I_(off))of cells remains sub-10pA,ensuring the large-scale computing ability of memory.Further characterizations are done on read disturb to demonstrate its robust reliabilities.By processing CIFAR-10 tasks,it is evident that~90%accuracy can be achieved after 109 cycles in both ResNet50 and VGG16 NN.Our results suggest that flash-based CIM has great potential to overcome the limitations of traditional Von Neumann architectures and enable high-performance NN online training,which pave the way for further development of artificial intelligence(AI)accelerators. 展开更多
关键词 NOR flash memory computing-in-memory ENDURANCE neural network online training
下载PDF
State-of-health estimation for fast-charging lithium-ion batteries based on a short charge curve using graph convolutional and long short-term memory networks
3
作者 Yvxin He Zhongwei Deng +4 位作者 Jue Chen Weihan Li Jingjing Zhou Fei Xiang Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期1-11,共11页
A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan.... A fast-charging policy is widely employed to alleviate the inconvenience caused by the extended charging time of electric vehicles. However, fast charging exacerbates battery degradation and shortens battery lifespan. In addition, there is still a lack of tailored health estimations for fast-charging batteries;most existing methods are applicable at lower charging rates. This paper proposes a novel method for estimating the health of lithium-ion batteries, which is tailored for multi-stage constant current-constant voltage fast-charging policies. Initially, short charging segments are extracted by monitoring current switches,followed by deriving voltage sequences using interpolation techniques. Subsequently, a graph generation layer is used to transform the voltage sequence into graphical data. Furthermore, the integration of a graph convolution network with a long short-term memory network enables the extraction of information related to inter-node message transmission, capturing the key local and temporal features during the battery degradation process. Finally, this method is confirmed by utilizing aging data from 185 cells and 81 distinct fast-charging policies. The 4-minute charging duration achieves a balance between high accuracy in estimating battery state of health and low data requirements, with mean absolute errors and root mean square errors of 0.34% and 0.66%, respectively. 展开更多
关键词 Lithium-ion battery State of health estimation Feature extraction Graph convolutional network Long short-term memory network
下载PDF
A Complex Fuzzy LSTM Network for Temporal-Related Forecasting Problems
4
作者 Nguyen Tho Thong Nguyen Van Quyet +2 位作者 Cu Nguyen Giap Nguyen Long Giang Luong Thi Hong Lan 《Computers, Materials & Continua》 SCIE EI 2024年第9期4173-4196,共24页
Time-stamped data is fast and constantly growing and it contains significant information thanks to the quick development ofmanagement platforms and systems based on the Internet and cutting-edge information communicat... Time-stamped data is fast and constantly growing and it contains significant information thanks to the quick development ofmanagement platforms and systems based on the Internet and cutting-edge information communication technologies.Mining the time series data including time series prediction has many practical applications.Many new techniques were developed for use with various types of time series data in the prediction problem.Among those,this work suggests a unique strategy to enhance predicting quality on time-series datasets that the timecycle matters by fusing deep learning methods with fuzzy theory.In order to increase forecasting accuracy on such type of time-series data,this study proposes integrating deep learning approaches with fuzzy logic.Particularly,it combines the long short-termmemory network with the complex fuzzy set theory to create an innovative complex fuzzy long short-term memory model(CFLSTM).The proposed model adds a meaningful representation of the time cycle element thanks to a complex fuzzy set to advance the deep learning long short-term memory(LSTM)technique to have greater power for processing time series data.Experiments on standard common data sets and real-world data sets published in the UCI Machine Learning Repository demonstrated the proposedmodel’s utility compared to other well-known forecasting models.The results of the comparisons supported the applicability of our proposed strategy for forecasting time series data. 展开更多
关键词 Complex fuzzy set long short-term memory(lstm) CFlstm T-CFlstm
下载PDF
Modeling injection-induced fault slip using long short-term memory networks
5
作者 Utkarsh Mital Mengsu Hu +2 位作者 Yves Guglielmi James Brown Jonny Rutqvist 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第11期4354-4368,共15页
Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections an... Stress changes due to changes in fluid pressure and temperature in a faulted formation may lead to the opening/shearing of the fault.This can be due to subsurface(geo)engineering activities such as fluid injections and geologic disposal of nuclear waste.Such activities are expected to rise in the future making it necessary to assess their short-and long-term safety.Here,a new machine learning(ML)approach to model pore pressure and fault displacements in response to high-pressure fluid injection cycles is developed.The focus is on fault behavior near the injection borehole.To capture the temporal dependencies in the data,long short-term memory(LSTM)networks are utilized.To prevent error accumulation within the forecast window,four critical measures to train a robust LSTM model for predicting fault response are highlighted:(i)setting an appropriate value of LSTM lag,(ii)calibrating the LSTM cell dimension,(iii)learning rate reduction during weight optimization,and(iv)not adopting an independent injection cycle as a validation set.Several numerical experiments were conducted,which demonstrated that the ML model can capture peaks in pressure and associated fault displacement that accompany an increase in fluid injection.The model also captured the decay in pressure and displacement during the injection shut-in period.Further,the ability of an ML model to highlight key changes in fault hydromechanical activation processes was investigated,which shows that ML can be used to monitor risk of fault activation and leakage during high pressure fluid injections. 展开更多
关键词 Machine learning Long short-term memory networks FAULT Fluid injection
下载PDF
LSTM Based Neural Network Model for Anomaly Event Detection in Care-Independent Smart Homes
6
作者 Brij B.Gupta Akshat Gaurav +3 位作者 Razaz Waheeb Attar Varsha Arya Ahmed Alhomoud Kwok Tai Chui 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2689-2706,共18页
This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It ... This study introduces a long-short-term memory(LSTM)-based neural network model developed for detecting anomaly events in care-independent smart homes,focusing on the critical application of elderly fall detection.It balances the dataset using the Synthetic Minority Over-sampling Technique(SMOTE),effectively neutralizing bias to address the challenge of unbalanced datasets prevalent in time-series classification tasks.The proposed LSTM model is trained on the enriched dataset,capturing the temporal dependencies essential for anomaly recognition.The model demonstrated a significant improvement in anomaly detection,with an accuracy of 84%.The results,detailed in the comprehensive classification and confusion matrices,showed the model’s proficiency in distinguishing between normal activities and falls.This study contributes to the advancement of smart home safety,presenting a robust framework for real-time anomaly monitoring. 展开更多
关键词 lstm neural networks anomaly detection smart home health-care elderly fall prevention
下载PDF
Prediction and Analysis of Elevator Traffic Flow under the LSTM Neural Network
7
作者 Mo Shi Entao Sun +1 位作者 Xiaoyan Xu Yeol Choi 《Intelligent Control and Automation》 2024年第2期63-82,共20页
Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion with... Elevators are essential components of contemporary buildings, enabling efficient vertical mobility for occupants. However, the proliferation of tall buildings has exacerbated challenges such as traffic congestion within elevator systems. Many passengers experience dissatisfaction with prolonged wait times, leading to impatience and frustration among building occupants. The widespread adoption of neural networks and deep learning technologies across various fields and industries represents a significant paradigm shift, and unlocking new avenues for innovation and advancement. These cutting-edge technologies offer unprecedented opportunities to address complex challenges and optimize processes in diverse domains. In this study, LSTM (Long Short-Term Memory) network technology is leveraged to analyze elevator traffic flow within a typical office building. By harnessing the predictive capabilities of LSTM, the research aims to contribute to advancements in elevator group control design, ultimately enhancing the functionality and efficiency of vertical transportation systems in built environments. The findings of this research have the potential to reference the development of intelligent elevator management systems, capable of dynamically adapting to fluctuating passenger demand and optimizing elevator usage in real-time. By enhancing the efficiency and functionality of vertical transportation systems, the research contributes to creating more sustainable, accessible, and user-friendly living environments for individuals across diverse demographics. 展开更多
关键词 Elevator Traffic Flow Neural network lstm Elevator Group Control
下载PDF
基于LSTM网络的单台仪器地震烈度预测模型 被引量:2
8
作者 李山有 王博睿 +4 位作者 卢建旗 王傲 张海峰 谢志南 陶冬旺 《地球物理学报》 SCIE EI CAS CSCD 北大核心 2024年第2期587-599,共13页
烈度是地震预警系统的关键产出.如何实现快速预测目标场址的地震烈度是地震预警方法技术研究中的核心问题.本文提出了一种基于长短时记忆神经网络(Long Short-Term Memory,LSTM)的单台仪器地震烈度的预测模型(LSTM-Ⅰ).该模型以一个台... 烈度是地震预警系统的关键产出.如何实现快速预测目标场址的地震烈度是地震预警方法技术研究中的核心问题.本文提出了一种基于长短时记忆神经网络(Long Short-Term Memory,LSTM)的单台仪器地震烈度的预测模型(LSTM-Ⅰ).该模型以一个台站观测到地震动参数的时间序列特征为输入,实现动态预测该台站可能遭受的最大烈度.选取了日本K-NET台网记录的102次地震的5103条强震加速度记录训练了神经网络,利用89次地震的3781条数据检验了模型的泛化能力.利用准确率、漏报率以及误报率三个评价指标评价了LSTM-Ⅰ模型的性能.结果表明,当采用P波触发后3 s的序列进行预测时,模型出现漏报的概率为46.78%,出现误报的概率为1.25%;当采用P波触发后10 s的序列进行预测时,模型出现漏报的概率大幅降低到17.6%,出现误报的概率降低到1.14%.结果表明LSTM-Ⅰ模型很好把握住了时间序列中蕴含的特征.进一步基于LSTM-Ⅰ模型评估了Ⅵ度下台站所能提供的预警时间.本文模型能够提供的预警时间与P-S波到时差接近,说明LSTM-Ⅰ模型具有较高的时效性. 展开更多
关键词 地震预警 时间序列特征 lstm神经网络 仪器地震烈度 预测
下载PDF
结合LSTM自编码器与集成学习的井漏智能识别方法 被引量:2
9
作者 孙伟峰 冯剑寒 +3 位作者 张德志 李威桦 刘凯 戴永寿 《石油钻探技术》 CAS CSCD 北大核心 2024年第3期61-67,共7页
为了解决传统的井漏智能识别模型因井漏样本数量受限导致其识别准确率低的问题,提出了一种长短期记忆(long short-term memory,LSTM)网络与自编码器(auto-encoder,AE)相结合、集成LSTM-AE的井漏智能识别方法。首先,采用正常样本训练多... 为了解决传统的井漏智能识别模型因井漏样本数量受限导致其识别准确率低的问题,提出了一种长短期记忆(long short-term memory,LSTM)网络与自编码器(auto-encoder,AE)相结合、集成LSTM-AE的井漏智能识别方法。首先,采用正常样本训练多个包含不同隐藏层神经元数目的LSTM-AE模型,利用重构得分筛选出识别效果较好的几个模型作为基识别器;然后,采用集成学习对多个基识别器的识别结果进行加权融合,解决单一模型因对样本局部特征过度学习导致的误报与漏报问题,提高模型的识别准确率。从某油田18口井的钻井数据中选取了6000组正常钻进状态下的立压、出口流量、池体积数据,对集成LSTM-AE模型进行训练和测试,结果表明,提出方法的识别准确率达到了94.7%,优于其他常用的智能模型的识别结果,为井漏识别提供了一种新的技术途径。 展开更多
关键词 井漏识别 长短期记忆网络 自编码器 集成学习
下载PDF
基于CNN-LSTM的大坝变形组合预测模型研究 被引量:2
10
作者 王润英 林思雨 +1 位作者 方卫华 赵凯文 《水力发电》 CAS 2024年第1期37-41,52,共6页
为了提高大坝变形预测模型精度和泛化能力,建立了一种基于卷积神经网络(Convolutional neural networks,CNN)与深度学习长短期记忆(Long short-term memory,LSTM)神经网络的组合预测模型CNN-LSTM。该模型先利用CNN提取大坝变形监测时间... 为了提高大坝变形预测模型精度和泛化能力,建立了一种基于卷积神经网络(Convolutional neural networks,CNN)与深度学习长短期记忆(Long short-term memory,LSTM)神经网络的组合预测模型CNN-LSTM。该模型先利用CNN提取大坝变形监测时间序列的特征,再利用LSTM生成特征描述,该模型精度高、泛化能力强。以柏叶口水库混凝土面板堆石坝为例,经过CNN-LSTM模型计算,将模型变形预测值与原型监测资料进行对比,再与LSTM模型及CNN模型的预测结果进行对比。结果表明,CNN-LSTM模型预测值最接近监测资料实测结果。 展开更多
关键词 大坝变形 卷积神经网络 lstm神经网络 变形预测 预测精度 柏叶口水库
下载PDF
基于CNN‑LSTM‑SE的心电图分类算法研究 被引量:2
11
作者 王建荣 邓黎明 +1 位作者 程伟 李国翚 《测试技术学报》 2024年第3期264-273,共10页
心血管疾病是我国死亡率较高的疾病之一,通过观察心电图来判断心电信号是否出现异常能够对心血管疾病进行预防和筛查。由于心电图数据规模大且繁杂,临床医护人员在心电图筛查时,工作负担大且容易出现误诊或漏诊的情况。为了提高心电图... 心血管疾病是我国死亡率较高的疾病之一,通过观察心电图来判断心电信号是否出现异常能够对心血管疾病进行预防和筛查。由于心电图数据规模大且繁杂,临床医护人员在心电图筛查时,工作负担大且容易出现误诊或漏诊的情况。为了提高心电图的筛查效率、减少医护人员的压力,提出了一种基于卷积神经网络、长短期记忆神经网络和SE网络的心电图分类算法模型(CNN-LSTM-SE),该模型将心电图分成5种不同的类别。主要研究内容包括:选用MIT-BIH心律失常数据集作为心电信号的数据来源,使用巴特沃斯带通滤波器对心电信号进行去噪处理,通过Z-score方法对心电信号进行标准化处理,利用独热编码方法对心电信号标签进行编码,最后使用处理后的心电数据对所提算法模型进行训练和测试。实验结果表明:所提模型相较于其它模型,能够有效提高心电图分类的准确性,在实验数据集上的分类准确率达到99.1%。 展开更多
关键词 心律失常 心电图 卷积神经网络 SE网络 长短期记忆神经网络
下载PDF
基于多源信息融合和WOA-CNN-LSTM的外脚手架隐患分类预警研究 被引量:2
12
作者 赵江平 张雪莹 侯刚 《安全与环境学报》 CAS CSCD 北大核心 2024年第3期933-942,共10页
面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利... 面对施工现场外脚手架隐患信息的多样性,传统的基于传感器监测的单一信号预警研究存在容错力不佳、含有信息有限等问题。针对施工现场外脚手架“图像+监测”数据,提出一种基于数据层和特征层信息融合的脚手架隐患分类预警方法。首先,利用Revit三维建模软件建立外脚手架实体模型,对不同初始隐患下的外脚手架进行有限元分析,划分隐患预警等级;其次,利用无迹卡尔曼滤波算法(Unscented Kalman Filter,UKF)及卷积长短时记忆网络(Convolutional Neural Network-Long Short Term Memory Network,CNN-LSTM)实现脚手架同类信息数据层融合及异类信息特征层融合;最后,通过实时收集西安市某在建项目落地式双排扣件式钢管脚手架隐患信息,对其进行分类预警,并使用鲸鱼优化算法(Whale Optimization Algorithm,WOA)对CNN-LSTM网络进行参数优化,发现隐藏节点个数为30、学习率为0.0072、正则化系数为1×10^(-4)时分类效果最佳,优化后预警精度达到了91.4526%。通过可视化WOA-CNN-LSTM、CNN-LSTM、CNN-SVM(Support Vector Machine,支持向量机)及CNN-GRU(Gate Recurrent Unit,门控循环单元)分类预警结果,证实了优化后的CNN-LSTM网络在脚手架分类预警方面的优越性。 展开更多
关键词 安全工程 多源信息融合 鲸鱼优化算法 卷积长短时记忆网络 可视化
下载PDF
基于CNN-LSTM混合神经网络的高速铁路地震响应预测 被引量:2
13
作者 张学兵 谢啸楠 +1 位作者 王礼 吴晗 《湘潭大学学报(自然科学版)》 CAS 2024年第1期1-13,共13页
为了更好地挖掘高速铁路在地震时的响应信息,提高光纤光栅监测的效率及预测精度,该文针对地震响应数据的时序性及非线性的特点,提出卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合神经网络模型预测方法.通过在高速铁路简支梁桥上布设... 为了更好地挖掘高速铁路在地震时的响应信息,提高光纤光栅监测的效率及预测精度,该文针对地震响应数据的时序性及非线性的特点,提出卷积神经网络(CNN)和长短期记忆(LSTM)网络的混合神经网络模型预测方法.通过在高速铁路简支梁桥上布设准分布式光纤光栅采集地震时轨道板、钢轨、底座板、箱梁的响应数据,在每根光纤上布置7个光栅,利用两边光栅的响应数据预测中间点的光栅响应,将采集位置、历史数据及地震波形等信息作为特征图输入.利用CNN提取特征,再将提前提取出来的特征数据以时序方式作为LSTM网络的输入数据,最后LSTM网络进行地震应变响应预测.实验结果表明,LSTM网络在3层时效果最好,CNN-LSTM方法具有较高的预测精度,根均平方误差(R_(RMSE))、平均绝对误差(R_(MAE))、决定系数(R^(2))分别达到了0.3753、0.2968、0.9371. 展开更多
关键词 准分布式光纤光栅 振动台试验 地震响应 卷积神经网络-长短期记忆网络混合模型
下载PDF
基于注意力机制的CNN-BiLSTM的IGBT剩余使用寿命预测 被引量:2
14
作者 张金萍 薛治伦 +3 位作者 陈航 孙培奇 高策 段宜征 《半导体技术》 CAS 北大核心 2024年第4期373-379,共7页
针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制... 针对绝缘栅双极型晶体管(IGBT)可靠性问题,提出了一种融合卷积神经网络(CNN)、双向长短期记忆(BiLSTM)网络和注意力机制的剩余使用寿命(RUL)预测模型,可用于IGBT的寿命预测。模型中使用CNN提取特征参数,BiLSTM提取时序信息,注意力机制加权处理特征参数。使用IGBT加速老化数据集对提出的模型进行验证。结果表明,对比自回归差分移动平均(ARIMA)、长短期记忆(LSTM)、多层LSTM(Multi-LSTM)、 BiLSTM预测模型,在均方根误差和决定系数等评价指标方面该模型的性能最优。验证了提出的寿命预测模型对IGBT失效预测是有效的。 展开更多
关键词 绝缘栅双极型晶体管(IGBT) 失效预测 加速老化 长短期记忆(lstm) 注意力机制 卷积神经网络(CNN)
下载PDF
结合太阳辐射量计算与CNN-LSTM组合的光伏功率预测方法研究 被引量:1
15
作者 王东风 刘婧 +2 位作者 黄宇 史博韬 靳明月 《太阳能学报》 EI CAS CSCD 北大核心 2024年第2期443-450,共8页
为了提高模型预测性能,提出一种综合太阳辐射模型及深度学习的光伏功率预测模型。首先,利用太阳辐射机理建立太阳辐射模型(SRM),估算出水平面上总辐射值,再由斜面辐照度转换方法计算出光伏组件所接收的斜面辐射值。其次,通过皮尔逊相关... 为了提高模型预测性能,提出一种综合太阳辐射模型及深度学习的光伏功率预测模型。首先,利用太阳辐射机理建立太阳辐射模型(SRM),估算出水平面上总辐射值,再由斜面辐照度转换方法计算出光伏组件所接收的斜面辐射值。其次,通过皮尔逊相关分析法筛选出对光伏功率影响较大的主要因素,将斜面辐射计算值及主要影响因素作为输入,采用卷积神经网络(CNN)和长短期记忆网络(LSTM)建立光伏功率SRM-CNN-LSTM预测模型。分别利用春夏秋冬四季典型日的数据开展对比实验,结果表明:与几种其他方法相比,该文方法具有更好的预测效果。 展开更多
关键词 光伏发电 预测 太阳辐射 神经网络 卷积神经网络 长短期记忆网络
下载PDF
基于改进麻雀搜索算法优化LSTM的滚动轴承故障诊断 被引量:3
16
作者 周玉 房倩 +1 位作者 裴泽宣 白磊 《工程科学与技术》 EI CAS CSCD 北大核心 2024年第2期289-298,共10页
为了对滚动轴承的工作状态及故障类别进行准确的诊断,本文采用长短时记忆(LSTM)神经网络作为分类器对滚动轴承数据集进行分类诊断。首先,从滚动轴承原始运行振动信号中提取时域和频域特征参数,组成具有高维特征参数的数据集;使用核主成... 为了对滚动轴承的工作状态及故障类别进行准确的诊断,本文采用长短时记忆(LSTM)神经网络作为分类器对滚动轴承数据集进行分类诊断。首先,从滚动轴承原始运行振动信号中提取时域和频域特征参数,组成具有高维特征参数的数据集;使用核主成分分析(KPCA)方法对高维特征集进行降维处理,选取重要性程度高的特征构成输入特征向量。然后,针对LSTM神经网络在滚动轴承故障诊断中存在的超参数难以确定的问题,提出一种基于自适应t分布策略的麻雀搜索算法优化LSTM神经网络的故障诊断方法(tSSA–LSTM)。最后,使用凯斯西储大学滚动轴承数据中心的数据进行故障诊断精度测试、泛化性能测试及噪声环境下故障诊断性能测试等多个仿真实验,并将本文提出的诊断模型与麻雀搜索算法优化长短时记忆神经网络(SSA–LSTM)、遗传算法优化长短时记忆神经网络(GA–LSTM)、粒子群算法优化长短时记忆神经网络(PSO–LSTM)及传统LSTM诊断模型进行对比。结果表明:tSSA可以更有效地对LSTM的隐含层神经元数量、周期次数、学习率等超参数进行合理优化;所提方法的平均诊断准确率达到98.86%,交叉验证平均诊断结果为98.57%;所提方法在噪声干扰下的故障诊断准确率也优于对比方法。因此,本文提出的tSSA–LSTM模型不仅可以更精准地诊断滚动轴承故障状态,而且具有更强的泛化能力及抗干扰能力,有效地提高了滚动轴承故障诊断的性能。 展开更多
关键词 麻雀搜索算法 故障诊断 长短时记忆神经网络 特征提取 滚动轴承
下载PDF
基于AM-LSTM的飞行区航空器滑行轨迹预测与冲突识别 被引量:1
17
作者 王兴隆 许晏丰 《中国安全科学学报》 CAS CSCD 北大核心 2024年第1期116-124,共9页
为解决航空器点源定位难以有效预测而引发冲突风险愈来愈多的问题,构建基于注意力机制(AM)和长短期记忆网络(LSTM)的时间序列轨迹预测模型AM-LSTM,预测未来短时间内飞行区航空器的瞬时点源位置;在此基础上,根据航空器型号和滑行航向对... 为解决航空器点源定位难以有效预测而引发冲突风险愈来愈多的问题,构建基于注意力机制(AM)和长短期记忆网络(LSTM)的时间序列轨迹预测模型AM-LSTM,预测未来短时间内飞行区航空器的瞬时点源位置;在此基础上,根据航空器型号和滑行航向对其进行轮廓扩展,以航空器速度作为安全距离权重,通过射线法实现轮廓冲突的判定;并以乌鲁木齐地窝堡机场为例进行验证,利用训练完成的轨迹预测模型预测飞行区航空器滑行轨迹,以识别航空器轮廓间的滑行冲突。结果表明:AM-LSTM预测模型能够准确预测飞行区航空器运动轨迹。未来3 s内轨迹位置预测的平均位移误差为1.05 m,轨迹点位置预测精准性可达94.37%,故能在轨迹预测的基础上精确识别滑行冲突风险,有利于保障飞行区的安全运行。 展开更多
关键词 注意力机制(AM) 长短期记忆网络(lstm) 飞行区 航空器滑行 滑行轨迹
下载PDF
基于VMD-BiLSTM-WOA的短期风电功率预测 被引量:2
18
作者 史加荣 王双馨 《陕西科技大学学报》 北大核心 2024年第1期177-185,共9页
风力发电对于解决全球能源短缺问题有重要意义,准确预测风电功率有助于风电并网的合理调度和可靠的电网运行.文章提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)、双向长短期记忆网络(Bidirectional Long Short-term... 风力发电对于解决全球能源短缺问题有重要意义,准确预测风电功率有助于风电并网的合理调度和可靠的电网运行.文章提出了一种基于变分模态分解(Variational Mode Decomposition, VMD)、双向长短期记忆网络(Bidirectional Long Short-term Memory Network, BiLSTM)以及鲸鱼优化算法(Whale Optimization Algorithm, WOA)的混合深度学习模型,以用于短期风电功率预测.首先,VMD将原始风电功率分解为多个子模态,有效减少了序列的波动性;然后对每个子模态分别建立BiLSTM模型,使用WOA对BiLSTM中的参数进行优化,以提高混合模型的效率和预测性能;最后将各个子模型的结果叠加得到最终预测结果.在实验中通过建立不同的比较模型来说明改进策略的有效性和优越性,结果表明所提的混合模型在风电功率预测中具有较高的预测精度. 展开更多
关键词 风电功率 变分模态分解 双向长短期记忆网络 鲸鱼优化 长短期记忆网络
下载PDF
Prophet-LSTM组合模型在运输航空征候预测中的应用 被引量:1
19
作者 杜红兵 邢梦柯 赵德超 《安全与环境学报》 CAS CSCD 北大核心 2024年第5期1878-1885,共8页
为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分... 为准确预测中国运输航空征候万时率,提出了一种将时间序列模型和神经网络模型组合的预测方法。首先,利用2008年1月—2020年12月的运输航空征候万时率数据建立Prophet模型,使用RStudio软件进行模型拟合,获取运输航空征候万时率的线性部分;其次,利用长短期记忆网络(Long Short-Term Memory,LSTM)建模,获取运输航空征候万时率的非线性部分;最后,利用方差倒数法建立Prophet-LSTM组合模型,使用建立的组合模型对2021年1—12月运输航空征候万时率进行预测,将预测结果与实际值进行对比验证。结果表明,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别为0.0973、16.1285%、0.1287。相较于已有的自回归移动平均(Auto Regression Integrated Moving Average,ARIMA)+反向传播神经网络(Back Propagation Neural Network,BPNN)组合模型和GM(1,1)+ARIMA+LSTM组合模型,Prophet-LSTM组合模型的EMA、EMAP、ERMS分别减小了0.0259、10.4874百分点、0.0143和0.0128、2.0599百分点、0.0086,验证了Prophet-LSTM组合模型的预测精度更高,性能更优良。 展开更多
关键词 安全社会工程 运输航空征候 Prophet模型 长短期记忆网络(lstm)模型 组合预测模型
下载PDF
基于GA-LSTM自适应卡尔曼滤波的路面不平度识别 被引量:1
20
作者 李韶华 李健玮 冯桂珍 《振动与冲击》 EI CSCD 北大核心 2024年第9期121-130,共10页
准确、快速地识别出车辆当前行驶的路面激励信息,是实现智能底盘控制进而保证车辆平顺性的关键。针对传统路面不平度识别算法准确率低、自适应性差等问题,提出了基于遗传算法(genetic algorithm,GA)优化长短期记忆神经网络(long short-t... 准确、快速地识别出车辆当前行驶的路面激励信息,是实现智能底盘控制进而保证车辆平顺性的关键。针对传统路面不平度识别算法准确率低、自适应性差等问题,提出了基于遗传算法(genetic algorithm,GA)优化长短期记忆神经网络(long short-term memory networks,LSTM)自适应卡尔曼滤波的路面不平度识别算法。基于2自由度车辆悬架模型,通过灰色关联法选择LSTM神经网络的特征输入变量,并采用GA优化LSTM神经网络的模型参数以准确识别路面等级,并据此实时更新卡尔曼滤波器算法中的噪声矩阵,实现了在复杂路况下对路面不平度的自适应识别。仿真和试验研究表明,所提出的基于GA-LSTM自适应卡尔曼滤波算法能够快速准确的识别路面不平度与路面等级,与传统卡尔曼滤波算法相比,相关系数、均方根误差和最大绝对误差分别提高3.11%、37.5%和51.2%,表明所提算法对复杂工况具有很好的自适应能力。 展开更多
关键词 路面不平度识别 自适应卡尔曼滤波器 GA-lstm 灰色关联法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部