The load spectrum is a crucial factor for assess-ing the fatigue reliability of in-service rolling element bear-ings in transmission systems.For a bearing in a high-speed train gearbox,a measurement technique based on...The load spectrum is a crucial factor for assess-ing the fatigue reliability of in-service rolling element bear-ings in transmission systems.For a bearing in a high-speed train gearbox,a measurement technique based on strain detection of bearing outer ring was used to instrument the bearing and determine the time histories of the distributed load in the bearing under different gear meshing conditions.Accordingly,the load spectrum of the total radial load car-ried by the bearing was compiled.The mean value and class interval of the obtained load spectrum were found to vary non-monotonously with the speed and torque of gear mesh-ing,which was considered to be caused by the vibration of the shaft and the bearing cage.As the realistic service load input of bearing life assessment,the measured load spectrum under different gear meshing conditions can be used to pre-dict gearbox bearing life realistically based on the damage-equivalent principle and actual operating conditions.展开更多
A full automatic tetrahedronal mesh generation method for arbitrary 3D domains is described. First, the classic Delaunay method is coupled with simplified advancing front technique (AFT) to obtain the boundary mesh. T...A full automatic tetrahedronal mesh generation method for arbitrary 3D domains is described. First, the classic Delaunay method is coupled with simplified advancing front technique (AFT) to obtain the boundary mesh. Then, advancing front high quality point placement is used to generate internal points with optimal positions and a Delaunay method is used to insert them efficiently. Finally, optimization procedures are used for mesh quality improvements. Several application examples are presented to demonstrate the robustness and efficiency of the proposed meshing scheme.展开更多
Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic m...Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic model was established using the lumped-mass method.Time-varying meshing stiffness was calculated by the energy method.The model consumes the backlash,bearing clearance,time-varying meshing stiffness,time-varying bearing stiffness,and time-varying friction coefficient.The time-varying bearing stiffness was calculated according to the Hertz contact theory.The load distribution among the gears was computed,and the time-varying friction coefficient was calculated according to elastohydrodynamic lubrication(EHL)theory.The dynamical equations were solved via numerical integration.The global bifurcation characteristics caused by the input speed,backlash,bearing clearance,and damping were analyzed.The system was in a chaotic state at natural frequencies or frequency multiplication.The system transitioned from a single-period state to a chaotic state with the increase of the backlash.The bearing clearance of the sun gear had little influence on the bifurcation characteristics.The amplitude was restrained in the chaotic state as the damping ratio increased.展开更多
Proper meshing of Hy-Vo silent chain and sprocket is important for realizing the transmission of the silent chain with more efficiency and less noise. Based on the study of the meshing theory of the Hy-Vo silent chain...Proper meshing of Hy-Vo silent chain and sprocket is important for realizing the transmission of the silent chain with more efficiency and less noise. Based on the study of the meshing theory of the Hy-Vo silent chain with the sprocket and the roll cutting machining principle of the sprocket with the hob, the proper conditions of the meshing for the Hy-Vo silent chain and the sprocket are put forward with the variable pitch characteristic of the Hy-Vo silent chain taken into consideration, and the proper meshing design method on the condition that the value of the link tooth pressure angle is unequal to the value of the sprocket tooth pressure angle is studied. Experiments show that this new design method is feasible. In addition, the design of the pitch, the sprocket tooth pressure angle and the fillet radius of the sprocket addendum circle are studied. It is crucial for guiding the design of the hob which cuts the Hy-Vo silent chain sprocket.展开更多
In order to improve the mechanical properties of Al.Fe transition joints manufactured by explosive welding,meshing bonding interfaces were obtained by prefabricating dovetail grooves in base plates.The microstructure ...In order to improve the mechanical properties of Al.Fe transition joints manufactured by explosive welding,meshing bonding interfaces were obtained by prefabricating dovetail grooves in base plates.The microstructure and mechanical properties of the meshing interfaces were systematically investigated.The microstructure observation showed that metallurgical bonding without pores was created in the form of direct bonding and melting zone bonding at the interface.Fractography on tensile specimens showed cleavage fracture on the steel side and ductile fracture on the aluminum side near the interfaces.The tensile shear test results indicated that the shear strength of the meshing interface 0°and 90°was increased by 11%and 14%,respectively,when being compared to that of the ordinary Al.Fe transition joints.The values of microhardness decreased as the distance from the interface increased.After three-point bending,cracks were observed at the bonding interface for some specimens due to the existence of brittle Fe.Al compounds.展开更多
This paper presents an analysis result of three-dimensional meshing of crown gear coupling (CGC) surfaces of crown gear and internal gear are established. The equation of internal gear surface is given. The equation...This paper presents an analysis result of three-dimensional meshing of crown gear coupling (CGC) surfaces of crown gear and internal gear are established. The equation of internal gear surface is given. The equation of conjugate surface of crown gear is solved according to the principle of gearing, and that of non-conjugate crown gear is derived with crown curve of a circular arc. The meshing state of conjugate and non-conjugate surfaces is analyzed through computation of contact lines and points. It is concluded that the meshing of conjugate CGC is line-contact, there are several pairs of teeth engage simultaneously, and non-conjugate CGC has point-contact condition of meshing and only 2 pairs of teeth engage in theory.展开更多
The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E...The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E, this system is modeled and simulated,which is compared with the above-established equations.展开更多
Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitation...Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitations. This study proposes a 5 degree-of-freedom torsional vibration model for the planetary gear system. The influence of some parameters(e.g., contact ratio and phase difference) is discussed under different conditions of a single teeth pair and double pairs of teeth. The impact load caused by the teeth face fault, ramped load induced by the complex wind conditions, and the harmonic excitation are investigated. The analysis of the time-varying meshing stiffness and the dynamic meshing force shows that the dynamic design under different loads can be made to avoid resonance, can provide the basis for the gear fault location of a wind turbine, and distinguish the fault characteristics from the vibration signals.展开更多
Simulation of the microstructure evolution during solidifi cation is greatly benefi cial to the control of solidifi cation microstructures. A phase-fi eld method based on the full threaded tree(FTT) for the simulation...Simulation of the microstructure evolution during solidifi cation is greatly benefi cial to the control of solidifi cation microstructures. A phase-fi eld method based on the full threaded tree(FTT) for the simulation of casting solidifi cation microstructure was proposed in this paper, and the structure of the full threaded tree and the mesh refi nement method was discussed. During dendritic growth in solidifi cation, the mesh for simulation is adaptively refi ned at the liquid-solid interface, and coarsened in other areas. The numerical results of a threedimension dendrite growth indicate that the phase-fi eld method based on FTT is suitable for microstructure simulation. Most importantly, the FTT method can increase the spatial and temporal resolutions beyond the limits imposed by the available hardware compared with the conventional uniform mesh. At the simulation time of 0.03 s in this study, the computer memory used for computation is no more than 10 MB with the FTT method, while it is about 50 MB with the uniform mesh method. In addition, the proposed FTT method is more effi cient in computation time when compared with the uniform mesh method. It would take about 20 h for the uniform mesh method, while only 2 h for the FTT method for computation when the solidifi cation time is 0.17 s in this study.展开更多
The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-var...The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.展开更多
Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A th...Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A three-step-meshing method for the multiple cracks identification in structures is presented. Firstly, the changes in natural frequency of a structure with various crack locations and depth are accurately obtained by means of wavelet finite element method, and then the damage coefficient method is used to determine the number and the region of cracks. Secondly, different regions in the cracked structure are divided into meshes with different scales, and then the small unit containing cracks in the damaged area is gradually located by iterative computation. Lastly, by finding the points of intersection of three frequency contour lines in the small unit, the crack location and depth are identified. In order to verify the effectiveness of the presented method, a multiple cracks identification experiment is carried out. The diagnostic tests on a cantilever beam under two working conditions show the accuracy of the proposed method: with a maximum error of crack location identification 2.7% and of depth identification 5.2%. The method is able to detect multiple crack of beam with less subdivision and higher precision, and can be developed as a multiple crack detection approach for complicated structures.展开更多
Based on the study of the meshing theory of a new silent chain and sprockets, and the rolling cutting theory of sprocket and hob, the harmonious relations of dominating dimensions among the new silent chain, sprocket ...Based on the study of the meshing theory of a new silent chain and sprockets, and the rolling cutting theory of sprocket and hob, the harmonious relations of dominating dimensions among the new silent chain, sprocket and hob is build, the meshing conditions are expatiated, and the resolved expression, which can instruct design and calculation, is educed. The tests show that the meshing design method is feasible.展开更多
Presents the meshing analysis based on the Computer Algebra System to make it easier to deduce complex formulas while the expression of more complicated surface equations are visualized, by which, the contact line, me...Presents the meshing analysis based on the Computer Algebra System to make it easier to deduce complex formulas while the expression of more complicated surface equations are visualized, by which, the contact line, meshing bordlines and undercut bordlines of toroidal drive are deduced, and the results obtained are consistent with the results discussed in literature [1] , and concludes that the absolute value of the induced normal curvature is usually smaller (less than 0.12, for example), and it increases as parameters φ 2, V and R increase, decreases as parameter r increases, and hardly varies with W 2, and the variation with a, i 21 is not definite.展开更多
A method to solve the elastic conjugate surfaces in multi-teeth meshing ispresented. In mechanical manufacturing and design, there exist a lot of problems relating toconjugate surfaces, such as three-dimensional engag...A method to solve the elastic conjugate surfaces in multi-teeth meshing ispresented. In mechanical manufacturing and design, there exist a lot of problems relating toconjugate surfaces, such as three-dimensional engagement, steel rolling and workpiece machining,which cause great effects on the quality of machining and performances of transmission. This methoddescribes relation between conjugate motion and elastic deformation in the process of mesh-in andmesh-out, and can be used to determine the profile of gear tooth by a certain given load sharing.展开更多
Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze ...Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China.展开更多
An active design method of tooth profiles for cycloid gears based on their meshing efficiency is proposed.This method takes the meshing efficiency as one of the design variables to determine the tooth profiles.The cal...An active design method of tooth profiles for cycloid gears based on their meshing efficiency is proposed.This method takes the meshing efficiency as one of the design variables to determine the tooth profiles.The calculation method for the meshing efficiency of planetary transmission is analyzed and the equation of the meshing efficiency is deduced.Relationships between the meshing efficiency,the radius of the pin wheel and the eccentric distance are revealed.The design constraint quations and the strength constraint quations are deduced.On the basis of this,a design procedure is laid out.Some examples using different input parameters are conducted to demonstrate the feasibility of the approach.A dynamic simulation of the rigid flexible coupling of cycloid gears is also presented.The results show that the proposed design method is more flexible to control the tooth profiles by changing the input values of the transmission efficiency.展开更多
Playing a critical role in transmitting movement and power, the meshing performance of spiral bevel gears has a significant effect on products' operational performance. To evaluate the meshing performance, the acc...Playing a critical role in transmitting movement and power, the meshing performance of spiral bevel gears has a significant effect on products' operational performance. To evaluate the meshing performance, the accurate three-dimensional(3D) spiral bevel gear models are established through the Pro/E and MATLAB softwares, and the finite element analysis(FEA) methods are applied to the theoretical investigation of the influence of cutter diameter on meshing performance in spiral bevel gears. The results obtained show that the cutter diameter has a significant influence on spiral bevel gears' meshing performance, such as the contact area, contact pressure, bending stress, torsional stiffness and transmission error.展开更多
According to the relationship between the meshing stiffness and the inherent characteristics of a seven-speed three-row coupled planetary transmission mechanism,a equivalent concentrated mass dynamics model of the pla...According to the relationship between the meshing stiffness and the inherent characteristics of a seven-speed three-row coupled planetary transmission mechanism,a equivalent concentrated mass dynamics model of the planetary transmission mechanism is established.The natural frequency of the planetary gear train at a specific gear is calculated and extracted.The relationship between the meshing stiffness of each row and the natural frequency of the system is analyzed,thereby avoiding possible resonance behavior by changing the meshing stiffness.These results show that the meshing stiffness,in its range of possible values,has nearly no effect on the low order natural frequency(<4.000.Hz),and that the time-varying meshing stiffness mainly affects the natural frequencies of the higher-and middle-order parts of the system.Changes of the natural frequencies lead to the change of the system's corresponding vibration mode,which will change the vibration situation of the system.展开更多
An efficient finite element model of involute helical gear is presented. A program based on compliance matrix method is developed for the calculation of instantaneous meshing stiffness, and the relationship between th...An efficient finite element model of involute helical gear is presented. A program based on compliance matrix method is developed for the calculation of instantaneous meshing stiffness, and the relationship between the rate of meshing stiffness and overlap ratio is given. On the basis of stiffness calculation, an optimization program for the optimal design of profile modification is developed according to the principle of internal point punishment function method.展开更多
基金This research was supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1834202).
文摘The load spectrum is a crucial factor for assess-ing the fatigue reliability of in-service rolling element bear-ings in transmission systems.For a bearing in a high-speed train gearbox,a measurement technique based on strain detection of bearing outer ring was used to instrument the bearing and determine the time histories of the distributed load in the bearing under different gear meshing conditions.Accordingly,the load spectrum of the total radial load car-ried by the bearing was compiled.The mean value and class interval of the obtained load spectrum were found to vary non-monotonously with the speed and torque of gear mesh-ing,which was considered to be caused by the vibration of the shaft and the bearing cage.As the realistic service load input of bearing life assessment,the measured load spectrum under different gear meshing conditions can be used to pre-dict gearbox bearing life realistically based on the damage-equivalent principle and actual operating conditions.
文摘A full automatic tetrahedronal mesh generation method for arbitrary 3D domains is described. First, the classic Delaunay method is coupled with simplified advancing front technique (AFT) to obtain the boundary mesh. Then, advancing front high quality point placement is used to generate internal points with optimal positions and a Delaunay method is used to insert them efficiently. Finally, optimization procedures are used for mesh quality improvements. Several application examples are presented to demonstrate the robustness and efficiency of the proposed meshing scheme.
基金supported by the National Natural Science Foundation of China(No. 51975274)National Key Laboratory of Science and Technology on Helicopter Transmission(Nanjing University of Aeronautics and Astronautics)(No. HTL-A-19K03)
文摘Nonlinear dynamic analysis was performed on a planetary gear transmission system with meshing beyond the pitch point.The parameters of the planetary gear system were optimized,and a two-dimensional nonlinear dynamic model was established using the lumped-mass method.Time-varying meshing stiffness was calculated by the energy method.The model consumes the backlash,bearing clearance,time-varying meshing stiffness,time-varying bearing stiffness,and time-varying friction coefficient.The time-varying bearing stiffness was calculated according to the Hertz contact theory.The load distribution among the gears was computed,and the time-varying friction coefficient was calculated according to elastohydrodynamic lubrication(EHL)theory.The dynamical equations were solved via numerical integration.The global bifurcation characteristics caused by the input speed,backlash,bearing clearance,and damping were analyzed.The system was in a chaotic state at natural frequencies or frequency multiplication.The system transitioned from a single-period state to a chaotic state with the increase of the backlash.The bearing clearance of the sun gear had little influence on the bifurcation characteristics.The amplitude was restrained in the chaotic state as the damping ratio increased.
基金This project is supported by National Natural Science Foundation of China(No.50575089).
文摘Proper meshing of Hy-Vo silent chain and sprocket is important for realizing the transmission of the silent chain with more efficiency and less noise. Based on the study of the meshing theory of the Hy-Vo silent chain with the sprocket and the roll cutting machining principle of the sprocket with the hob, the proper conditions of the meshing for the Hy-Vo silent chain and the sprocket are put forward with the variable pitch characteristic of the Hy-Vo silent chain taken into consideration, and the proper meshing design method on the condition that the value of the link tooth pressure angle is unequal to the value of the sprocket tooth pressure angle is studied. Experiments show that this new design method is feasible. In addition, the design of the pitch, the sprocket tooth pressure angle and the fillet radius of the sprocket addendum circle are studied. It is crucial for guiding the design of the hob which cuts the Hy-Vo silent chain sprocket.
基金Projects(51674229,51374189)supported by the National Natural Science Foundation of ChinaProject(WK2480000002)supported byFundamental Research Funds for Central Universities,China
文摘In order to improve the mechanical properties of Al.Fe transition joints manufactured by explosive welding,meshing bonding interfaces were obtained by prefabricating dovetail grooves in base plates.The microstructure and mechanical properties of the meshing interfaces were systematically investigated.The microstructure observation showed that metallurgical bonding without pores was created in the form of direct bonding and melting zone bonding at the interface.Fractography on tensile specimens showed cleavage fracture on the steel side and ductile fracture on the aluminum side near the interfaces.The tensile shear test results indicated that the shear strength of the meshing interface 0°and 90°was increased by 11%and 14%,respectively,when being compared to that of the ordinary Al.Fe transition joints.The values of microhardness decreased as the distance from the interface increased.After three-point bending,cracks were observed at the bonding interface for some specimens due to the existence of brittle Fe.Al compounds.
文摘This paper presents an analysis result of three-dimensional meshing of crown gear coupling (CGC) surfaces of crown gear and internal gear are established. The equation of internal gear surface is given. The equation of conjugate surface of crown gear is solved according to the principle of gearing, and that of non-conjugate crown gear is derived with crown curve of a circular arc. The meshing state of conjugate and non-conjugate surfaces is analyzed through computation of contact lines and points. It is concluded that the meshing of conjugate CGC is line-contact, there are several pairs of teeth engage simultaneously, and non-conjugate CGC has point-contact condition of meshing and only 2 pairs of teeth engage in theory.
文摘The structure of cylindrical tri-sine oscillating tooth gear drive is presented. Based on the space meshing theory, equations of meshing and tooth profile are established and its meshing theory is studied. Using Pro/E, this system is modeled and simulated,which is compared with the above-established equations.
基金financially supported by the project‘Research on Key Technologies of Condition Monitoring and Intelligent Early Detection of Wind Turbine Based on Big Data’from State Grid Corporation of China(No.NYB17201600300)
文摘Wind power has attracted increasing attention as a renewable and clean energy. Gear fault frequently occurs under extreme environment and complex loads. The time-varying meshing stiffness is one of the main excitations. This study proposes a 5 degree-of-freedom torsional vibration model for the planetary gear system. The influence of some parameters(e.g., contact ratio and phase difference) is discussed under different conditions of a single teeth pair and double pairs of teeth. The impact load caused by the teeth face fault, ramped load induced by the complex wind conditions, and the harmonic excitation are investigated. The analysis of the time-varying meshing stiffness and the dynamic meshing force shows that the dynamic design under different loads can be made to avoid resonance, can provide the basis for the gear fault location of a wind turbine, and distinguish the fault characteristics from the vibration signals.
基金financially supported by Program for New Century Excellent Talents in University(No.NCET-090396)the Foundation for Innovative Research Groups of the Natural Science Foundation of Hubei Province,China(2010CDA067)State Major Science and Technology Special Project Foundation for High-end Numerical Machine and Basic Manufacturing Equipment(2011ZX04014-052,2012ZX04012-011)
文摘Simulation of the microstructure evolution during solidifi cation is greatly benefi cial to the control of solidifi cation microstructures. A phase-fi eld method based on the full threaded tree(FTT) for the simulation of casting solidifi cation microstructure was proposed in this paper, and the structure of the full threaded tree and the mesh refi nement method was discussed. During dendritic growth in solidifi cation, the mesh for simulation is adaptively refi ned at the liquid-solid interface, and coarsened in other areas. The numerical results of a threedimension dendrite growth indicate that the phase-fi eld method based on FTT is suitable for microstructure simulation. Most importantly, the FTT method can increase the spatial and temporal resolutions beyond the limits imposed by the available hardware compared with the conventional uniform mesh. At the simulation time of 0.03 s in this study, the computer memory used for computation is no more than 10 MB with the FTT method, while it is about 50 MB with the uniform mesh method. In addition, the proposed FTT method is more effi cient in computation time when compared with the uniform mesh method. It would take about 20 h for the uniform mesh method, while only 2 h for the FTT method for computation when the solidifi cation time is 0.17 s in this study.
基金Projects(51575289,51705270)supported by the National Natural Science Foundation of China。
文摘The thermal elasto-hydrodynamic lubrication characteristics of the internal meshing gears in a planetary gear train under vibrations were examined considering the influence of the modification coefficient and time-varying meshing stiffness.Based on dynamic theory of the gear system,a dynamic model of the planetary gear train was established.The lubrication performances of modified gear systems under vibrations and static loads were analyzed.Compared with other transmission types,the best lubrication effect could be produced by the positive transmission.A thicker lubricating oil film could be formed,and the friction coefficient and oil film flash temperature are the smallest.Increasing modification coefficient improves the lubrication performance continuously but intensifies the engage-in and tooth-change impact.For the planetary and inner gears,the increase in the modification coefficient also leads a decrease in the oil film stiffness.
基金supported by National Natural Science Foundation of China(Grant Nos. 11176024, 51035007)National Basic Research Program of China(973 Program, Grant No. 2011CB706805)Open Research Fund Program of Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, China
文摘Multiple crack identification plays an important role in vibration-based crack identification of structures. Traditional crack detection method of single crack is difficult to be used in multiple crack diagnosis. A three-step-meshing method for the multiple cracks identification in structures is presented. Firstly, the changes in natural frequency of a structure with various crack locations and depth are accurately obtained by means of wavelet finite element method, and then the damage coefficient method is used to determine the number and the region of cracks. Secondly, different regions in the cracked structure are divided into meshes with different scales, and then the small unit containing cracks in the damaged area is gradually located by iterative computation. Lastly, by finding the points of intersection of three frequency contour lines in the small unit, the crack location and depth are identified. In order to verify the effectiveness of the presented method, a multiple cracks identification experiment is carried out. The diagnostic tests on a cantilever beam under two working conditions show the accuracy of the proposed method: with a maximum error of crack location identification 2.7% and of depth identification 5.2%. The method is able to detect multiple crack of beam with less subdivision and higher precision, and can be developed as a multiple crack detection approach for complicated structures.
基金This project is supported by National Natural Science Foundation of China (No.50275062)National Machine Industry Technique Development Foundation of China(No.99JA0002).
文摘Based on the study of the meshing theory of a new silent chain and sprockets, and the rolling cutting theory of sprocket and hob, the harmonious relations of dominating dimensions among the new silent chain, sprocket and hob is build, the meshing conditions are expatiated, and the resolved expression, which can instruct design and calculation, is educed. The tests show that the meshing design method is feasible.
文摘Presents the meshing analysis based on the Computer Algebra System to make it easier to deduce complex formulas while the expression of more complicated surface equations are visualized, by which, the contact line, meshing bordlines and undercut bordlines of toroidal drive are deduced, and the results obtained are consistent with the results discussed in literature [1] , and concludes that the absolute value of the induced normal curvature is usually smaller (less than 0.12, for example), and it increases as parameters φ 2, V and R increase, decreases as parameter r increases, and hardly varies with W 2, and the variation with a, i 21 is not definite.
基金This project is supported by National Key Project of China (No. PD9521903) , National Natural Science Foundation of China (No. 50075031) and National Key Laboratory of Mechanical Transmission of China.
文摘A method to solve the elastic conjugate surfaces in multi-teeth meshing ispresented. In mechanical manufacturing and design, there exist a lot of problems relating toconjugate surfaces, such as three-dimensional engagement, steel rolling and workpiece machining,which cause great effects on the quality of machining and performances of transmission. This methoddescribes relation between conjugate motion and elastic deformation in the process of mesh-in andmesh-out, and can be used to determine the profile of gear tooth by a certain given load sharing.
基金supported by the National Natural Science Foundation of China(Grant Nos.11602235 and 41772326)the Fundamental Research Funds for the Central Universities of China(Grant No.2652018091)。
文摘Surface subsidence induced by underground mining is a typical serious geohazard.Numerical approaches such as the discrete element method(DEM)and finite difference method(FDM)have been widely used to model and analyze mining-induced surface subsidence.However,the DEM is typically computationally expensive,and is not capable of analyzing large-scale problems,while the mesh distortion may occur in the FDM modeling of largely deformed surface subsidence.To address the above problems,this paper presents a geometrically and locally adaptive remeshing method for the FDM modeling of largely deformed surface subsidence induced by underground mining.The essential ideas behind the proposed method are as follows:(i)Geometrical features of elements(i.e.the mesh quality),rather than the calculation errors,are employed as the indicator for determining whether to conduct the remeshing;and(ii)Distorted meshes with multiple attributes,rather than those with only a single attribute,are locally regenerated.In the proposed method,the distorted meshes are first adaptively determined based on the mesh quality,and then removed from the original mesh model.The tetrahedral mesh in the distorted area is first regenerated,and then the physical field variables of old mesh are transferred to the new mesh.The numerical calculation process recovers when finishing the regeneration and transformation.To verify the effectiveness of the proposed method,the surface deformation of the Yanqianshan iron mine,Liaoning Province,China,is numerically investigated by utilizing the proposed method,and compared with the numerical results of the DEM modeling.Moreover,the proposed method is applied to predicting the surface subsidence in Anjialing No.1 Underground Mine,Shanxi Province,China.
基金supported by the National Natural Science Foundation of China (Nos.51205335, 51375411)the Scientific Research for the High Level Talent of Nanjing Institute of Technology (No.YKJ201702)
文摘An active design method of tooth profiles for cycloid gears based on their meshing efficiency is proposed.This method takes the meshing efficiency as one of the design variables to determine the tooth profiles.The calculation method for the meshing efficiency of planetary transmission is analyzed and the equation of the meshing efficiency is deduced.Relationships between the meshing efficiency,the radius of the pin wheel and the eccentric distance are revealed.The design constraint quations and the strength constraint quations are deduced.On the basis of this,a design procedure is laid out.Some examples using different input parameters are conducted to demonstrate the feasibility of the approach.A dynamic simulation of the rigid flexible coupling of cycloid gears is also presented.The results show that the proposed design method is more flexible to control the tooth profiles by changing the input values of the transmission efficiency.
基金Project(51575416) supported by the National Natural Science Foundation of ChinaProject(IRT13087) supported by Innovative Research Team Development Program of Ministry of Education of China+1 种基金Project(2014CFB876) supported by the Natural Science Foundation of Hubei Province,ChinaProject(2012-86) supported by High-end Talent Leading Program of Hubei Province,China
文摘Playing a critical role in transmitting movement and power, the meshing performance of spiral bevel gears has a significant effect on products' operational performance. To evaluate the meshing performance, the accurate three-dimensional(3D) spiral bevel gear models are established through the Pro/E and MATLAB softwares, and the finite element analysis(FEA) methods are applied to the theoretical investigation of the influence of cutter diameter on meshing performance in spiral bevel gears. The results obtained show that the cutter diameter has a significant influence on spiral bevel gears' meshing performance, such as the contact area, contact pressure, bending stress, torsional stiffness and transmission error.
基金National Natural Science Foundation of China(51375043)。
文摘According to the relationship between the meshing stiffness and the inherent characteristics of a seven-speed three-row coupled planetary transmission mechanism,a equivalent concentrated mass dynamics model of the planetary transmission mechanism is established.The natural frequency of the planetary gear train at a specific gear is calculated and extracted.The relationship between the meshing stiffness of each row and the natural frequency of the system is analyzed,thereby avoiding possible resonance behavior by changing the meshing stiffness.These results show that the meshing stiffness,in its range of possible values,has nearly no effect on the low order natural frequency(<4.000.Hz),and that the time-varying meshing stiffness mainly affects the natural frequencies of the higher-and middle-order parts of the system.Changes of the natural frequencies lead to the change of the system's corresponding vibration mode,which will change the vibration situation of the system.
文摘An efficient finite element model of involute helical gear is presented. A program based on compliance matrix method is developed for the calculation of instantaneous meshing stiffness, and the relationship between the rate of meshing stiffness and overlap ratio is given. On the basis of stiffness calculation, an optimization program for the optimal design of profile modification is developed according to the principle of internal point punishment function method.