期刊文献+
共找到307,346篇文章
< 1 2 250 >
每页显示 20 50 100
Three-dimensional porous bimetallic metal–organic framework/gelatin aerogels: A readily recyclable peroxymonosulfate activator for efficient and continuous organic dye removal
1
作者 Wenlong Xiang Xian Zhang +1 位作者 Rou Xiao Yanhui Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第7期193-202,共10页
As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemmin... As promising catalysts for the degradation of organic pollutants,metal–organic frameworks(MOFs)often face limitations due to the particle agglomeration and challenging recovery in liquid-catalysis application,stemming from their powdery nature.Engineering macroscopic structures from pulverous MOF is thus of great importance for broadening their practical applications.In this study,three-dimensional porous MOF aerogel catalysts were successfully fabricated for degrading organic dyes by activating peroxymonosulfate(PMS).MOF/gelatin aerogel(MOF/GA)catalysts were prepared by directly integrating bimetallic FeCo-BDC with gelatin solutions,followed by freeze-drying and low-temperature calcination.The FeCo-BDC-0.15/GA/PMS system exhibited remarkable performance in degrading various organic dyes,eliminating 99.2%of rhodamine B within a mere 5 min.Compared to the GA/PMS system,there was over a 300-fold increase in the reaction rate constant.Remarkably,high removal efficiency was maintained across varying conditions,including different solution pH,co-existing inorganic anions,and natural water matrices.Radical trapping experiments and electron paramagnetic resonance analysis revealed that the degradation involved radical(SO_(4)^(-)·)and non-radical routes(^(1)O_(2)),of which ^(1)O_(2) was dominant.Furthermore,even after a continuous 400-min reaction in a fixed-bed reactor at a liquid hourly space velocity of 27 h^(-1),the FeCo-BDC/GA composite sustained a degradation efficiency exceeding 98.7%.This work presents highly active MOF-gelatin aerogels for dye degradation and expands the potential for their large-scale,continuous treatment application in organic dye wastewater management. 展开更多
关键词 Catalyst Environment Wastewater metal–organic framework Gelatin aerogel PEROXYMONOSULFATE
下载PDF
Metal–Organic Framework‑Derived Hierarchical Cu_(9)S_(5)/C Nanocomposite Fibers for Enhanced Electromagnetic Wave Absorption
2
作者 Simeng Wu Chengjuan Wang +6 位作者 Yunxiang Tang Jiangyiming Jiang Haotian Jiang Xiaodan Xu Bowen Cui Yanyan Jiang Yanxiang Wang 《Advanced Fiber Materials》 SCIE EI CAS 2024年第2期430-443,共14页
Refining the electromagnetic wave absorption characteristics of traditional metal–organic framework(MOF)-derived carbon composites remains a challenge because of their discontinuous conductive path.To overcome this l... Refining the electromagnetic wave absorption characteristics of traditional metal–organic framework(MOF)-derived carbon composites remains a challenge because of their discontinuous conductive path.To overcome this limitation,in this work,MOF-derived hierarchical Cu_(9)S_(5)/C nanocomposite fibers are fabricated by electrospinning and subsequent carbonization-sulfurization process.Morphological analyses show that MOF-derived octahedral Cu_(9)S_(5)/C particles are evenly monodis-persed inside carbonaceous fibers.This configuration creates a unique hierarchical structure,ranging from Cu_(9)S_(5)particle embedding,MOF-derived skeleton,to a three-dimensional network.The optimized composite fibers(Cu_(9)S_(5)/C-40)exhibit extraordinary electromagnetic wave absorption performance at a low mass fraction(20 wt%):the minimum reflection loss value reaches-69.6 dB,and the maximum effective absorption bandwidth achieves 5.81 GHz with an extremely thin thick-ness of only 1.83 mm.Systematic investigations demonstrate that constructing the three-dimensional conductive network to connect MOF derivatives is crucial for activating performance enhancement.The unique nano-micro hierarchical structure synergized with elaborate-configured components endows the materials with optimal impedance matching and amplifies the loss capacity of each part.This work provides a reliable example and theoretical guidance for fabricating new-generation high-efficiency MOF-derived fibrous electromagnetic wave absorbers. 展开更多
关键词 Electromagnetic wave absorption metal–organic frameworks ELECTROSPINNING Cu_(9)S_(5) Structure-induced effect
原文传递
Positional functionalizations of metal–organic frameworks through invasive ligand exchange and additory MOF-on-MOF strategies:A review
3
作者 Daeyeon Lee Sangho Lee +1 位作者 Isaac Choi Min Kim 《Smart Molecules》 2024年第2期63-84,共22页
Metal–organic frameworks(MOFs)represent a unique class of porous materialswith tremendous potential for diverse applications.A key factor contributing totheir versatility is their ability to precisely introduce funct... Metal–organic frameworks(MOFs)represent a unique class of porous materialswith tremendous potential for diverse applications.A key factor contributing totheir versatility is their ability to precisely introduce functional groups at specificpositions within pores and crystals.This review explores two prominent strategiesfor achieving the positional functionalization of MOFs:post-synthetic ligand exchange(PSE)and MOF-on-MOF.In PSE,the existing ligands within solid-stateMOFs can be selectively replaced by the desired functional groups in solutionthrough ligand dynamics.This invasive functionalization provides a flexibleapproach to fine-tuning the surface of the MOFs with the target functionality.Conversely,MOF-on-MOF strategies are additive methodologies involving thecontrolled growth of one MOF layer onto another.The functionality of the core andshell(or surface)can be independently controlled.This review critically examinesthe examples,strengths,limitations,and applications of these strategies,emphasizingtheir significance in advancing the field of MOF functionalization andpaving the way for tailored multifunctional materials with precise and specificproperties. 展开更多
关键词 metal–organic frameworks(MOFs) MOF-on-MOF multifunctional materials porous coordination polymers(PCPs) post-synthetic exchanges(PSEs)
下载PDF
Metal–Organic Framework-Based Sensors for Environmental Contaminant Sensing 被引量:24
4
作者 Xian Fang Boyang Zong Shun Mao 《Nano-Micro Letters》 SCIE EI CAS 2018年第4期92-110,共19页
Increasing demand for timely and accurate environmental pollution monitoring and control requires new sensing techniques with outstanding performance, i.e.,high sensitivity, high selectivity, and reliability. Metal–o... Increasing demand for timely and accurate environmental pollution monitoring and control requires new sensing techniques with outstanding performance, i.e.,high sensitivity, high selectivity, and reliability. Metal–organic frameworks(MOFs), also known as porous coordination polymers, are a fascinating class of highly ordered crystalline coordination polymers formed by the coordination of metal ions/clusters and organic bridging linkers/ligands. Owing to their unique structures and properties,i.e., high surface area, tailorable pore size, high density of active sites, and high catalytic activity, various MOF-based sensing platforms have been reported for environmental contaminant detection including anions, heavy metal ions,organic compounds, and gases. In this review, recent progress in MOF-based environmental sensors is introduced with a focus on optical, electrochemical, and field-effect transistor sensors. The sensors have shown unique and promising performance in water and gas contaminant sensing. Moreover, by incorporation with other functional materials, MOF-based composites can greatly improve the sensor performance. The current limitations and future directions of MOF-based sensors are also discussed. 展开更多
关键词 metal–organic frameworks Environmental contaminant Optical sensor Electrochemical sensor Field-effect transistor sensor Micro- and nanostructure
下载PDF
Recent Progress on Engineering Highly Efficient Porous Semiconductor Photocatalysts Derived from Metal–Organic Frameworks 被引量:14
5
作者 Wenwen Zhan Liming Sun Xiguang Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第1期5-32,共28页
Porous structures o er highly accessible surfaces and rich pores, which facilitate the exposure of numerous active sites for photocatalytic reactions, leading to excellent performances. Recently, metal–organic framew... Porous structures o er highly accessible surfaces and rich pores, which facilitate the exposure of numerous active sites for photocatalytic reactions, leading to excellent performances. Recently, metal–organic frameworks(MOFs) have been considered ideal precursors for well-designed semiconductors with porous structures and/or heterostructures, which have shown enhanced photocatalytic activities. In this review, we summarize the recent development of porous structures, such as metal oxides and metal sulfides, and their heterostructures, derived from MOF-based materials as catalysts for various light-driven energy-/environment-related reactions, including water splitting, CO_2 reduction, organic redox reaction, and pollution degradation. A summary and outlook section is also included. 展开更多
关键词 metal–organic frameworks DERIVATIVES POROUS structure PHOTOCATALYSIS
下载PDF
Applications of metal–organic frameworks for green energy and environment: New advances in adsorptive gas separation, storage and removal 被引量:21
6
作者 Bin Wang Lin-Hua Xie +3 位作者 Xiaoqing Wang Xiao-Min Liu Jinping Li Jian-Rong Li 《Green Energy & Environment》 SCIE 2018年第3期191-228,共38页
The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH... The separation of gas molecules with similar physicochemical properties is of high importance but practically entails a substantial energy penalty in chemical industry. Meanwhile, clean energy gases such as H_2 and CH_4 are considered as promising candidates for the replacement of traditional fossil fuels. However, the technologies for the storage of these gases are still immature. In addition, the release of anthropogenic toxic gases into the atmosphere is a worldwide threat of growing concern. Both in academia and industry, considerable research efforts have been devoted to developing advanced porous materials for the effective and energy-efficient separation, storage, or capture of the related gases. In contrast to conventional inorganic porous materials such as zeolites and activated carbons, metal–organic frameworks(MOFs) are considered as a type of promising materials for gas separation and storage. In this contribution, we review the recent research advance of MOFs in some relevant applications, including CO_2 capture, O_2 purification, separation of light hydrocarbons, separation of noble gases, storage of gases(CH_4,H_2, and C_2 H_2) for energy, and removal of some gaseous air pollutants(NH_3, NO_2, and SO_2). Finally, an outlook regarding the challenges of the future research of MOFs in these directions is given. 展开更多
关键词 metal–organic frameworks Gas separation and storage Light hydrocarbon Harmful gas Air purification
下载PDF
Reversed ethane/ethylene adsorption in a metal–organic framework via introduction of oxygen 被引量:6
7
作者 Ling Yang Wei Zhou +6 位作者 Hao Li Ali Alsalme Litao Jia Jiangfeng Yang Jinping Li Libo Li Banglin Chen 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第2期593-597,共5页
Separation of ethane from ethylene is a very important but challenging process in the petrochemical industry.Finding an alternative method would reduce the energy needed to make 170 million tons of ethylene manufactur... Separation of ethane from ethylene is a very important but challenging process in the petrochemical industry.Finding an alternative method would reduce the energy needed to make 170 million tons of ethylene manufactured worldwide each year.Adsorptive separation using C2H6-selective porous materials to directly produce high-purity C2H4 is more energy-efficient.We herein report the"reversed C2H6/C2H4 adsorption"in a metal–organic framework Cr-BTC via the introduction of oxygen on its open metal sites.The oxidized Cr-BTC(O2)can bind C2H6 over C2H4 through the active Cr-superoxo sites,which was elucidated by the gas sorption isotherms and density functional theory calculations.This material thus exhibits a good performance for the separation of 50/50 C2H6/C2H4 mixtures to produce 99.99%pure C2H4 in a single separation operation. 展开更多
关键词 metal–organic frameworks ADSORPTIVE separation Open metal sites Reversed ethane/ethylene ADSORPTION Density-functional theory calculation BREAKTHROUGH curves
下载PDF
Recent Progress on Metal–Organic Framework and Its Derivatives as Novel Fire Retardants to Polymeric Materials 被引量:9
8
作者 Jing Zhang Zhi Li +1 位作者 Xiao‑Lin Qi De‑Yi Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期173-193,共21页
High flammability of polymers has become a major issue which has restricted its applications.Recently,highly crystalline materials and metal–organic frameworks(MOFs),which consisted of metal ions and organic linkers,... High flammability of polymers has become a major issue which has restricted its applications.Recently,highly crystalline materials and metal–organic frameworks(MOFs),which consisted of metal ions and organic linkers,have been intensively employed as novel fire retardants(FRs)for a variety of polymers(MOF/polymer).The MOFs possessed abundant transition metal species,fire-retardant elements and potential carbon source accompanied with the facile tuning of the structure and property,making MOF,its derivatives and MOF hybrids promising for fire retardancy research.The recent progress and strategies to prepare MOF-based FRs are emphasized and summarized.The fire retardancy mechanisms of MOF/polymer composites are explained,which may guide the future design for efficient MOF-based FRs.Finally,the challenges and prospects related to different MOFbased FRs are also discussed and aim to provide a fast and holistic overview,which is beneficial for researchers to quickly get up to speed with the latest development in this field. 展开更多
关键词 metal–organic frameworks HYBRIDS POLYMERS COMPOSITES Fire retardancy
下载PDF
Metal–Organic Framework-Assisted Synthesis of Compact Fe_2O_3 Nanotubes in Co_3O_4 Host with Enhanced Lithium Storage Properties 被引量:10
9
作者 Song Lin Zhang Bu Yuan Guan +1 位作者 Hao Bin Wu Xiong Wen David Lou 《Nano-Micro Letters》 SCIE EI CAS 2018年第3期70-78,共9页
Transition metal oxides are promising candidates for the high-capacity anode material in lithium-ion batteries.The electrochemical performance of transition metal oxides can be improved by constructing suitable compos... Transition metal oxides are promising candidates for the high-capacity anode material in lithium-ion batteries.The electrochemical performance of transition metal oxides can be improved by constructing suitable composite architectures. Herein, we demonstrate a metal–organic framework(MOF)-assisted strategy for the synthesis of a hierarchical hybrid nanostructure composed of Fe_2O_3 nanotubes assembled in Co_3O_4 host. Starting from MOF composite precursors(Fe-based MOF encapsulated in a Cobased host matrix), a complex structure of Co_3O_4 host and engulfed Fe_2O_3 nanotubes was prepared by a simple annealing treatment in air. By virtue of their structural and compositional features, these hierarchical composite particles reveal enhanced lithium storage properties when employed as anodes for lithium-ion batteries. 展开更多
关键词 metal–organic framework(MOF) Hierarchical structures Fe2O3 nanotubes CO3O4 Lithium-ion batteries(LIBs)
下载PDF
Tuning Atomically Dispersed Fe Sites in Metal–Organic Frameworks Boosts Peroxidase‑Like Activity for Sensitive Biosensing 被引量:7
10
作者 Weiqing Xu Yikun Kang +6 位作者 Lei Jiao Yu Wu Hongye Yan Jinli Li Wenling Gu Weiyu Song Chengzhou Zhu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第12期392-403,共12页
Although nanozymes have been widely developed,accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still ... Although nanozymes have been widely developed,accurate design of highly active sites at the atomic level to mimic the electronic and geometrical structure of enzymes and the exploration of underlying mechanisms still face significant challenges.Herein,two functional groups with opposite electron modulation abilities(nitro and amino)were introduced into the metal–organic frameworks(MIL-101(Fe))to tune the atomically dispersed metal sites and thus regulate the enzymelike activity.Notably,the functionalization of nitro can enhance the peroxidase(POD)-like activity of MIL-101(Fe),while the amino is poles apart.Theoretical calculations demonstrate that the introduction of nitro can not only regulate the geometry of adsorbed intermediates but also improve the electronic structure of metal active sites.Benefiting from both geometric and electronic effects,the nitro-functionalized MIL-101(Fe)with a low reaction energy barrier for the HO*formation exhibits a superior POD-like activity.As a concept of the application,a nitro-functionalized MIL-101(Fe)-based biosensor was elaborately applied for the sensitive detection of acetylcholinesterase activity in the range of 0.2–50 mU mL−1 with a limit of detection of 0.14 mU mL−1.Moreover,the detection of organophosphorus pesticides was also achieved.This work not only opens up new prospects for the rational design of highly active nanozymes at the atomic scale but also enhances the performance of nanozyme-based biosensors. 展开更多
关键词 Nanozymes metal–organic frameworks Atomically dispersed sites Peroxidase-like activity Biosensors
下载PDF
Hybridization of metal–organic framework and monodisperse spherical silica for chromatographic separation of xylene isomers 被引量:5
11
作者 Bixuan Gao Minhui Huang +5 位作者 Zhiguo Zhang Qiwei Yang Baogen Su Yiwen Yang Qilong Ren Zongbi Bao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2019年第4期818-826,共9页
Metal–organic frameworks(MOFs) packed in the column have been a promising candidate as the stationary phase for high performance liquid chromatography(HPLC). However, the direct packing of irregular MOF powder could ... Metal–organic frameworks(MOFs) packed in the column have been a promising candidate as the stationary phase for high performance liquid chromatography(HPLC). However, the direct packing of irregular MOF powder could raise some problems like high back pressure and low column efficiency in the HPLC separation. In this work, UiO-66 capable of separating xylenes was supported effectively on the surface of the monodisperse spherical silica microspheres by one-pot method. The hybridization of Ui O-66 and silica microspheres(termed UiO-66@SiO2 shell–core composite) was prepared by stirring the suspension of the precursors of Ui O-66 and\\COOH terminated silica in the N,N-dimethylformamide with heating. The shell–core composite material UiO66@SiO2 was characterized by SEM, TEM, PXRD and FTIR. Then, it was used as a packing material for the chromatographic separation of xylene isomers. Xylene isomers including o-xylene, m-xylene and p-xylene were efficiently separated on the column with high resolution and good reproducibility. Moreover, the Ui O-66@SiO2 shell–core composites packed column still remained reverse shape selectivity as Ui O-66 possessed, and the retention of xylenes was probably ascribed to the hydrophobic effect between analytes and the aromatic rings of the Ui O-66 shell. The Ui O-66@SiO2 shell–core composites obtained in this study have some potential for the separation of structural isomers in HPLC. 展开更多
关键词 Adsorption CHROMATOGRAPHY Separation HYBRIDIZATION metal–organic framework SILICA
下载PDF
Ultrathin 2D Metal–Organic Framework Nanosheets In situ Interpenetrated by Functional CNTs for Hybrid Energy Storage Device 被引量:9
12
作者 Feitian Ran Xueqing Xu +3 位作者 Duo Pan Yuyan Liu Yongping Bai Lu Shao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第4期1-13,共13页
The controllable construction of two-dimensional(2D)metal–organic framework(MOF)nanosheets with favorable electrochemical performances is greatly challenging for energy storage.Here,we design an in situ induced growt... The controllable construction of two-dimensional(2D)metal–organic framework(MOF)nanosheets with favorable electrochemical performances is greatly challenging for energy storage.Here,we design an in situ induced growth strategy to construct the ultrathin carboxylated carbon nanotubes(C-CNTs)interpenetrated nickel MOF(Ni-MOF/C-CNTs)nanosheets.The deliberate thickness and specific surface area of novel 2D hybrid nanosheets can be effectively tuned via finely controlling C-CNTs involvement.Due to the unique microstructure,the integrated 2D hybrid nanosheets are endowed with plentiful electroactive sites to promote the electrochemical performances greatly.The prepared Ni-MOF/C-CNTs nanosheets exhibit superior specific capacity of 680 C g^−1 at 1 A g^−1 and good capacity retention.The assembled hybrid device demonstrated the maximum energy density of 44.4 Wh kg^−1 at a power density of 440 W kg^−1.Our novel strategy to construct ultrathin 2D MOF with unique properties can be extended to synthesize various MOF-based functional materials for diverse applications. 展开更多
关键词 metal–organic frameworks Carbon nanotubes Ultrathin 2D nanosheets Hybrid supercapacitor
下载PDF
Recent advances in the synthesis of nanoscale hierarchically porous metal–organic frameworks 被引量:7
13
作者 Chongxiong Duan Kuan Liang +8 位作者 Zena Zhang Jingjing Li Ting Chen Daofei Lv Libo Li Le Kang Kai Wang Han Hu Hongxia Xi 《Nano Materials Science》 EI CAS CSCD 2022年第4期351-365,共15页
Nanoscale hierarchically porous metal–organic frameworks(NHP-MOFs)have received unprecedented attention in many fields owing to their integration of the strengths of nanoscale size(<1μm)and hierarchical porous st... Nanoscale hierarchically porous metal–organic frameworks(NHP-MOFs)have received unprecedented attention in many fields owing to their integration of the strengths of nanoscale size(<1μm)and hierarchical porous structure(micro-,meso-and/or macro-pores)of MOFs.This review focuses on recent advances in the main synthetic strategies for NHP-MOFs based on different metal ions(e.g.,Cu,Fe,Co,Zn,Al,Zr,and Cr),including the template method,composite technology,post-synthetic modification,in situ growth and the grind method.In addition,the mechanisms of synthesis,regulation techniques and the advantages and disadvantages of various methods are discussed.Finally,the challenges and prospects of the commercialisation of promising NHP-MOFs are also presented.The purpose of this review is to provide a road map for future design and development of NHP-MOFs for practical application. 展开更多
关键词 metal–organic frameworks NANOSCALE Hierarchically porous structure Synthesis strategies
下载PDF
Heterojunction Incorporating Perovskite and Microporous Metal–Organic Framework Nanocrystals for Efficient and Stable Solar Cells 被引量:4
14
作者 Xuesong Zhou Lele Qiu +3 位作者 Ruiqing Fan Jian Zhang Sue Hao Yulin Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第6期203-213,共11页
In this paper,we present a facile approach to enhance the efficiency and stability of perovskite solar cells(PSCs)by incorporating perovskite with microporous indium-based metal–organic framework[In12O(OH)16(H2O)5(bt... In this paper,we present a facile approach to enhance the efficiency and stability of perovskite solar cells(PSCs)by incorporating perovskite with microporous indium-based metal–organic framework[In12O(OH)16(H2O)5(btc)6]n(In-BTC)nanocrystals and forming heterojunction light-harvesting layer.The interconnected micropores and terminal oxygen sites of In-BTC allow the preferential crystallization of perovskite inside the regular cavities,endowing the derived films with improved morphology/crystallinity and reduced grain boundaries/defects.Consequently,the In-BTC-modified PSC yields enhanced fill factor of 0.79 and power conversion efficiency(PCE)of 20.87%,surpassing the pristine device(0.76 and 19.52%,respectively).More importantly,over 80%of the original PCE is retained after 12 days of exposure to ambient environment(25°C and relative humidity of^65%)without encapsulation,while only about 35%is left to the pristine device. 展开更多
关键词 metal–organic framework Nanocrystal HETEROJUNCTION LIGHT-HARVESTING layer PEROVSKITE solar cell
下载PDF
Nanoengineering Metal–Organic Frameworks and Derivatives for Electrosynthesis of Ammonia 被引量:4
15
作者 Daming Feng Lixue Zhou +3 位作者 Timothy J.White Anthony K.Cheetham Tianyi Ma Fengxia Wei 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期205-240,共36页
Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineere... Electrocatalytic synthesis under mild conditions has become increasingly important as one of the practical alternatives for industrial applications,especially for the green ammonia(NH_(3))industry.A properly engineered electrocatalyst plays a vital role in the realization of superior catalytic performance.Among various types of promising nanomaterials,metal–organic frameworks(MOFs)are competitive candidates for developing efficient electrocatalytic NH_(3) synthesis from simple nitrogen-containing molecules or ions,such as N_(2) and NO_(3)^(−).In this review,recent advances in the development of electrocatalysts derived from MOFs for the electrosynthesis of NH_(3) are collected,categorized,and discussed,including their application in the N_(2) reduction reaction(NRR)and the NO_(3)^(−)reduction reaction(NO3RR).Firstly,the fundamental principles are illustrated,such as plausible mechanisms of NH_(3) generation from N_(2) and NO_(3)^(−),the apparatus of corresponding electrocatalysis,parameters for evaluation of reaction efficiency,and detection methods of yielding NH_(3).Then,the electrocatalysts for NRR processes are discussed in detail,including pristine MOFs,MOF-hybrids,MOF-derived N-doped porous carbons,single atomic catalysts from pyrolysis of MOFs,and other MOF-related materials.Subsequently,MOF-related NO3RR processes are also listed and discussed.Finally,the existing challenges and prospects for the rational design and fabrication of electrocatalysts from MOFs for electrochemical NH_(3) synthesis are presented,such as the evolution of investigation methods with artificial intelligence,innovation in synthetic methods of MOF-related catalysts,advancement of characterization techniques,and extended electrocatalytic reactions. 展开更多
关键词 metal–organic frameworks Electrosynthesis of ammonia Nitrogen reduction reactions Nitrate reduction reactions
下载PDF
Advanced metal–organic frameworks for aqueous sodium-ion rechargeable batteries 被引量:3
16
作者 Dongkyu Choi Seonguk Lim Dongwook Han 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第2期396-406,I0014,共12页
Inexpensive and abundant sodium resources make energy storage systems using sodium chemistry promising replacements for typical lithium-ion rechargeable batteries(LIBs).Fortuitously,aqueous sodium-ion rechargeable bat... Inexpensive and abundant sodium resources make energy storage systems using sodium chemistry promising replacements for typical lithium-ion rechargeable batteries(LIBs).Fortuitously,aqueous sodium-ion rechargeable batteries(ASIBs),which operate in aqueous electrolytes,are cheaper,safer,and more ionically conductive than batteries that operate in conventional organic electrolytes;furthermore,they are suitable for grid-scale energy storage applications.As electrode materials for storing Na~+ ions in ASIBs,a variety of multifunctional metal-organic frameworks(MOFs) have demonstrated great potential in terms of having porous 3 D crystal structures,compatibility with aqueous solutions,long cycle lives(≥1000 cycles),and ease of synthesis.The present review describes MOF-derived technologies for the successful application of MOFs to ASIBs and suggests future challenges in this area of research based on the current understanding. 展开更多
关键词 metal–organic Framework(MOF) Prussian blue metal hexacyanoferrate Aqueous electrolyte Sodium-ion Rechargeable battery
下载PDF
Machine learning and high-throughput computational screening of hydrophobic metal–organic frameworks for capture of formaldehyde from air 被引量:4
17
作者 Xueying Yuan Xiaomei Deng +4 位作者 Chengzhi Cai Zenan Shi Hong Liang Shuhua Li Zhiwei Qiao 《Green Energy & Environment》 SCIE CSCD 2021年第5期759-770,共12页
Aiming to efficiently capture the formaldehyde(HCHO)with low content in the air exceeding the standard,31,399 hydrophobic metal–organic frameworks(MOFs)were first selected from 137,953 hypothetical MOFs to calculate ... Aiming to efficiently capture the formaldehyde(HCHO)with low content in the air exceeding the standard,31,399 hydrophobic metal–organic frameworks(MOFs)were first selected from 137,953 hypothetical MOFs to calculate their formaldehyde adsorption performance,namely,adsorption capacity(NHCHO)and selectivity(SHCHO=N^(2+)O_(2))by molecular simulation and machine learning(ML).To combine the SHCHO=N^(2+)O_(2) and NHCHO,a new performance metric,the tradeoff between selectivity and capacity(TSC)was proposed to identify more reasonably the top-performing MOFs.The MOFs were divided into three datasets(i.e.,all of the MOFs(AM),MOFs with top 5%of SHCHO=N^(2+)O_(2)(PS)and MOFs with top 5%of NHCHO(PN))to scrutinize and explore the characteristics of different materials capturing formaldehyde from the air(N2 and O_(2)).Furthermore,after four ML algorithms(the back propagation neural network(BPNN),support vector machine(SVM),extreme learning machine(ELM),and random forest(RF))are applied to quantitatively assess the prediction effects of performance indexes in different datasets,RF algorithm with the most accurate prediction revealed that the TSC has strong correlations with the MOF descriptors in PS dataset.In view of 14.10%of the promising MOFs occupied PN,the design paths of excellent adsorbents for six MOF descriptors were quantitatively determined,especially for the Henry's coefficient(KHCHO)and heat of adsorption of formaldehyde(Q0 st).Their probabilities of obtaining excellent MOFs could reach 100%and 77.42%,respectively,and both the relative importance and the trends of univariate analysis coherently confirm the important positions of KHCHO and Q0 st.Finally,20 best MOFs were identified for the single-step separation of formaldehyde with low concentration.The microscopic insights and structure-performance relationship predictions from this computational and ML study are useful toward the development of new MOFs for the capture of formaldehyde from air. 展开更多
关键词 Molecular simulation Adsorption metal–organic framework FORMALDEHYDE
下载PDF
Modeling of removal of an organophosphorus pesticide from aqueous solution by amagnetic metal–organic framework composite 被引量:2
18
作者 Abdolraouf Samadi-Maybodi Mohsen Nikou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第12期323-335,共13页
Today,a variety of pesticides are used to fight plant pests in the world.The entry of these resistant pollutants into water resources can have devastating effects on human health and the environment,hence their remova... Today,a variety of pesticides are used to fight plant pests in the world.The entry of these resistant pollutants into water resources can have devastating effects on human health and the environment,hence their removal from the environment is a vital task.In the present work,the magnetic iron-based metalorganic framework(Fe_(3) O_(4)/MIL-101(Fe)) was synthesized by a simple and feasible method and characterized by FT-IR,XRD,BET,FESEM,TEM,TGA,and VSM techniques.The synthesized nanocom posite was successfully applied for the removal of fenitrothion(FEN) pesticide from the aqueous solutions.The isothermal and kinetic models were also investigated.The Langmuir isotherm model(type I) and pseudo-second-order kinetic model were more consistent in the adsorption process.The thermodynamic parameters of fenitrothion sorption were also calculated.The results revealed that the adsorption of fenitrothion onto Fe_(3) O_(4)/MIL-101(Fe) was spontaneous and endothermic under optimized conditions.Moreover,the removal efficiency of FEN was predicted using the developed fuzzy logic model.Four input variables including the initial concentration of FEN(mg·L^(-1)),pH of the solution,adsorbent dosage(mg).and contact time(min) versus removal efficiency as output were fuzzified by the usage of an artificial intelligence-based method.The fuzzy subsets consisted of Triangular and Trapezoidal membership functions(MFs) with six levels and a total of 23 rules in IF-THEN format which was applied on a Mamdani inference system.The obtained coefficient of determination value(R_(pred)^(2)=0.98205) proved the excellent accuracy of the fuzzy logic model as a powerful tool for the prediction of FEN removal efficiency. 展开更多
关键词 FENITROTHION Magnetic iron-based metal–organic framework Fuzzy logic Adsorption ISOTHERM MAMDANI
下载PDF
Nitrogen-doped hierarchical porous carbon derived from metal–organic aerogel for high performance lithium–sulfur batteries 被引量:3
19
作者 Han Zhang Zongbin Zhao +5 位作者 Yang Liu Jingjing Liang Yanan Hou Zhichao Zhang Xuzhen Wang Jieshan Qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1282-1290,共9页
Nitrogen-doped three-dimensional(3 D) porous carbon materials have numerous applications due to their highly porous structures, abundant structural nitrogen heteroatom decoration and low densities. Herein,nitrogen dop... Nitrogen-doped three-dimensional(3 D) porous carbon materials have numerous applications due to their highly porous structures, abundant structural nitrogen heteroatom decoration and low densities. Herein,nitrogen doped hierarchical 3 D porous carbons(NHPC) were prepared via a novel metal–organic aerogel(MOA), using hexamethylenetetramine(HMT), 1,3,5-benzenetricarboxylic acid and copper(II) as starting materials. The morphology, porous structure of the building blocks in the NHPC can be tuned readily using different amount of HMT, which makes elongation of the pristine octahedron of HKUST-1 to give rise to different aspect ratio rod-like structures. The as-prepared NHPC with rod-like carbons exhibit high performance in lithium sulfur battery due to the rational ion transfer pathways, high N-doped doping and hierarchical porous structures. As a result, the initial specific capacity of 1341 m A h/g at rate of 0.5 C(1 C = 1675 m A h/g) and high-rate capability of 354 m A h/g at 5 C was achieved. The decay over 500 cycles is 0.08% per cycle at 1 C, highlighting the long-cycle Li–S batteries. 展开更多
关键词 metal–organic aerogel N-doped porous carbon Lithium–sulfur batteries
下载PDF
Ultrathin two-dimensional metal–organic framework nanosheets for efficient electrochemical CO_(2) reduction 被引量:2
20
作者 Lu Ye Xuyang Chen +3 位作者 Yan Gao Xin Ding Jungang Hou Shuyan Cao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期627-631,I0015,共6页
Electrochemical CO_(2) reduction into CO or high-value products is regarded as a feasible pathway for energy conversion,which has attracted universal attention in recent years [1-3].However,the reduction of CO_(2) mol... Electrochemical CO_(2) reduction into CO or high-value products is regarded as a feasible pathway for energy conversion,which has attracted universal attention in recent years [1-3].However,the reduction of CO_(2) molecule is a thermodynamically uphill process,which involves multiple elemental steps and the competition of hydrogen evolution reaction(HER) in aqueous solution. 展开更多
关键词 metal–organic frameworks 2D Nanosheets CO_(2)reduction ELECTROCATALYSIS
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部