The exploration of aqueous flexible metal-air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices.Aqueous flexible metal-a...The exploration of aqueous flexible metal-air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices.Aqueous flexible metal-air batteries feature Earth-abundant materials,environmental friendliness,and operational safety.Each part of one metal-air battery can significantly affect the overall performance.This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high-performance metal electrodes,solid-state electrolytes,and air electrodes.Bifunctional oxygen electrocatalysts with high activity and long-term stability for constructing efficient air electrodes in flexible metal-air batteries are summarized including metal-free carbon-based materials and nonprecious Co/Fe-based materials(alloys,metal oxides,metal sulfites,metal phosphates,metal nitrates,single-site metal-nitrogen-carbon materials,and composites).Finally,a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid-state metal-air batteries.展开更多
Solid-state metal-air batteries have emerged as a research hotspot due to their high energy density and high safety.Moreover,side reactions caused by infiltrated gases(O_(2),H_(2)O,or CO_(2))and safety issues caused b...Solid-state metal-air batteries have emerged as a research hotspot due to their high energy density and high safety.Moreover,side reactions caused by infiltrated gases(O_(2),H_(2)O,or CO_(2))and safety issues caused by liquid electrolyte leakage will be eliminated radically.However,the solid-state metal–air battery is still in its infancy,and many thorny problems still need to be solved,such as the large resistance of the metal/electrolyte interface and catalyst design.This review will summarize some important progress and key issues for solid-state metal-air batteries,especially the lithium-,sodium-,and zinc-based metal-air batteries,clarify some core issues,and forecast the future direction of the solid-state metal-air batteries.展开更多
Rechargeable alkali metal-air batteries are considered as the most promising candidate for the power source of electric vehicles(EVs) due to their high energy density. However, the practical application of metal-air b...Rechargeable alkali metal-air batteries are considered as the most promising candidate for the power source of electric vehicles(EVs) due to their high energy density. However, the practical application of metal-air batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metal-air batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this review, we summarize the recent development of alkali metal-air batteries from four parts: metal anodes, electrolytes, air cathodes and reactant gases, wherein we highlight the important achievement in this filed. Finally problems and prospective are discussed towards the future development of alkali metal-air batteries.展开更多
Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy.However,the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution re...Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy.However,the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)have limited the practical application of rechargeable metal-air batteries.Most of reviews were focused on single functional electrocatalysts while few on bifunctional electrocatalysts.It is indispensable but challenging to design a bifunctional electrocatalyst that is active and stable to the two reactions.Recently,attempts to develop high active bifunctional electrocatalysts for both ORR and OER increase rapidly.Much work is focused on the micro-nano design of advanced structures to improve the performance of bifunctional electrocatalyst.Transition-metal materials,carbon materials and composite materials,and the methods developed to prepare micro-nano structures,such as electrochemical methods,chemical vapor deposition,hydrothermal methods and template methods are reported in literatures.Additionally,many strategies,such as adjustments of electronic structures,oxygen defects,metal-oxygen bonds,interfacial strain,nano composites,heteroatom doping etc.,have been used extensively to design bifunctional electrocatalysts.To well understand the achievements in the recent literatures,this review focuses on the micro-nano structural design of materials,and the related methods and strategies are classed into two groups for the improvement of intrinsic and apparent activities.The fine adjustment of nano structures and an in-depth understanding of the reaction mechanism are also discussed briefly.展开更多
With a rising energy demand and anabatic environmental crisis arising from the fast growth in human population and society economics,numerous efforts have been devoted to explore and design plentiful multifunctional m...With a rising energy demand and anabatic environmental crisis arising from the fast growth in human population and society economics,numerous efforts have been devoted to explore and design plentiful multifunctional materials for meeting highefficiency energy transfer processes,which happen in various developed energy conversion and storage systems.As a special kind of multi-metal oxides,perovskite with attractive physical and chemical properties,is becoming a rapidly rising star on the horizon of high-performance catalytic materials with substantial research behaviors worldwide.The porous nanostructure in targeted catalysts is favorable to the catalytic activity and thus improves the overall efficiency of these energy-related installations.In this review paper,recent advances made in the porous perovskite nanostructures for catalyzing several anodic or cathodic reactions in fuel cells and metal-air batteries are comprehensively summarized.Plenty of general preparation methods employed to attain porous perovskite-type oxides are provided,followed by a further discussion about the influence of various strategies on structures and catalytic properties of the porous perovskites.Furthermore,deep insights gathered in the future development of porous perovskite-based materials for energy conversion and storage technologies are also provided.展开更多
Graphene,as a proof-of-concept two-dimensional material,has proven to have excellent physical and chemical properties.Its derivatives,such as defective or doped graphene,are also applied as catalytic materials for met...Graphene,as a proof-of-concept two-dimensional material,has proven to have excellent physical and chemical properties.Its derivatives,such as defective or doped graphene,are also applied as catalytic materials for metal-air batteries(MABs).MABs have been recognized as possible candidates for new-generation energy storage systems due to their ultra-high theoretical energy density.So far,graphene and its derivatives with optimized structures have been widely explored to improve the electrochemical performance in MABs.Generally speaking,perfect graphene crystalline is inert for many catalytic processes,while defects and heteroatoms can endow graphene with high activity for many electrocatalytic reactions.Under this circumstance,recent progress is summarized for defective/doped graphene as air cathodes in aqueous or organic MABs,which are actually different electrochemical systems with distinct requirements for air cathodes.Also,the relationship is clarified between graphene defects/doping and electrocatalytic mechanisms that can be the guidance for catalyst design.Future directions are also prospected for the development of graphene-based MAB cathodes.展开更多
Heteroatom-doped carbon has been demonstrated to be one of the most promising non-noble metal catalysts with high catalytic activity and stability through the modification of the electronic and geometric structures.In...Heteroatom-doped carbon has been demonstrated to be one of the most promising non-noble metal catalysts with high catalytic activity and stability through the modification of the electronic and geometric structures.In this study,we develop a novel solvent method to prepare interconnected N,S co-doped three-dimensional(3D)carbon networks with tunable nanopores derived from an asso-ciated complex based on melamine and sodium dodecylbenzene sulfonate(SDBS).After the intro-duction of silica templates and calcination,the catalyst exhibits 3D networks with interconnected 50-nm pores and partial graphitization.With the increase of the number of Lewis base sites caused by the N doping and change of the carbon charge and spin densities caused by the S doping,the designed N,S co-doped catalyst exhibits a similar electrochemical activity to that of the commercial 20-wt%Pt/C as an oxygen reduction reaction catalyst.In addition,in an aluminum-air battery,the proposed catalyst even outperforms the commercial 5-wt%Pt/C catalyst.Both interconnected porous structures and synergistic effects of N and S contribute to the superior catalytic perfor-mance.This study paves the way for the synthesis of various other N-doped and co-doped carbon materials as efficient catalysts in electrochemical energy applications.展开更多
Transition metal nitrides and carbides have attracted intensive attentions in metal-air battery application due to their metallic electron transport behavior and high chemical stability toward the oxygen reduction rea...Transition metal nitrides and carbides have attracted intensive attentions in metal-air battery application due to their metallic electron transport behavior and high chemical stability toward the oxygen reduction reaction(ORR).Herein,the polyoxometalate@polyaniline composite derived WN-W_(2)C heterostructured composite(WN-W_(2)C@pDC)has been fabricated through an in situ nitriding-carbonization strategy,with WN-W_(2)C nanoparticles implanted on N doped carbon nanorods.Asfabricated WN-W_(2)C@pDC demonstrates prominent electrocatalytic performance towards ORR and excellent cycling stability in metal-air battery,which possesses positive half-wave potential and large diffusion limiting current density(0.81 V and 5.8 mA·cm^(-2)).Moreover,it demonstrates high peak power density of 157.4 mW·cm^(-2)as Al-air primary cathode and excellent stability at the discharge-charge test(>500 h)of Zn-air secondary battery.The excellent activity and durability of WNW_(2)C@pDC catalyst should be attributed to the combined effect of intimate WN-W_(2)C heterointerfaces,unique embedded nanoparticles structure,and excellent electrical media of N doped carbon,confirmed by a series of contrast experiments.展开更多
Metal-organic frameworks(MOFs)and covalent organic frameworks(COFs)as the novel porous materials have the merits of diverse,adjustable functionality,high porosity and surface area,which have great application prospect...Metal-organic frameworks(MOFs)and covalent organic frameworks(COFs)as the novel porous materials have the merits of diverse,adjustable functionality,high porosity and surface area,which have great application prospects in the gas storage,separation and catalysis.In addition,their derivates make up for the insufficient of electronic conductivity and chemical stability of MOFs and COFs,and provide a new ideal for accurate control of material structure.Up to now,many efficient electrocatalysts have been designed based on MOFs,COFs and their derivates for O_(2)reduction/evolution reactions(ORR/OER)and CO_(2)reduction/evolution reactions(CO_(2)RR/CO_(2)ER)in the metal-air batteries.In this review,the latest development of MOFs,COFs and their derivates in the metal-air batteries is summarized,and we discuss the structural characteristics of these materials and their corresponding mechanisms of action.By comprehensively reviewing the advantages,challenges and prospects of MOFs and COFs,we hope that the organic framework materials will shed more profound insights into the development of electrocatalysis and energy storage in the future.展开更多
The sluggish reaction kinetics at the oxygen cathode is one of the important issues hindering the commercialization of the metal-air batteries.Although the noble metal can be used as the high-efficiency electrocatalys...The sluggish reaction kinetics at the oxygen cathode is one of the important issues hindering the commercialization of the metal-air batteries.Although the noble metal can be used as the high-efficiency electrocatalyst to solve the problems to some extent,the high cost and scarcity of these noble-metal catalysts have limited their application in electrocatalysis.In this review,we discussed the mecha-nisms of the ORR and OER,and proposed the principles for the bifunctional electrocatalysts firstly,and then the state-of-the-art bifunctional catalysts,including carbon-based materials and transition-metal-based materials.On the basis of that,the self-supporting 3D noble-metal-free bifunctional ORR/OER catalysts were also discussed.Finally,the perspectives for the bifunctional electrocatalysts were discussed.展开更多
Highly stable and efficient bifunctional air cathode catalyst is crucial to rechargeable metal-air batteries.Herein,a ternary nanoalloy layer composed of noble and base metal coated on a three-dimensional porous Ni sp...Highly stable and efficient bifunctional air cathode catalyst is crucial to rechargeable metal-air batteries.Herein,a ternary nanoalloy layer composed of noble and base metal coated on a three-dimensional porous Ni sponge as the bifunctional cathode is synthesized through in-situ anchoring strategy,which can effectively keep the multimetal nanoparticles from agglomeration and improve the density of active sites and catalytic activity.The prepared catalyst displays an excellent catalytic performance with lower overpotential and long-term stability.The Zn-air batteries with the as-prepared cathodes possess a large power density of 170 mW/cm2,long cycling stability up to 230 cycles,and a high specific capacity of 771 mA h/g.Furthermore,the corresponding Li-air batteries deliver a discharge capacity of 22429 mA h/g.These superior properties of the metal-air batteries can be attributed to the combined influence of design and composition of electrode,which is of great significance to improve the electrochemical catalytic activity,providing great potential of wide application in expanded rechargeable energy systems.展开更多
基金Australian Research Council,Grant/Award Numbers:DP190101008,FT190100058。
文摘The exploration of aqueous flexible metal-air batteries with high energy density and durability has attracted many research efforts with the demand for portable and wearable electronic devices.Aqueous flexible metal-air batteries feature Earth-abundant materials,environmental friendliness,and operational safety.Each part of one metal-air battery can significantly affect the overall performance.This review starts with the fundamental working principles and the basic battery configurations and then highlights on the common issues and the recent advances in designing high-performance metal electrodes,solid-state electrolytes,and air electrodes.Bifunctional oxygen electrocatalysts with high activity and long-term stability for constructing efficient air electrodes in flexible metal-air batteries are summarized including metal-free carbon-based materials and nonprecious Co/Fe-based materials(alloys,metal oxides,metal sulfites,metal phosphates,metal nitrates,single-site metal-nitrogen-carbon materials,and composites).Finally,a perspective is provided on the existing challenges and possible future research directions in optimizing the performance and lifetime of the flexible aqueous solid-state metal-air batteries.
基金Natural Science Foundation of China,Grant/Award Numbers:52004092,51872090Central Government Guides Local Science and Technology Development Funds of Hebei Province,Grant/Award Number:226Z4403G。
文摘Solid-state metal-air batteries have emerged as a research hotspot due to their high energy density and high safety.Moreover,side reactions caused by infiltrated gases(O_(2),H_(2)O,or CO_(2))and safety issues caused by liquid electrolyte leakage will be eliminated radically.However,the solid-state metal–air battery is still in its infancy,and many thorny problems still need to be solved,such as the large resistance of the metal/electrolyte interface and catalyst design.This review will summarize some important progress and key issues for solid-state metal-air batteries,especially the lithium-,sodium-,and zinc-based metal-air batteries,clarify some core issues,and forecast the future direction of the solid-state metal-air batteries.
基金supported by NSFC(21473094 and21421001)MOE Innovation Team(IRT13022) in China
文摘Rechargeable alkali metal-air batteries are considered as the most promising candidate for the power source of electric vehicles(EVs) due to their high energy density. However, the practical application of metal-air batteries is still challenging. In the past decade, many strategies have been purposed and explored, which promoted the development of metal-air batteries. The reaction mechanisms have been gradually clarified and catalysts have been rationally designed for air cathodes. In this review, we summarize the recent development of alkali metal-air batteries from four parts: metal anodes, electrolytes, air cathodes and reactant gases, wherein we highlight the important achievement in this filed. Finally problems and prospective are discussed towards the future development of alkali metal-air batteries.
基金the financial supports from the National Natural Science Foundation of China(91545202,U1508203)the Strategic Priority Research Program of the Chinese Academy of Sciences(CAS)(XDB17000000)+1 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciencesthe Liaoning Revitalization Talents Program(XLYC1807066)~~
文摘Water-based rechargeable metal-air batteries play an important role in the storage and conversion of renewable electric energy.However,the sluggish kinetics of the oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)have limited the practical application of rechargeable metal-air batteries.Most of reviews were focused on single functional electrocatalysts while few on bifunctional electrocatalysts.It is indispensable but challenging to design a bifunctional electrocatalyst that is active and stable to the two reactions.Recently,attempts to develop high active bifunctional electrocatalysts for both ORR and OER increase rapidly.Much work is focused on the micro-nano design of advanced structures to improve the performance of bifunctional electrocatalyst.Transition-metal materials,carbon materials and composite materials,and the methods developed to prepare micro-nano structures,such as electrochemical methods,chemical vapor deposition,hydrothermal methods and template methods are reported in literatures.Additionally,many strategies,such as adjustments of electronic structures,oxygen defects,metal-oxygen bonds,interfacial strain,nano composites,heteroatom doping etc.,have been used extensively to design bifunctional electrocatalysts.To well understand the achievements in the recent literatures,this review focuses on the micro-nano structural design of materials,and the related methods and strategies are classed into two groups for the improvement of intrinsic and apparent activities.The fine adjustment of nano structures and an in-depth understanding of the reaction mechanism are also discussed briefly.
基金the funding support(Project Number.PolyU 152214/17E)from Research Grant Council,University Grants Committee,Hong Kong SARthe financial support from National Nature Science Foundation of China under contract No.21878158the National Key Research and Development Program of China under contract No.2018YFB0905402
文摘With a rising energy demand and anabatic environmental crisis arising from the fast growth in human population and society economics,numerous efforts have been devoted to explore and design plentiful multifunctional materials for meeting highefficiency energy transfer processes,which happen in various developed energy conversion and storage systems.As a special kind of multi-metal oxides,perovskite with attractive physical and chemical properties,is becoming a rapidly rising star on the horizon of high-performance catalytic materials with substantial research behaviors worldwide.The porous nanostructure in targeted catalysts is favorable to the catalytic activity and thus improves the overall efficiency of these energy-related installations.In this review paper,recent advances made in the porous perovskite nanostructures for catalyzing several anodic or cathodic reactions in fuel cells and metal-air batteries are comprehensively summarized.Plenty of general preparation methods employed to attain porous perovskite-type oxides are provided,followed by a further discussion about the influence of various strategies on structures and catalytic properties of the porous perovskites.Furthermore,deep insights gathered in the future development of porous perovskite-based materials for energy conversion and storage technologies are also provided.
文摘Graphene,as a proof-of-concept two-dimensional material,has proven to have excellent physical and chemical properties.Its derivatives,such as defective or doped graphene,are also applied as catalytic materials for metal-air batteries(MABs).MABs have been recognized as possible candidates for new-generation energy storage systems due to their ultra-high theoretical energy density.So far,graphene and its derivatives with optimized structures have been widely explored to improve the electrochemical performance in MABs.Generally speaking,perfect graphene crystalline is inert for many catalytic processes,while defects and heteroatoms can endow graphene with high activity for many electrocatalytic reactions.Under this circumstance,recent progress is summarized for defective/doped graphene as air cathodes in aqueous or organic MABs,which are actually different electrochemical systems with distinct requirements for air cathodes.Also,the relationship is clarified between graphene defects/doping and electrocatalytic mechanisms that can be the guidance for catalyst design.Future directions are also prospected for the development of graphene-based MAB cathodes.
基金supported by the National Natural Science Foundation of China (51674297)the Natural Science Foundation of Hunan Province (2016JJ2137)the Fundamental Research Funds for the Central Universities of Central South University (2015cx001)~~
文摘Heteroatom-doped carbon has been demonstrated to be one of the most promising non-noble metal catalysts with high catalytic activity and stability through the modification of the electronic and geometric structures.In this study,we develop a novel solvent method to prepare interconnected N,S co-doped three-dimensional(3D)carbon networks with tunable nanopores derived from an asso-ciated complex based on melamine and sodium dodecylbenzene sulfonate(SDBS).After the intro-duction of silica templates and calcination,the catalyst exhibits 3D networks with interconnected 50-nm pores and partial graphitization.With the increase of the number of Lewis base sites caused by the N doping and change of the carbon charge and spin densities caused by the S doping,the designed N,S co-doped catalyst exhibits a similar electrochemical activity to that of the commercial 20-wt%Pt/C as an oxygen reduction reaction catalyst.In addition,in an aluminum-air battery,the proposed catalyst even outperforms the commercial 5-wt%Pt/C catalyst.Both interconnected porous structures and synergistic effects of N and S contribute to the superior catalytic perfor-mance.This study paves the way for the synthesis of various other N-doped and co-doped carbon materials as efficient catalysts in electrochemical energy applications.
基金This work was supported by Hubei Provincial Natural Science Foundation and Huangshi of China(No.2022CFD039)the National Natural Science Foundation of China(Nos.22008058 and 22209073)+2 种基金the Program for Innovative Teams of Outstanding Young and Middle-aged Researchers in the Higher Education Institutions of Hubei Province(No.T2021010)the Natural Science Foundation of Jiangsu Province(No.BK20220912)the China Postdoctoral Science Foundation(No.2022M711607).
文摘Transition metal nitrides and carbides have attracted intensive attentions in metal-air battery application due to their metallic electron transport behavior and high chemical stability toward the oxygen reduction reaction(ORR).Herein,the polyoxometalate@polyaniline composite derived WN-W_(2)C heterostructured composite(WN-W_(2)C@pDC)has been fabricated through an in situ nitriding-carbonization strategy,with WN-W_(2)C nanoparticles implanted on N doped carbon nanorods.Asfabricated WN-W_(2)C@pDC demonstrates prominent electrocatalytic performance towards ORR and excellent cycling stability in metal-air battery,which possesses positive half-wave potential and large diffusion limiting current density(0.81 V and 5.8 mA·cm^(-2)).Moreover,it demonstrates high peak power density of 157.4 mW·cm^(-2)as Al-air primary cathode and excellent stability at the discharge-charge test(>500 h)of Zn-air secondary battery.The excellent activity and durability of WNW_(2)C@pDC catalyst should be attributed to the combined effect of intimate WN-W_(2)C heterointerfaces,unique embedded nanoparticles structure,and excellent electrical media of N doped carbon,confirmed by a series of contrast experiments.
基金The authors thank for the financial support from the National Defense Technology Innovation Special Zone Spark Project(No.2016300TS00911901)the Natural Science Foundation of Jiangsu Province(No.BK20210616),and a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Metal-organic frameworks(MOFs)and covalent organic frameworks(COFs)as the novel porous materials have the merits of diverse,adjustable functionality,high porosity and surface area,which have great application prospects in the gas storage,separation and catalysis.In addition,their derivates make up for the insufficient of electronic conductivity and chemical stability of MOFs and COFs,and provide a new ideal for accurate control of material structure.Up to now,many efficient electrocatalysts have been designed based on MOFs,COFs and their derivates for O_(2)reduction/evolution reactions(ORR/OER)and CO_(2)reduction/evolution reactions(CO_(2)RR/CO_(2)ER)in the metal-air batteries.In this review,the latest development of MOFs,COFs and their derivates in the metal-air batteries is summarized,and we discuss the structural characteristics of these materials and their corresponding mechanisms of action.By comprehensively reviewing the advantages,challenges and prospects of MOFs and COFs,we hope that the organic framework materials will shed more profound insights into the development of electrocatalysis and energy storage in the future.
基金This work is supported by the Talents Project of Beijing Municipal Committee Organization Department(No.2018000021223ZK21)the Fundamental Research Funds for the Central University(No.2021JCCXJD01 and 2021YJSJD01)Key R&D and transformation projects in Qinghai Province(2021-HZ-808).
文摘The sluggish reaction kinetics at the oxygen cathode is one of the important issues hindering the commercialization of the metal-air batteries.Although the noble metal can be used as the high-efficiency electrocatalyst to solve the problems to some extent,the high cost and scarcity of these noble-metal catalysts have limited their application in electrocatalysis.In this review,we discussed the mecha-nisms of the ORR and OER,and proposed the principles for the bifunctional electrocatalysts firstly,and then the state-of-the-art bifunctional catalysts,including carbon-based materials and transition-metal-based materials.On the basis of that,the self-supporting 3D noble-metal-free bifunctional ORR/OER catalysts were also discussed.Finally,the perspectives for the bifunctional electrocatalysts were discussed.
基金Supported by the National Natural Science Foundation of China(Nos.5177177,51972141)the Project of the Education Department of Jilin Province,China(No.JK H20190113KJ)+4 种基金the Science and Technology Development Program of Jilin Province,China(No.20190303104SF)the Jilin Province/Jilin University Co-construction Project-Funds for New Materials,China(No.SXGJSF2017-3)the Science and Technology Breakthrough Plan of Henan Province,China(No.202102210242)the High School Key Scientific Research Project of Henan Province,China(No.21A150055)the Youth Innovation Fund Project of Zhengzhou University of Technology,China(No.QNCXJJ2019K2).
文摘Highly stable and efficient bifunctional air cathode catalyst is crucial to rechargeable metal-air batteries.Herein,a ternary nanoalloy layer composed of noble and base metal coated on a three-dimensional porous Ni sponge as the bifunctional cathode is synthesized through in-situ anchoring strategy,which can effectively keep the multimetal nanoparticles from agglomeration and improve the density of active sites and catalytic activity.The prepared catalyst displays an excellent catalytic performance with lower overpotential and long-term stability.The Zn-air batteries with the as-prepared cathodes possess a large power density of 170 mW/cm2,long cycling stability up to 230 cycles,and a high specific capacity of 771 mA h/g.Furthermore,the corresponding Li-air batteries deliver a discharge capacity of 22429 mA h/g.These superior properties of the metal-air batteries can be attributed to the combined influence of design and composition of electrode,which is of great significance to improve the electrochemical catalytic activity,providing great potential of wide application in expanded rechargeable energy systems.