Methacrylic acid,an important organic chemical,is commercially manufactured starting from fossil feedstock.The decarboxylation of itaconic acid derived for biomass is a green route to the synthesis of methacrylic acid...Methacrylic acid,an important organic chemical,is commercially manufactured starting from fossil feedstock.The decarboxylation of itaconic acid derived for biomass is a green route to the synthesis of methacrylic acid.In view of the problems existing in the researches on this route such as use of noble metal catalyst,harsh reaction conditions and low desired-product yield,we prepared a series of hydroxyapatite catalysts with different Ca/P molar ratios and evaluated their catalytic performance.The results showed that the hydroxyapatite catalyst with a Ca/P molar ratio of 1.58 had the best catalytic activity.The highest yield of MAA up to 61.2%was achieved with basically complete conversion of itaconic acid under the suitable reaction conditions of 1 equivalent of NaOH,2 MPa of N_(2),250℃,and 2 h.On this basis,a reaction network for the decarboxylation of itaconic acid to methacrylic acid catalyzed by hydroxyapatite was established.With the aid of catalyst characterization using X-ray powder diffraction,NH3/CO2 temperature-programmed desorption,N_(2)physisorption,inductively coupled plasma optical emission spectrometry,and scanning electron microscopy,we found that the distribution of surface acid sites and basic sites,crystal growth orientation,texture properties and morphology of hydroxyapatite varied with the Ca/P molar ratio.Furthermore,the change of the crystal growth orientation and its influence on the surface acidity and alkalinity were clarified.展开更多
The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with t...The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with the molar ratio of reactants from 0.8 to 1.4 under certain pressure.The measurement data were regression with the pseudo-homogeneous(P-H),Eley-Rideal(E-R),and Langmuir-Hinshelwood(L-H)heterogeneous kinetic models.Independent adsorption experiments were implemented to gain the adsorption equilibrium constants of four components.Among the above three models,the L-H model exhibited the best fitting results.The stability of NKC-9 was evaluated by long-term running with the yield of methyl methacrylate no decrease during 3000 h operation.The structure and physicochemical properties of the new and used catalyst were performed by several characterizations including thermogravimetric analysis(TG),scanning electron microscope(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR)and so on.展开更多
Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited p...Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited pH dependant swelling and solute diffusivity due to the formation or disruption of hydrogen bonded complexation between methacrylic acid (MAA) and etheric (EO). In neutral and basic conditions (above the swelling transition pH), the copolymer swelling was greatly higher than acid condition. In complexed hydrogels, the diffusion coefficients of vitamin B12 (VB12) were in the range of 10-10 to 10-7 cm2s-1; While in uncomplexed hydrogels, the values were about 210-6 cm2s-1. The comonomer composition and synthesis conditions have great effect on the structure, and thereby, swelling and solute diffusion characteristics of the resultant hydrogels. For the copolymers with composition of less than or more than 1:1 MAA/EO molar ratio, the plot of lnD vs 1/H-1 followed two different linear equations of 慺ree volume theory? respectively.展开更多
In this work,a techno-economic study for the solvent based extraction of methacrylic acid from an aqueous solution is presented.The involved phase equilibrium calculations in process design are verified by measured ex...In this work,a techno-economic study for the solvent based extraction of methacrylic acid from an aqueous solution is presented.The involved phase equilibrium calculations in process design are verified by measured experimental data.First,experiments are conducted with different solvent candidates to measure LLE(liquid–liquid equilibrium)data and to establish the effects of extraction temperature and dosage of solvent.Next,the binary interaction parameters for the UNIQUAC model to be used for equilibrium calculations are fine-tuned with measured data.Then,a process for the solvent based extraction of methacrylic acid recovery is designed and verified through simulation with the regressed UNIQUAC model parameters.The optimal configuration of the process flowsheet is determined by minimizing the total annualized cost.Among the three solvent candidates considered-cyclohexane,hexane and toluene-the highest efficiency and the lowest total annualized cost is found with toluene as the solvent.展开更多
A full-relaxation optimization of molecule and the Dreiding force field are employed to obtain the geometry parameters and the conformational energy surfaces of meso or racemic dyad of poly(acrylic acid) (PAA) and pol...A full-relaxation optimization of molecule and the Dreiding force field are employed to obtain the geometry parameters and the conformational energy surfaces of meso or racemic dyad of poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA). Three different carbonyl-bond orientations of side-groups resulted in the differences in depth of potential wells in their energetic contours for a meso or a racemic dyad. These discrepancies are interpreted as a result of various fine structures corresponding to grid search conformations as well as thereby different interactions. The analysis on the most stable conformations of PMAA confirmed that the ester groups are nearly perpendicular to the plane defined by the two adjacent skeletal bonds but may possibly change their relative orientations to meet the requirement of lower energy during the conformational state transition. For each polymer, two global energy maps of a meso and a racemic dyad were finally constructed from the superposition of energy data for the three kinds of side-group orientations by the Boltzmann factors. From an ensemble average, the proposed scheme with three rotational isomeric states (RIS) allowed us to access the experimentally unperturbed dimensions of PAA chain via the configurational statistical mechanics. Although the calculation was based on the short-range, local interactions, it was interested to note that the experimental characteristic ratios just fell within the range calculated for atactic chains.展开更多
The photo-controlled/living radical polymerization of methacrylic acid (MAA) was performed at room temperature by irradiation with a high-pressure mercury lamp using azo initiators and 4-methoxy-2,2,6,6-tetramethylpip...The photo-controlled/living radical polymerization of methacrylic acid (MAA) was performed at room temperature by irradiation with a high-pressure mercury lamp using azo initiators and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator in the presence of (4-tert-butylphenyl)diphenylsulfonium triflate (tBuS) as the accelerator. Whereas the bulk polymerization yielded polymers with a bimodal molecular weight distribution in both the absence and presence of tBuS, the solution polymerization in methanol produced unimodal polymers with the molecular weight distribution of 2.0 - 2.3 in the presence of tBuS. The molecular weight distribution of the resulting poly (MAA) decreased with an in- crease in tBuS. The dilution of the monomer concentration also reduced the molecular weight distribution. The use of the initiator with a low 10-h half-life temperature also effectively controlled the molecular weight. The livingness of the polymerization was confirmed by obtaining linear increases in the first-order conversion versus time, the molecular weight versus the conversion, and the molecular weight versus the reciprocal of the initiator concentration.展开更多
Methacrylic acid first was neutralized with an aqueous solution of NaOH to pH = 6.0 similar to 7.0, vinylene carbonate (VCA) was added to the solution, then monomers were copolymerized in paraffin oil by means of reve...Methacrylic acid first was neutralized with an aqueous solution of NaOH to pH = 6.0 similar to 7.0, vinylene carbonate (VCA) was added to the solution, then monomers were copolymerized in paraffin oil by means of reverse-phase suspension polymerization and hydrophilic copolymeric supports were prepared. The properties of the supports were determined using trypsin and results show that the amount of enzymes coupled to the supports and the specific activity of immobilized trypsin are related to the content of VCA structure units, reaction time and concentration of enzyme solution, etc.展开更多
Poly (methacrylic acid-co-poloxamer) hydrogel networks were synthesized byfree-radical solution polymerization, and the dynamic swelling and in vitro release properties ofmodel drugs, dextromethorphan hydrobromide (DM...Poly (methacrylic acid-co-poloxamer) hydrogel networks were synthesized byfree-radical solution polymerization, and the dynamic swelling and in vitro release properties ofmodel drugs, dextromethorphan hydrobromide (DMP) and vitamin B_(12) (VB_(12)) were studied. Thesegels exhibited pH-dependant swelling and sustained drug release properties, and the water uptakerate and drug release rate in neutral or basic media were higher than that in acidic media. Theresults showed that the water uptake followed non-Fickian or zero order process in neutral or basicmedia, and the release of model drugs from hydrogels of appropriate composition was of zero orderkinetics over a period of several hours.展开更多
A highly efficient copolymer (methacrylic acid - co - styrene - divinylbenzene) in situ making high-performance liquid chromatographic column was prepared and evaluated. The column efficiency calculated in terms of he...A highly efficient copolymer (methacrylic acid - co - styrene - divinylbenzene) in situ making high-performance liquid chromatographic column was prepared and evaluated. The column efficiency calculated in terms of height equivalent to a theoretical plate was 25 mu m and rapid separations of small molecules such as substituted aromatic hydrocarbons and aromatic acids were achieved within five minutes.展开更多
Isobutyraldehyde was used as starting material via three steps: oxidation, chlorination and dehydro-chlorination to yield methacrylic acid. The total yield of methacrylic acid is 49.7%.
The kinetics of free-radical crosslinking co-polymerization(FRCCP)of acrylic acid(AA)with both methacrylic acid(MA)(PAMA hydrogel)and maleic acid(MAL)(PAMAL hydrogel)was investigated under the conditions of isothermal...The kinetics of free-radical crosslinking co-polymerization(FRCCP)of acrylic acid(AA)with both methacrylic acid(MA)(PAMA hydrogel)and maleic acid(MAL)(PAMAL hydrogel)was investigated under the conditions of isothermal conventional heating(CH)and under the conditions of microwave heating(MWH)with controlled cooling.The kinetics curves of FRCCP of PAMA and PAMAL hydrogels under the conditions of CH are described with the kinetics model of second order chemical reaction,whereas the kinetics curves under the conditions of CH are described with the kinetics model of Polany-Winger.It is proved that MWH leads to the changes in the rate of FRCCP and to the changes in the values of the kinetic parameters activation energy(Ea)and pre-exponential factor(lnA).It was found the existence of relationship between the values of the kinetic parameters calculated for MWH and CH for PAMA and PAMAL hydrogel synthesis process,which is well-known as compensation effect.The effect of MWH on the kinetics of FRCCP for PAMA and PAMAL hydrogel formation were explained by applying the model of activation by selective energy transfer(SET).The changes in kinetics model,rate of FRCCP and kinetics parameters,caused with the MWH can found wide application in designing novel technologies for obtaining polymers and for synthesis of polymers with novel physico-chemical properties.The suggested mechanism of activation for polymerisation under the conditions of MWH also enables development of novel reaction systems and technologies for polymers productions.展开更多
The solid phase graft copolymerization of polypropylene (PP) andmethacrylic acid (MAA) was investigated. benzoyl peroxide(BPO) wasused as initia- tor. The influence of the reactive time,concentration of initiator and ...The solid phase graft copolymerization of polypropylene (PP) andmethacrylic acid (MAA) was investigated. benzoyl peroxide(BPO) wasused as initia- tor. The influence of the reactive time,concentration of initiator and monomer on degree of graft and meltflow index of graft copolymer(PP-MAA) was discussed. The effect ofgraft copolymer on mechanical properties of The glass fibre (GF)reinforced PP composites was also Studied. It is proved that graftcopolymer could obviously Increase the interfacial adhesive strengthbetween PP and GF.展开更多
A novel environmental friendly catalyst, H3PW12O40/MCM-48, was prepared by impregnation method. The catalysts were characterized by means of XRD and FT-IR. The synthesis of n-butyl methacrylate catalyzed by H3PW12O40/...A novel environmental friendly catalyst, H3PW12O40/MCM-48, was prepared by impregnation method. The catalysts were characterized by means of XRD and FT-IR. The synthesis of n-butyl methacrylate catalyzed by H3PW12O40/MCM-48 was studied with methacrylic acid and n-butyl alcohol as reactants. H3PW12O40/MCM-48 is an excellent catalyst for synthesizing n-butyl methacrylate and Keggin structure of H3PW12O40 kept unchanged after being impregnated on surface of the molecular sieve support. Effects of n(methacrylic acid):n(n-butyl alcohol), catalyst dosage, cyclohexane(water-stripped reagent) and reaction time on yields of the product were investigated. The optimum conditions have been found, that is, molar ratio of acid to alcohol is 1:1.6, mass ratio of catalyst used to the reactants is 0.5% and reaction time is 2.0 h. Under these conditions, the yield of n-butyl methacrylate can reach 93.7%.展开更多
A novel environmental friendly catalyst, H4SiW12O40/MCM-48, was prepared by impregnation method. The catalysts were characterized by means of XRD and FT-IR. The synthesis of n-butyl methacrylate catalyzed by H4SiW12O4...A novel environmental friendly catalyst, H4SiW12O40/MCM-48, was prepared by impregnation method. The catalysts were characterized by means of XRD and FT-IR. The synthesis of n-butyl methacrylate catalyzed by H4SiW12O40/MCM-48 was studied with methacrylic acid and n-butyl alcohol as reactants. H4SiW12O40/MCM-48 was an excellent catalyst for the synthesis of n-butyl methacrylate and Keggin structure ofH4SiW12O40 kept unchanged after impregnated on surface of the molecular sieve support. Effects of n(methacrylic acid): n(n-butyl alcohol), catalyst dosage, cyclohexane (water-stripped reagent) and reaction time on the yields of the product were investigated. The optimum conditions have been found, that is, molar ratio of acid to alcohol is 1:1.5, mass ratio of catalyst used to the reactant is 1.5%, cyclohexane is 10 mL and reaction time is 1.5h. Under these conditions, the yield of n-butyl methacrylate can reach 73.2%.展开更多
The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal...The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali.展开更多
Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl me...Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid)(pHEMA-co-MAA)based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene)(PEDOT)and polypyrrole(PPy)nanoparticles(NPs),and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional(3D)printing.The presence of the NPs was critical as they altered the rheological properties during printing.However,all samples exhibited suitable shear thinning properties,allowing for the development of an optimized processing window for 3D printing.Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter,respectively.We observed that the NPs disrupted the gel crosslinking efficiencies,leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa.The conductivity of the printed hydrogels increased along with the NP concentration to(5.10±0.37)×10^(−7)S/cm.In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates.Finally,hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth.Taken together,these materials show promise for various TE strategies.展开更多
Carbon nanofibers have revolutionized nanotechnology due to their potential applications in emerging frontiers of research and industrial sectors. This can be attributed to their superior properties such as higher mec...Carbon nanofibers have revolutionized nanotechnology due to their potential applications in emerging frontiers of research and industrial sectors. This can be attributed to their superior properties such as higher mechanical strength, unique surface characteristics, and improved adherence that is transmitted into the polymer matrix to form a nanocomposite with improved properties. Polymethyl methacrylate is a common carbon source for the synthesis of carbon nanofibres of its high mechanical strength, thermal stability, and low moisture and water absorbing capacity that allows its products to have several applications. In this work, we report the successful electrospinning of carbon nanofibres from Poly methyl methacrylate and functionalizing the resulting carbon nanofibres. The functionalized carbon nanofibres were analyzed to determine their solubility/dispersion in selected organic solvents, then characterized using Fourier transform infra-red spectroscopy, Raman spectroscopy, scanning electron microscopy combined with Energy dispersive spectroscopy and Thermalgravimetric analysis.展开更多
A series of homo and copolymers of styrene (ST) and 2-hydroxyethyl methacrylate (HEMA) in three different media (bulk, tetrahydrofuran, and benzene) have been investigated by free radical polymerization method. The sa...A series of homo and copolymers of styrene (ST) and 2-hydroxyethyl methacrylate (HEMA) in three different media (bulk, tetrahydrofuran, and benzene) have been investigated by free radical polymerization method. The samples obtained from the synthesis were characterized by Fourier Transform-Infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). The results show that the synthesis of the polymers is more feasible under neat conditions rather than solvent directed reaction. Moreover, the DSC data shows that the polystyrene obtained is amorphous in nature and therefore displayed only a glass transition signal rather than crystallization and melting peaks. In addition, this study indicates that homolopolymerization of styrene via free radical polymerization tends to be preferable in less polar solvents like THF than in non-polar solvents like benzene. Benzene might destabilize the formation of the reactive radicals leading to the formation of the products. In summary, the homolpolymerization of styrene is more feasible than the homopolymerization 2-hydroxyethyl methacrylate under the experimental setup used. Styrene is more reactive than 2-hydroxyethyl methacrylate than free radical polymerization reaction due in part of the generation of the benzylic radical intermediate which is more stable leading to the formation of products than alkyl radical which are less stable. Furthermore, polymerization of styrene under neat conditions is preferable in solvent-assisted environments. The choice of solvent for the synthesis of these polymers is crucial and therefore the selection of solvent that leads to the formation of a more stable reaction intermediate is more favorable. It is worth noting that the structure of the proposed copolymer consists of a highly polar and hydrophilic monomer, 2-hydroxyethyl methacrylate and a highly non-polar and hydrophobic monomer, styrene. These functionalities constitute an amphiphilic copolymer with diverse characteristics. A plausible explanation underlying our observations is that the reaction conditions employed in the synthesis of these copolymers might not be the right route required under free radical polymerization.展开更多
Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copo...Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being.展开更多
Preparing polymeric coatings with well corrosion resistance and high thermal conductivity(TC)to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive...Preparing polymeric coatings with well corrosion resistance and high thermal conductivity(TC)to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive and urgent need while a difficult task.Here we report a multifunctional epoxy composite coating(F-CB/CEP)by synthesizing cerium methacrylate and ingeniously using it as a novel curing agent with corrosion inhibit for epoxy resin and modifier for boron nitride through"cation-π"interaction.The prepared F-CB/CEP coating presents a high TC of 4.29 W m^(−1)K^(−1),which is much higher than other reported anti-corrosion polymer coatings and thereby endowing metal materials coated by this coating with outstanding thermal management performance compared with those coated by pure epoxy coating.Meanwhile,the low-frequency impedance remains at 5.1×10^(11)Ωcm^(2)even after 181 days of immersion in 3.5 wt%NaCl solution.Besides,the coating also exhibits well hydrophobicity,self-cleaning properties,temperature resistance and adhesion.This work provides valuable insights for the preparation of high-performance composite coatings with potential to be used as advanced multifunctional thermal management materials,especially for heat conduction metals protection.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.21978066)Basic Research Program of Hebei Province for Natural Science Foundation and Key Basic Research Project(Grant No.18964308D)the Key Program of Natural Science Foundation of Hebei Province(Grant No.B2020202048).
文摘Methacrylic acid,an important organic chemical,is commercially manufactured starting from fossil feedstock.The decarboxylation of itaconic acid derived for biomass is a green route to the synthesis of methacrylic acid.In view of the problems existing in the researches on this route such as use of noble metal catalyst,harsh reaction conditions and low desired-product yield,we prepared a series of hydroxyapatite catalysts with different Ca/P molar ratios and evaluated their catalytic performance.The results showed that the hydroxyapatite catalyst with a Ca/P molar ratio of 1.58 had the best catalytic activity.The highest yield of MAA up to 61.2%was achieved with basically complete conversion of itaconic acid under the suitable reaction conditions of 1 equivalent of NaOH,2 MPa of N_(2),250℃,and 2 h.On this basis,a reaction network for the decarboxylation of itaconic acid to methacrylic acid catalyzed by hydroxyapatite was established.With the aid of catalyst characterization using X-ray powder diffraction,NH3/CO2 temperature-programmed desorption,N_(2)physisorption,inductively coupled plasma optical emission spectrometry,and scanning electron microscopy,we found that the distribution of surface acid sites and basic sites,crystal growth orientation,texture properties and morphology of hydroxyapatite varied with the Ca/P molar ratio.Furthermore,the change of the crystal growth orientation and its influence on the surface acidity and alkalinity were clarified.
基金the National Natural Science Fund for Distinguished Young Scholars(22025803)supported by the National Natural Science Foundation of China(22178338)+1 种基金the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021018)the financial support of project“Research and development and industrial application of new catalytic materials for green synthesis of MMA to replace highly toxic HCN”(Hebei,20374002D)。
文摘The kinetic behavior of esterification between methacrylic acid and methanol catalyzed by NKC-9 resin was studied in a fixed bed reactor.The reaction was conducted in the temperature range of 323.15 to 368.15 K with the molar ratio of reactants from 0.8 to 1.4 under certain pressure.The measurement data were regression with the pseudo-homogeneous(P-H),Eley-Rideal(E-R),and Langmuir-Hinshelwood(L-H)heterogeneous kinetic models.Independent adsorption experiments were implemented to gain the adsorption equilibrium constants of four components.Among the above three models,the L-H model exhibited the best fitting results.The stability of NKC-9 was evaluated by long-term running with the yield of methyl methacrylate no decrease during 3000 h operation.The structure and physicochemical properties of the new and used catalyst were performed by several characterizations including thermogravimetric analysis(TG),scanning electron microscope(SEM),X-ray diffraction(XRD)and Fourier transform infrared spectroscopy(FT-IR)and so on.
文摘Poly(methacrylic acid co-poloxamer) hydrogel networks were synthesized by free radical solution polymerization and their equilibrium swelling and solute permeation properties were characterized. These gels exhibited pH dependant swelling and solute diffusivity due to the formation or disruption of hydrogen bonded complexation between methacrylic acid (MAA) and etheric (EO). In neutral and basic conditions (above the swelling transition pH), the copolymer swelling was greatly higher than acid condition. In complexed hydrogels, the diffusion coefficients of vitamin B12 (VB12) were in the range of 10-10 to 10-7 cm2s-1; While in uncomplexed hydrogels, the values were about 210-6 cm2s-1. The comonomer composition and synthesis conditions have great effect on the structure, and thereby, swelling and solute diffusion characteristics of the resultant hydrogels. For the copolymers with composition of less than or more than 1:1 MAA/EO molar ratio, the plot of lnD vs 1/H-1 followed two different linear equations of 慺ree volume theory? respectively.
基金Support by the National Key Projects for Fundamental Research and Development of China(2016YFB0601303)Key Research Program of Frontier Sciences,CAS,(QYZDBSSW-SLH022)the Foundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2017-K08).
文摘In this work,a techno-economic study for the solvent based extraction of methacrylic acid from an aqueous solution is presented.The involved phase equilibrium calculations in process design are verified by measured experimental data.First,experiments are conducted with different solvent candidates to measure LLE(liquid–liquid equilibrium)data and to establish the effects of extraction temperature and dosage of solvent.Next,the binary interaction parameters for the UNIQUAC model to be used for equilibrium calculations are fine-tuned with measured data.Then,a process for the solvent based extraction of methacrylic acid recovery is designed and verified through simulation with the regressed UNIQUAC model parameters.The optimal configuration of the process flowsheet is determined by minimizing the total annualized cost.Among the three solvent candidates considered-cyclohexane,hexane and toluene-the highest efficiency and the lowest total annualized cost is found with toluene as the solvent.
基金This work was supported by the Youth Science Foundation of Acedemia Sinica the China Postdoctoral Science Foundation, the National Natural Science Foundation of China, and Polymer Physics Laboratory,Academia Sinica
文摘A full-relaxation optimization of molecule and the Dreiding force field are employed to obtain the geometry parameters and the conformational energy surfaces of meso or racemic dyad of poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA). Three different carbonyl-bond orientations of side-groups resulted in the differences in depth of potential wells in their energetic contours for a meso or a racemic dyad. These discrepancies are interpreted as a result of various fine structures corresponding to grid search conformations as well as thereby different interactions. The analysis on the most stable conformations of PMAA confirmed that the ester groups are nearly perpendicular to the plane defined by the two adjacent skeletal bonds but may possibly change their relative orientations to meet the requirement of lower energy during the conformational state transition. For each polymer, two global energy maps of a meso and a racemic dyad were finally constructed from the superposition of energy data for the three kinds of side-group orientations by the Boltzmann factors. From an ensemble average, the proposed scheme with three rotational isomeric states (RIS) allowed us to access the experimentally unperturbed dimensions of PAA chain via the configurational statistical mechanics. Although the calculation was based on the short-range, local interactions, it was interested to note that the experimental characteristic ratios just fell within the range calculated for atactic chains.
文摘The photo-controlled/living radical polymerization of methacrylic acid (MAA) was performed at room temperature by irradiation with a high-pressure mercury lamp using azo initiators and 4-methoxy-2,2,6,6-tetramethylpiperidine-1-oxyl as the mediator in the presence of (4-tert-butylphenyl)diphenylsulfonium triflate (tBuS) as the accelerator. Whereas the bulk polymerization yielded polymers with a bimodal molecular weight distribution in both the absence and presence of tBuS, the solution polymerization in methanol produced unimodal polymers with the molecular weight distribution of 2.0 - 2.3 in the presence of tBuS. The molecular weight distribution of the resulting poly (MAA) decreased with an in- crease in tBuS. The dilution of the monomer concentration also reduced the molecular weight distribution. The use of the initiator with a low 10-h half-life temperature also effectively controlled the molecular weight. The livingness of the polymerization was confirmed by obtaining linear increases in the first-order conversion versus time, the molecular weight versus the conversion, and the molecular weight versus the reciprocal of the initiator concentration.
文摘Methacrylic acid first was neutralized with an aqueous solution of NaOH to pH = 6.0 similar to 7.0, vinylene carbonate (VCA) was added to the solution, then monomers were copolymerized in paraffin oil by means of reverse-phase suspension polymerization and hydrophilic copolymeric supports were prepared. The properties of the supports were determined using trypsin and results show that the amount of enzymes coupled to the supports and the specific activity of immobilized trypsin are related to the content of VCA structure units, reaction time and concentration of enzyme solution, etc.
文摘Poly (methacrylic acid-co-poloxamer) hydrogel networks were synthesized byfree-radical solution polymerization, and the dynamic swelling and in vitro release properties ofmodel drugs, dextromethorphan hydrobromide (DMP) and vitamin B_(12) (VB_(12)) were studied. Thesegels exhibited pH-dependant swelling and sustained drug release properties, and the water uptakerate and drug release rate in neutral or basic media were higher than that in acidic media. Theresults showed that the water uptake followed non-Fickian or zero order process in neutral or basicmedia, and the release of model drugs from hydrogels of appropriate composition was of zero orderkinetics over a period of several hours.
文摘A highly efficient copolymer (methacrylic acid - co - styrene - divinylbenzene) in situ making high-performance liquid chromatographic column was prepared and evaluated. The column efficiency calculated in terms of height equivalent to a theoretical plate was 25 mu m and rapid separations of small molecules such as substituted aromatic hydrocarbons and aromatic acids were achieved within five minutes.
文摘Isobutyraldehyde was used as starting material via three steps: oxidation, chlorination and dehydro-chlorination to yield methacrylic acid. The total yield of methacrylic acid is 49.7%.
基金the Ministry of Science and Technical Development of the Republic of Serbia,through Project No.172015 OI.
文摘The kinetics of free-radical crosslinking co-polymerization(FRCCP)of acrylic acid(AA)with both methacrylic acid(MA)(PAMA hydrogel)and maleic acid(MAL)(PAMAL hydrogel)was investigated under the conditions of isothermal conventional heating(CH)and under the conditions of microwave heating(MWH)with controlled cooling.The kinetics curves of FRCCP of PAMA and PAMAL hydrogels under the conditions of CH are described with the kinetics model of second order chemical reaction,whereas the kinetics curves under the conditions of CH are described with the kinetics model of Polany-Winger.It is proved that MWH leads to the changes in the rate of FRCCP and to the changes in the values of the kinetic parameters activation energy(Ea)and pre-exponential factor(lnA).It was found the existence of relationship between the values of the kinetic parameters calculated for MWH and CH for PAMA and PAMAL hydrogel synthesis process,which is well-known as compensation effect.The effect of MWH on the kinetics of FRCCP for PAMA and PAMAL hydrogel formation were explained by applying the model of activation by selective energy transfer(SET).The changes in kinetics model,rate of FRCCP and kinetics parameters,caused with the MWH can found wide application in designing novel technologies for obtaining polymers and for synthesis of polymers with novel physico-chemical properties.The suggested mechanism of activation for polymerisation under the conditions of MWH also enables development of novel reaction systems and technologies for polymers productions.
文摘The solid phase graft copolymerization of polypropylene (PP) andmethacrylic acid (MAA) was investigated. benzoyl peroxide(BPO) wasused as initia- tor. The influence of the reactive time,concentration of initiator and monomer on degree of graft and meltflow index of graft copolymer(PP-MAA) was discussed. The effect ofgraft copolymer on mechanical properties of The glass fibre (GF)reinforced PP composites was also Studied. It is proved that graftcopolymer could obviously Increase the interfacial adhesive strengthbetween PP and GF.
基金Funded by the Natural Science Foundation of Hubei Province,China(No.2005ABA053)the National Natural ScienceFoundation of China(No.20471044)
文摘A novel environmental friendly catalyst, H3PW12O40/MCM-48, was prepared by impregnation method. The catalysts were characterized by means of XRD and FT-IR. The synthesis of n-butyl methacrylate catalyzed by H3PW12O40/MCM-48 was studied with methacrylic acid and n-butyl alcohol as reactants. H3PW12O40/MCM-48 is an excellent catalyst for synthesizing n-butyl methacrylate and Keggin structure of H3PW12O40 kept unchanged after being impregnated on surface of the molecular sieve support. Effects of n(methacrylic acid):n(n-butyl alcohol), catalyst dosage, cyclohexane(water-stripped reagent) and reaction time on yields of the product were investigated. The optimum conditions have been found, that is, molar ratio of acid to alcohol is 1:1.6, mass ratio of catalyst used to the reactants is 0.5% and reaction time is 2.0 h. Under these conditions, the yield of n-butyl methacrylate can reach 93.7%.
基金Acknowledgment: This work was financially supported by the Natural Science Foundation of Hubei Province, China (No. 2005ABA053) and Hubei Normal University.
文摘A novel environmental friendly catalyst, H4SiW12O40/MCM-48, was prepared by impregnation method. The catalysts were characterized by means of XRD and FT-IR. The synthesis of n-butyl methacrylate catalyzed by H4SiW12O40/MCM-48 was studied with methacrylic acid and n-butyl alcohol as reactants. H4SiW12O40/MCM-48 was an excellent catalyst for the synthesis of n-butyl methacrylate and Keggin structure ofH4SiW12O40 kept unchanged after impregnated on surface of the molecular sieve support. Effects of n(methacrylic acid): n(n-butyl alcohol), catalyst dosage, cyclohexane (water-stripped reagent) and reaction time on the yields of the product were investigated. The optimum conditions have been found, that is, molar ratio of acid to alcohol is 1:1.5, mass ratio of catalyst used to the reactant is 1.5%, cyclohexane is 10 mL and reaction time is 1.5h. Under these conditions, the yield of n-butyl methacrylate can reach 73.2%.
基金supported by National Natural Science Foundation of China(21978066)Basic Research Program of Hebei Province for Natural Science Foundation and Key Basic Research Project(18964308D)the Key Program of Natural Science Foundation of Hebei Province(B2020202048).
文摘The synthesis of methacrylic acid from biomass-derived itaconic acid is a green route,for it can get rid of the dependence on fossil resource.In order to solve the problems on this route such as use of a preciousmetal catalyst and a corrosive homogeneous alkali,we prepared a series of hydroxyapatite catalysts by an ionic liquid-assisted hydrothermal method and evaluated their catalytic performance.The results showed that the ionic liquid[Bmim]BF_(4) can affect the crystal growth of hydroxyapatite,provide fluoride ion for fluorination of hydroxyapatite,and adjust the surface acidity and basicity,morphology,textural properties,crystallinity,and composition of hydroxyapatite.The[Bmim]BF4 dosage and hydrothermal temperature can affect the fluoride ion concentration in the hydrothermal system,thus changing the degree of fluoridation of hydroxyapatite.High fluoride-ion concentration can lead to the formation of CaF_(2) and thus significantly decrease the catalytic performance of hydroxyapatite.The hydrothermal time mainly affects the growth of hydroxyapatite crystals on the c axis,leading to different catalytic performance.The suitable conditions for the preparation of this fluoridized hydroxyapatite are as follows:a mass ratio of[Bmim]BF4 to calcium salt=0.2:1,a hydrothermal time of 12 h,and a hydrothermal temperature of 130℃.A maximal methacrylic acid yield of 54.7%was obtained using the fluoridized hydroxyapatite under relatively mild reaction conditions(250℃ and 2 MPa of N_(2))in the absence of a precious-metal catalyst and a corrosive homogeneous alkali.
基金research conducted with the financial support of Science Foundation Ireland under the SFI Research Infrastructure Programme (21/RI/9831)the funding provided by the Irish Research Council through the Irish Research Council Enterprise Partnership Scheme with Johnson and Johnson (EPSPG/2020/78)
文摘Tissue engineering(TE)continues to be widely explored as a potential solution to meet critical clinical needs for diseased tissue replacement and tissue regeneration.In this study,we developed a poly(2-hydroxyethyl methacrylate-co-methacrylic acid)(pHEMA-co-MAA)based hydrogel loaded with newly synthesized conductive poly(3,4-ethylene-dioxythiophene)(PEDOT)and polypyrrole(PPy)nanoparticles(NPs),and subsequently processed these hydrogels into tissue engineered constructs via three-dimensional(3D)printing.The presence of the NPs was critical as they altered the rheological properties during printing.However,all samples exhibited suitable shear thinning properties,allowing for the development of an optimized processing window for 3D printing.Samples were 3D printed into pre-determined disk-shaped configurations of 2 and 10 mm in height and diameter,respectively.We observed that the NPs disrupted the gel crosslinking efficiencies,leading to shorter degradation times and compressive mechanical properties ranging between 450 and 550 kPa.The conductivity of the printed hydrogels increased along with the NP concentration to(5.10±0.37)×10^(−7)S/cm.In vitro studies with cortical astrocyte cell cultures demonstrated that exposure to the pHEMA-co-MAA NP hydrogels yielded high cellular viability and proliferation rates.Finally,hydrogel antimicrobial studies with staphylococcus epidermidis bacteria revealed that the developed hydrogels affected bacterial growth.Taken together,these materials show promise for various TE strategies.
文摘Carbon nanofibers have revolutionized nanotechnology due to their potential applications in emerging frontiers of research and industrial sectors. This can be attributed to their superior properties such as higher mechanical strength, unique surface characteristics, and improved adherence that is transmitted into the polymer matrix to form a nanocomposite with improved properties. Polymethyl methacrylate is a common carbon source for the synthesis of carbon nanofibres of its high mechanical strength, thermal stability, and low moisture and water absorbing capacity that allows its products to have several applications. In this work, we report the successful electrospinning of carbon nanofibres from Poly methyl methacrylate and functionalizing the resulting carbon nanofibres. The functionalized carbon nanofibres were analyzed to determine their solubility/dispersion in selected organic solvents, then characterized using Fourier transform infra-red spectroscopy, Raman spectroscopy, scanning electron microscopy combined with Energy dispersive spectroscopy and Thermalgravimetric analysis.
文摘A series of homo and copolymers of styrene (ST) and 2-hydroxyethyl methacrylate (HEMA) in three different media (bulk, tetrahydrofuran, and benzene) have been investigated by free radical polymerization method. The samples obtained from the synthesis were characterized by Fourier Transform-Infrared spectroscopy (FT-IR), proton nuclear magnetic resonance spectroscopy (<sup>1</sup>H NMR), atomic force microscopy (AFM), and differential scanning calorimetry (DSC). The results show that the synthesis of the polymers is more feasible under neat conditions rather than solvent directed reaction. Moreover, the DSC data shows that the polystyrene obtained is amorphous in nature and therefore displayed only a glass transition signal rather than crystallization and melting peaks. In addition, this study indicates that homolopolymerization of styrene via free radical polymerization tends to be preferable in less polar solvents like THF than in non-polar solvents like benzene. Benzene might destabilize the formation of the reactive radicals leading to the formation of the products. In summary, the homolpolymerization of styrene is more feasible than the homopolymerization 2-hydroxyethyl methacrylate under the experimental setup used. Styrene is more reactive than 2-hydroxyethyl methacrylate than free radical polymerization reaction due in part of the generation of the benzylic radical intermediate which is more stable leading to the formation of products than alkyl radical which are less stable. Furthermore, polymerization of styrene under neat conditions is preferable in solvent-assisted environments. The choice of solvent for the synthesis of these polymers is crucial and therefore the selection of solvent that leads to the formation of a more stable reaction intermediate is more favorable. It is worth noting that the structure of the proposed copolymer consists of a highly polar and hydrophilic monomer, 2-hydroxyethyl methacrylate and a highly non-polar and hydrophobic monomer, styrene. These functionalities constitute an amphiphilic copolymer with diverse characteristics. A plausible explanation underlying our observations is that the reaction conditions employed in the synthesis of these copolymers might not be the right route required under free radical polymerization.
文摘Polymer science encompasses a different range of materials critical to industries spanning from packaging to biomedicine. Understanding the synthesis, characterization, and applications of common homopolymers and copolymers is fundamental to advancing polymer research and development. In this comprehensive review, we explore various preparation methods, including free radical, anionic, and cationic polymerization, utilized for synthesizing homopolymers and copolymers. Furthermore, we investigate solvent choices commonly employed for polymer characterization, ranging from neat conditions, polar protic and polar aprotic solvents. We also explored characterization techniques, including Fourier Transform Infrared Spectroscopy (FTIR), Nuclear Magnetic Resonance (NMR), Atomic Force Microscopy (AFM), Differential Scanning Calorimetry (DSC), and Thermogravimetric Analysis (TGA). In addition to industrial applications, we highlight the diverse biological applications of homopolymers, poly(2-hydroxyethyl methacrylate) (pHEMA) and polystyrene, which find its extensive use in biomedicine. By synthesizing and analyzing this wealth of information, this review aims to provide a comprehensive understanding of the synthesis, characterization, and applications of homopolymers and copolymers, with a particular focus on their biological applications. This holistic approach not only contributes to advancements in polymer science and technology but also fosters innovation in biomedicine, ultimately benefiting human health and well-being.
基金supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51925403)Major Research plan of the National Natural Science Foundation of China(Grant No.91934302)+2 种基金the National Science Foundation of China(21676052,21606042)Independent Innovation Fund of Tianjin University(2023XJD0050)Funding for National Key R&D Program of China(2022YFB3808800).
文摘Preparing polymeric coatings with well corrosion resistance and high thermal conductivity(TC)to prolong operational life and ensure service reliability of heat conductive metallic materials has long been a substantive and urgent need while a difficult task.Here we report a multifunctional epoxy composite coating(F-CB/CEP)by synthesizing cerium methacrylate and ingeniously using it as a novel curing agent with corrosion inhibit for epoxy resin and modifier for boron nitride through"cation-π"interaction.The prepared F-CB/CEP coating presents a high TC of 4.29 W m^(−1)K^(−1),which is much higher than other reported anti-corrosion polymer coatings and thereby endowing metal materials coated by this coating with outstanding thermal management performance compared with those coated by pure epoxy coating.Meanwhile,the low-frequency impedance remains at 5.1×10^(11)Ωcm^(2)even after 181 days of immersion in 3.5 wt%NaCl solution.Besides,the coating also exhibits well hydrophobicity,self-cleaning properties,temperature resistance and adhesion.This work provides valuable insights for the preparation of high-performance composite coatings with potential to be used as advanced multifunctional thermal management materials,especially for heat conduction metals protection.