The effect of cold plastic deformation between solution treatment and artificial aging on the age-hardening response and mechanical properties of alloy was investigated by micro-hardness test,tensile test,optical micr...The effect of cold plastic deformation between solution treatment and artificial aging on the age-hardening response and mechanical properties of alloy was investigated by micro-hardness test,tensile test,optical microscopy(OM) and TEM observation.After solution treatment at 420 ℃ for 1 h,three kinds of pre-deformation strains,i.e.0,5% and 10%,were applied to extruded ZM61 bars.Age-hardening curves show that pre-deformation can significantly accelerate the precipitation kinetics and increase peak-hardness value;however,as pre-deformation strain rises from 5% to 10%,there is no gain in peak hardness value.The room temperature(RT) tensile properties demonstrate that increasing the pre-deformation degree can enhance the yield strength(YS) and ultimate tensile strength(UTS) but moderately reduce elongation(EL);furthermore,the enhancement of YS is larger than that of UTS.No twin can be observed in 5% pre-deformed microstructure;however,a large number of twins are activated after 10% pre-deformation.The peak-aged TEM microstructure shows that pre-deformation can increase the number density of rod-shaped β 1 ' precipitates which play a key role in strengthening ZM61 alloy.展开更多
基金Project(2007CB613700) supported by the National Basic Research Program of ChinaProject(50725413) supported by the National Natural Science Foundation of China+2 种基金Project(CDJXS11132228) supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(2010DFR50010,2008DFR50040) supported by International Cooperation Program,ChinaProjects (CSTC2009AB4008,2010CSTC-HDLS) supported by Chongqing Sci & Tech Program,China
文摘The effect of cold plastic deformation between solution treatment and artificial aging on the age-hardening response and mechanical properties of alloy was investigated by micro-hardness test,tensile test,optical microscopy(OM) and TEM observation.After solution treatment at 420 ℃ for 1 h,three kinds of pre-deformation strains,i.e.0,5% and 10%,were applied to extruded ZM61 bars.Age-hardening curves show that pre-deformation can significantly accelerate the precipitation kinetics and increase peak-hardness value;however,as pre-deformation strain rises from 5% to 10%,there is no gain in peak hardness value.The room temperature(RT) tensile properties demonstrate that increasing the pre-deformation degree can enhance the yield strength(YS) and ultimate tensile strength(UTS) but moderately reduce elongation(EL);furthermore,the enhancement of YS is larger than that of UTS.No twin can be observed in 5% pre-deformed microstructure;however,a large number of twins are activated after 10% pre-deformation.The peak-aged TEM microstructure shows that pre-deformation can increase the number density of rod-shaped β 1 ' precipitates which play a key role in strengthening ZM61 alloy.