Few studies were reported on the phases'relationships of AE44(Mg-4.0Al-4.1RE-0.3Mn,wt.%)and its composites.In this work,AE44 alloy and Saffil(6-Al2O3)/AE44 Metal matrix composite(MMC)were both prepared by slow sho...Few studies were reported on the phases'relationships of AE44(Mg-4.0Al-4.1RE-0.3Mn,wt.%)and its composites.In this work,AE44 alloy and Saffil(6-Al2O3)/AE44 Metal matrix composite(MMC)were both prepared by slow shot high pressure die casting(SS-HPDC)technology and their phase constitutions were all studied in detail using experimental techniques combined with CALPHAD(Calculation of Phase Diagram)modeling.The results revealed that the alloy consists of the a-Mg matrix,A1hRE3 intermetallic phase,and one trace phase AI3RE,while the composite contains five major phases:a-Mg,5-AI2O3,AI3RE,MgO and Mg2Si.and two trace phases of A12RE and AI11RE3,respectively.A1hRE3 is partly derived from ALRE,while A13RE is a product of the peritectoid reaction between the two precipitates.The presence of MgO and Mg2Si is due to the interfacial reaction between the SiO2 binder in the fiber preforms and the molten magnesium during infiltration.The use of SiO2 binder in the preform manufacturing was limited/minimized to reduce the MgO formation in the MMC casting process,which can be detrimental to the fatigue performance of the MMC materials.展开更多
This work investigated the microstructure and impact behavior of Mg-4Al-5RE-xGd(RE represents La-Ce mischmetal;x=0,0.2,0.7 wt.%)alloys cast by high-pressure die casting(HPDC),permanent mold casting(PMC),and sand casti...This work investigated the microstructure and impact behavior of Mg-4Al-5RE-xGd(RE represents La-Ce mischmetal;x=0,0.2,0.7 wt.%)alloys cast by high-pressure die casting(HPDC),permanent mold casting(PMC),and sand casting(SC)techniques.The results indicated that with increasing Gd content,the grain sizes of the HPDC alloy had a slight change,but the grains of the PMC and SC alloys were significantly refined.Besides,the acicular Al_(11)RE_(3)phase was modified into the short-rod shape under the three casting conditions.The impact toughness of the studied alloy was mainly dominated by the absorbed energy during the crack initiation.With increasing Gd content,the impact toughness of the studied alloy monotonically increased due to the lower tendency of the modified second phase toward crack initiation.The impact stress was higher than the tensile stress,exhibiting a strain rate sensitivity for the mechanical response;however,the HPDC alloy had an inconsistent strain rate sensitivity during the impact event due to the transformation of the deformation mechanism from twinning to slip with increasing strain.Abundant dimples covered the fracture surface of the fine-grained HPDC alloys,indicating a typical ductile fracture.Nevertheless,due to the deficient{1012}twinning activity and the suppressed grain boundary sliding during the impact event,the HPDC alloys showed insufficient plastic deformation capacity.展开更多
基金This work was co-funded by,The National Key Research and Development Program of China(NO.2016YFB0301002)and General Motors Global Research and Development.
文摘Few studies were reported on the phases'relationships of AE44(Mg-4.0Al-4.1RE-0.3Mn,wt.%)and its composites.In this work,AE44 alloy and Saffil(6-Al2O3)/AE44 Metal matrix composite(MMC)were both prepared by slow shot high pressure die casting(SS-HPDC)technology and their phase constitutions were all studied in detail using experimental techniques combined with CALPHAD(Calculation of Phase Diagram)modeling.The results revealed that the alloy consists of the a-Mg matrix,A1hRE3 intermetallic phase,and one trace phase AI3RE,while the composite contains five major phases:a-Mg,5-AI2O3,AI3RE,MgO and Mg2Si.and two trace phases of A12RE and AI11RE3,respectively.A1hRE3 is partly derived from ALRE,while A13RE is a product of the peritectoid reaction between the two precipitates.The presence of MgO and Mg2Si is due to the interfacial reaction between the SiO2 binder in the fiber preforms and the molten magnesium during infiltration.The use of SiO2 binder in the preform manufacturing was limited/minimized to reduce the MgO formation in the MMC casting process,which can be detrimental to the fatigue performance of the MMC materials.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.U1902220,51674166,51074106 and 50674067)the National Key Research and Development Program of China(Grant No.2016YFB0301001)。
文摘This work investigated the microstructure and impact behavior of Mg-4Al-5RE-xGd(RE represents La-Ce mischmetal;x=0,0.2,0.7 wt.%)alloys cast by high-pressure die casting(HPDC),permanent mold casting(PMC),and sand casting(SC)techniques.The results indicated that with increasing Gd content,the grain sizes of the HPDC alloy had a slight change,but the grains of the PMC and SC alloys were significantly refined.Besides,the acicular Al_(11)RE_(3)phase was modified into the short-rod shape under the three casting conditions.The impact toughness of the studied alloy was mainly dominated by the absorbed energy during the crack initiation.With increasing Gd content,the impact toughness of the studied alloy monotonically increased due to the lower tendency of the modified second phase toward crack initiation.The impact stress was higher than the tensile stress,exhibiting a strain rate sensitivity for the mechanical response;however,the HPDC alloy had an inconsistent strain rate sensitivity during the impact event due to the transformation of the deformation mechanism from twinning to slip with increasing strain.Abundant dimples covered the fracture surface of the fine-grained HPDC alloys,indicating a typical ductile fracture.Nevertheless,due to the deficient{1012}twinning activity and the suppressed grain boundary sliding during the impact event,the HPDC alloys showed insufficient plastic deformation capacity.