Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface ...Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.展开更多
The high ductility of Mg-Li alloy has been mainly ascribed to a high activity of pyramidal<c+a>slip to accommodate plastic strain.In the present study,however,a quantitative analysis reveals that Li-addition can...The high ductility of Mg-Li alloy has been mainly ascribed to a high activity of pyramidal<c+a>slip to accommodate plastic strain.In the present study,however,a quantitative analysis reveals that Li-addition can only slightly stimulate the activation of pyramidal<c+a>slip under compression along the normal direction of a hot-rolled Mg-4.5 wt.%Li plate,with a relative activity of approximately 18%.Although the limited activity of pyramidal<c+a>slip alone cannot accommodate a large plastic strain,it effectively reduces the number of{10.11}−{10.12}double twins,which are believed to be favorable sites for crack initiation.The evidently reduced activity of double twins leads to a lower cracking tendency,and therefore improves ductility.展开更多
In order to study the deformation behavior and evaluate the workability of the dual-phase Mg-9Li-3Al-2Sr alloy, isothermal hot compression tests were conducted using the Gleeble-3500 thermal-mechanical simulator, in r...In order to study the deformation behavior and evaluate the workability of the dual-phase Mg-9Li-3Al-2Sr alloy, isothermal hot compression tests were conducted using the Gleeble-3500 thermal-mechanical simulator, in ranges of elevated temperatures (423-573 K) and strain rates (0.001-1 s^-1). Plastic instability is evident during the deformation which is in the form of serrated flow; serrated yielding is attributed to the locking of mobile dislocations by the Mg and Li atoms which diffuse during the deformation. The relationships between flow stress, strain rate and deformation temperature were analyzed and the deformation activation energy and some basic material factors at different strains were calculated using the Arrhenius equation. The effects of temperature and strain rate on deformation behavior were represented using the Zener–Hollomon parameter in an exponent-type equation. To verify the validity of the constitutive model, the predicted values and experimental flow curves under different deformation conditions were compared, the correlation coefficient (0.9970) and average absolute relative error (AARE=4.41%) were calculated. The results indicate that the constitutive model can be used to accurately predict the flow behavior of dual-phase Mg-9Li-3Al-2Sr alloy during high temperature deformation.展开更多
LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling text...LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling texture is largely affected by the initial texture.All the samples exhibited two main texture components as RD-split double peaks texture and TD-split double peaks texture after large strain rolling.The intensity of the two texture components was strongly influenced by the initial orientation and rolling temperature.Extension twinning altered the large-split non-basal orientation to a near basal one at low rolling strain.The basal orientation induced by twinning is unstable,which finally transmitted to the RD-split texture.The strong TD-split texture formed due to slip-induced orientation transition from its initial orientation.The competition between prismatic and basal slip determined the intensity and tilt angle of the TD-split texture.By increasing the rolling temperature,the TD-split texture component was enhanced in all three samples.Limitation of extension twinning behavior and the promotion of prismatic slip at elevated temperature are the main reasons for the difference in hot and cold rolling texture.展开更多
Tungsten inert gas weld was carried out on super-light magnesium-lithium alloy plates with a thickness of 2 mm, using argon gas as a protecting atmosphere. The microstructure and mechanical properties of the welded jo...Tungsten inert gas weld was carried out on super-light magnesium-lithium alloy plates with a thickness of 2 mm, using argon gas as a protecting atmosphere. The microstructure and mechanical properties of the welded joints were investigated. The results indicate that the microstructure in the fusion zone is fine, and the microstructure in the heat-affected zone is coarser than the parent metal. The tensile strength of the welded joint is about 84% that of the parent metal. The fracture occurs in a mixed type of toughness and brittleness in the heat-affected zone. During the welding process, aluminum and cerium are enriched at grain boundaries in the fusion zone.展开更多
Mg-Li alloy,as a superlight metallic engineering material,shows great potential in the fields of aerospace and militarydue to its high specific strength,better formability,and excellent electromagnetic shielding perfo...Mg-Li alloy,as a superlight metallic engineering material,shows great potential in the fields of aerospace and militarydue to its high specific strength,better formability,and excellent electromagnetic shielding performance.The research process ofMg-Li alloys is reviewed and three main problems are pointed out.Aimed at the poor corrosion resistance of Mg-Li alloys,thecorrosion behavior is mainly summarized.The surface treatment technologies,including electroplating,electroless plating,plasmaspraying,molten salt replacement,conversion coating,anodizing,micro-arc oxidation,organic coating,and organic-inorganic hybridcoating,are introduced in detail.Finally,the future development of corrosion and protection of Mg?Li alloys is discussed.展开更多
A series of a-based Mg-Li-A1-Zn-xRE alloys were prepared. These alloys have low density ranging from 1.5 to 1.7 g·cm^-3 and high strength properties. The influence of RE element on the microstructure and the mech...A series of a-based Mg-Li-A1-Zn-xRE alloys were prepared. These alloys have low density ranging from 1.5 to 1.7 g·cm^-3 and high strength properties. The influence of RE element on the microstructure and the mechanical properties of these alloys were studied. The results indicate that the addition of RE (La, Pr, Ce) leads to the formation of rodshaped intermetallic compound Al2Zn2La distributed in the matrix. Al2Zn2La induces reduction of the laminar spacing and causes refinement of the microstructure. Therefore, this compound improves the strength of alloys at a high temperature.展开更多
Micro-arc oxidation (MAO) method was used for the surface modification of an Mg-5wt.%Li alloy. Ceramic coatings were in-situ fabricated on the Mg-Li alloy. The morphology feature,phase composition,and corrosion-resist...Micro-arc oxidation (MAO) method was used for the surface modification of an Mg-5wt.%Li alloy. Ceramic coatings were in-situ fabricated on the Mg-Li alloy. The morphology feature,phase composition,and corrosion-resistance of the formed ceramic coatings were studied by SEM,XRD,and electrochemical methods,respectively. The results showed that the coatings produced in a sodium silicate solution system were composed of MgO and Mg2SiO4. The ceramic coating became thicker and the content of Mg2SiO4 phase increase...展开更多
A novel Mg-Li alloy was treated in a cerium nitrate solution and cerium chemical conversion coating was obtained on the alloy. Then the forming process, structure and corrosion resistance of the coating were investiga...A novel Mg-Li alloy was treated in a cerium nitrate solution and cerium chemical conversion coating was obtained on the alloy. Then the forming process, structure and corrosion resistance of the coating were investigated. The influential factors of cerium conversion coating were discussed through orthogonal experiments, and the optimum processing parameters were confirmed. XPS spectra displayed that the conversion coating consisted of cerium compounds, and the major component of the protective layer was a mixture of Ce (IV) oxide and Ce (IV) hydroxide. In addition, XRD pattern illustrated that there was crystalline CeO2 in the conversion coating. Analysis by SEM showed that the cerium conversion coating was uniform with a fiber-like morphology. The thickness of the conversion coating was 12 μm. The results of electrochemical potentiodynamic polarization and hydrogen evolution measurement indicated that the cerium conversion coating provided effective protection to the novel Mg-Li alloy.展开更多
Pioneering work on Sc or/and Be added Mg-Li alloys with refined grains was initiated. Various rolling-based thermo-mechanical treatments on these Mg-Li alloys were carried out. Four Mg-Li alloys were prepared by vacuu...Pioneering work on Sc or/and Be added Mg-Li alloys with refined grains was initiated. Various rolling-based thermo-mechanical treatments on these Mg-Li alloys were carried out. Four Mg-Li alloys were prepared by vacuum melting process. A unique route for producing fine grains was applied which concluded solution treatment at 350 ℃, cold rolling with 60% thickness reduction and 250 ℃ annealing, successively.展开更多
A new technology for preparation of low cost Mg-Li alloys was studied. The alloys were prepared by electrolysis in molten LiCl-KCl (weight ratio is 1:1) electrolyte with Mg rod severing as the consumed cathode. Mai...A new technology for preparation of low cost Mg-Li alloys was studied. The alloys were prepared by electrolysis in molten LiCl-KCl (weight ratio is 1:1) electrolyte with Mg rod severing as the consumed cathode. Main factors that affect current efficiency were investigated, and optimal electrolysis parameters were obtained. Mg-Li alloys with low lithium Content (about 25%) were prepared by the unique method of a higher post-thermal treatment temperature after electrolysis at low temperature. The results showed that the electrolysis can be carried out at low temperature, which resulted in reducing preparation cost due to energy saving. The new technology for the oreoaration of Mg-Li alloy by electrolysis in molten salt was laroved to be feasible.展开更多
The electrochemical formation of Mg-Li alloys was investigated in a molten LiCl-KCl (58-42 mol%) eutectic melt at 723 K. The cyclic voltammogram. for a Mo electrode showed that the electroreduction of Li+ proceeds in ...The electrochemical formation of Mg-Li alloys was investigated in a molten LiCl-KCl (58-42 mol%) eutectic melt at 723 K. The cyclic voltammogram. for a Mo electrode showed that the electroreduction of Li+ proceeds in a single step and the deposition potential of Li metal was -2.40 V (vs. Ag/AgCl). For Mg electrode, the electroreduction of Li+ takes place at less cathodic potential than that at the Mo electrode which was caused by the formation of Mg-Li alloys. Phase of the deposited Mg-Li alloys could be controlled by the electrolysis potential, and the samples were characterized by X-ray diffraction and scanning electron microscopy. The results showed that alpha-Mg and beta-Li phases were obtained at -2.35 and -2.55 V, respectively. (c) 2007 Mi Lin Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Twinning-detwinning(TDT)behavior in a strongly basal-textured Mg-Li alloy during two-step compression(RD)-compression(ND)process was investigated using quasi-in-situ EBSD.TDT behavior and TDT variants selection were s...Twinning-detwinning(TDT)behavior in a strongly basal-textured Mg-Li alloy during two-step compression(RD)-compression(ND)process was investigated using quasi-in-situ EBSD.TDT behavior and TDT variants selection were statistically discussed with the loading path for the first time.Non-Schmid twinning behavior was observed in the first step compression,owing to the local stress fluctuations by neighboring twins;in contrast,Schmid’s law well predicted the detwinning variants selection.This asymmetrical TDT behavior was first investigated to date related with the strong basal texture and loading path.Besides,with the progress of compression,Schmid factors for twinning demonstrated a decreasing tendency;however,those for detwinning during the second step displayed an abnormally increasing trend,fundamentally stemming from prior twinning behavior.展开更多
The magnesium-lithium (Mg-Li) alloy exhibits two phase structures between 5.7wt% and 10.3wt% Li contents, consisting of the a (hcp) Mg-rich and the β (bcc) Li-rich phases, at room temperature. In the experimen...The magnesium-lithium (Mg-Li) alloy exhibits two phase structures between 5.7wt% and 10.3wt% Li contents, consisting of the a (hcp) Mg-rich and the β (bcc) Li-rich phases, at room temperature. In the experiment, Mg-5Li-2Zn, Mg-9Li-2Zn, Mg-16Li-2Zn, Mg-22Li-2Zn, Mg-5Li-2Zn-2Ca, Mg-9Li-2Zn-2Ca, Mg-16Li-2Zn-2Ca, and Mg-22Li-2Zn-2Ca (wt%) were melted. During the melting process, the flux, which was composed of lithium chloride (LiCl) and lithium fluoride (LiF) in the proportion of 3:1 (mass ratio) and argon gas were used to protect the alloys from oxidation. The microstructure, mechanical properties, and cold-rolling workability of the wrought alloys were studied. The crystal grain of the alloys (adding Ga) is fine . The hardness of the studied alloys decreases with an increase in element Li. The density of the studied alloys is in the range of 1.187 to 1.617 g/cm^3. The reduction of the Mg-16Li-2Zn and Mg-22Li-2Zn alloys can exceed 85% at room temperature. The Mg-9Li-2Zn-2Ca alloy was heat treated at 300℃ for 8, 12, 16, and 24 h, respectively. The optimum heat treatment of the Mg-9Li-2Zn-2Ca alloy is 300℃×12h by metallographic observation and by studying the mechanical properties of the alloys.展开更多
In this study, powder metallurgy methods were used to fabricate Mg-7.5Li-3Al-Zn alloys from repowdered extruded alloys. Extruded alloys were powdered using ultrasonic atomization, and then laser powder bed fusion(LPBF...In this study, powder metallurgy methods were used to fabricate Mg-7.5Li-3Al-Zn alloys from repowdered extruded alloys. Extruded alloys were powdered using ultrasonic atomization, and then laser powder bed fusion(LPBF) and pulse plasma sintering(PPS) were used to consolidate the bulk materials. A comparison of the properties of the fabricated alloys with those of a conventionally extruded one was carried out using methods that characterized the microstructure and corrosion resistance. When compared to their conventionally extruded counterpart, LPBF and PPS materials exhibited refined microstructures with low enrichment in Al Li and coarse Al, Zn, Mn precipitates. The main drawback of the LPBF alloy, printed for the needs of this study, was its porosity, which had a negative effect on its corrosion. The presence of unrecrystallized particle boundaries in the PPS alloy was also unbeneficial with regard to corrosion. The advantage of the LPBF and PPS processes was the ability to change the proportion of α(Mg) to β(Li), which when the complete consolidation of the material is achievable, may increase the corrosion resistance of dual-structured Mg-Li alloys. The results show that powder metallurgy routes have a wide potential to be used for the manufacture of Mg-Li based alloys.展开更多
An effort was made to design an age hardening Mg-Li alloy based on the phase diagrams calculated by means of 'THERMO-CALC'—a thermodynamic software. Experiments were carried out to verify the calculated resu...An effort was made to design an age hardening Mg-Li alloy based on the phase diagrams calculated by means of 'THERMO-CALC'—a thermodynamic software. Experiments were carried out to verify the calculated results by melting the alloy and examining its structure and aging behavior. The results show that the alloy possesses a structure constituent as expected, besides, the alloy has apparent aging behavior and over aging happens even at lower temperature. Metastable (Mg, Li, Al, Zn) phase has been identified when the hardness reaches the aging peak. With the increase of the aging time, (Mg, Li, Al, Zn) phase transforms to stable α phase and over aging happens.展开更多
The impact of phytic acid concentration,immersion time and soaking temperature on phytic acid conversion coating of the Mg-Li alloy are studied.The surface morphology and the corrosion of the phytic acid conversion co...The impact of phytic acid concentration,immersion time and soaking temperature on phytic acid conversion coating of the Mg-Li alloy are studied.The surface morphology and the corrosion of the phytic acid conversion coating are tested by using scanning electron microscopy and the electrochemical analyzer.The results show that phytic acid concentration and immersion time,soaking temperature affects the microstructure and corrosion resistance of the phytic acid conversion coating.There is a passivation interval with a smaller capacitor and larger resistor in the phytic acid conversion coating.The phytic acid conversion coating is made up of white particle and flake film.展开更多
A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigat...A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigated. The results show that the refined microstructure has a variation in the distribution of grain size, shape and texture across the normal direction of the sheet. The surface layer (SL) has fine, nearly equiaxed grains with a rotated cUbeND {001 }(310) orientation, whereas the center layer (CL) has coarse, elongated grains with a portion of a fiber orientation. Increasing static recrystallized temperature results in grain growth in the full thickness, decreasing of grain aspect ratio in the center layer, texture sharpening in the surface layer, but weakening in the center layer as well as decreasing of superplastic elongation. Increasing the annealing temperature also produces an sharpening of the rotated cube {001}(310) component and a decreasing of the a fiber texture in the full thickness of the sheet. The formation mechanisms of recrystallization texture at various temperatures and layers were discussed.展开更多
Bioinspired by Nepenthes, lubricant infused surfaces(LIS) have attracted widespread attention in the field of anticorrosion. However,the lubricant coating has some disadvantages such as complex construction processing...Bioinspired by Nepenthes, lubricant infused surfaces(LIS) have attracted widespread attention in the field of anticorrosion. However,the lubricant coating has some disadvantages such as complex construction processing and easy loss of oil phase in air or dynamic water phase. In this study, oleogel is infused into a lotus leaf inspired super-hydrophobic matrix to form an oleogel infused surface(OIS) for enhancing corrosion resistance of active Mg-Li alloy. For reserving oleogel, firstly, a facile one-step electrodeposition method is used to construct super-hydrophobic surface(SHS) composed by samarium/myristic acid complex micro-nano flower structure onto Mg-Li alloy.The coating exhibits excellent superhydrophobic property at a static contact angle of 160° by applying 30 V electrolysis for 30 min. The protection efficiency of single SHS highly relates with the metal itself. For short period immersion in water phase, SHS can afford protection to Mg-Li alloy. However, the long-term immersion will see the rapid failure of SHS, and the high activity of Mg-Li alloy is one main reason.We assume that SHS cannot be a good choice for protecting Mg-Li alloy. Then, a Nepenthes inspired liquid coating is formed by infusing oleogel into the micro-nano structure by a spin-coating method. The liquid coating performs prominent corrosion resistance with Rctreaching as high as 1.51 × 10^(10)Ω cm^(2). After the mechanical damage from the external environment, the liquid coating can realize self-repair through thermal assistance, and the liquid coating can still restore Rctup to 1.24 × 10^(10)Ω cm^(2) after healing. The corrosion resistance of the liquid coating remains strong by showing Rctas high as 1.14 × 10^(9)Ω cm^(2), even after immersion in representative corrosive 3.5 wt% Na Cl solution for 30 d.展开更多
Electrochemical codeposition of Mg-Li alloys on molybdenum electrodes was investigated in LiCl-KCl(50 wt.%:50 wt.%) melts containing different concentrations of MgCl2 at 973 K.Cyclic voltammograms show that the und...Electrochemical codeposition of Mg-Li alloys on molybdenum electrodes was investigated in LiCl-KCl(50 wt.%:50 wt.%) melts containing different concentrations of MgCl2 at 973 K.Cyclic voltammograms show that the underpotential deposition of lithium on pre-deposited magnesium leads to the formation of liquid Mg-Li alloys.The deposition potentials of Mg(II) and Li(I) ions gradually near each other with MgCl2 concentration decreasing.Mg-Li alloys with typical α + β phases could be obtained by potentiostatic electrolysis from LiCl-KCl melts containing 5 wt.% MgCl2 at -2.25 V vs.Ag/AgCl(cathodic current density 1.70 A·cm-2) for 2.5 h.α phase, α + β phases, and β phase Mg-Li alloys with different lithium contents were obtained by potentiostatic electrolysis from LiCl-KCl melts with the different concentrations of MgCl2.The samples were characterized by X-ray diffraction and scanning electron microscopy.展开更多
基金Projects(50974114,51174060) supported by National Natural Science Foundation of ChinaProject(2008AA03Z512) supported by High-tech Research and Development Program of ChinaProject(20070145049) supported by PhD Programs Foundation of Ministry of Education of China
文摘Pretreated Mg-Li alloy sheets were pre-plated in a NiCO3?2Ni(OH)2?4H2O solution to form a thin Ni-P alloy film and then plating in a NiSO4?6H2O solution was carried out to obtain a protective coating.The surface morphology,structure and corrosion resistance of the coating were studied.The results showed that a flat,bright and compact plating layer,which was integrated into the matrix metal,was obtained.The P content of the Ni-P coating reached 13.56%(mass fraction).The hardness value of the Ni-P coating was about HV 549.The polarization curve showed that the corrosion potential of the Ni-P coating reached ?0.249 V(vs SCE).A long passivation region was found on the polarization curve,and this phenomenon indicated that the coating has an excellent anti-corrosion property.
基金support from National Natural Science Foundation of China(51871032,52071039 and 51671040)Natural Science Foundation of Jiangsu Province(BK20202010)“111”Project by the Ministry of Education(B16007).
文摘The high ductility of Mg-Li alloy has been mainly ascribed to a high activity of pyramidal<c+a>slip to accommodate plastic strain.In the present study,however,a quantitative analysis reveals that Li-addition can only slightly stimulate the activation of pyramidal<c+a>slip under compression along the normal direction of a hot-rolled Mg-4.5 wt.%Li plate,with a relative activity of approximately 18%.Although the limited activity of pyramidal<c+a>slip alone cannot accommodate a large plastic strain,it effectively reduces the number of{10.11}−{10.12}double twins,which are believed to be favorable sites for crack initiation.The evidently reduced activity of double twins leads to a lower cracking tendency,and therefore improves ductility.
基金Projects(CDJZR14130007106112015CDJXY130011)supported by Fundamental Research Funds for the Central Universities,China
文摘In order to study the deformation behavior and evaluate the workability of the dual-phase Mg-9Li-3Al-2Sr alloy, isothermal hot compression tests were conducted using the Gleeble-3500 thermal-mechanical simulator, in ranges of elevated temperatures (423-573 K) and strain rates (0.001-1 s^-1). Plastic instability is evident during the deformation which is in the form of serrated flow; serrated yielding is attributed to the locking of mobile dislocations by the Mg and Li atoms which diffuse during the deformation. The relationships between flow stress, strain rate and deformation temperature were analyzed and the deformation activation energy and some basic material factors at different strains were calculated using the Arrhenius equation. The effects of temperature and strain rate on deformation behavior were represented using the Zener–Hollomon parameter in an exponent-type equation. To verify the validity of the constitutive model, the predicted values and experimental flow curves under different deformation conditions were compared, the correlation coefficient (0.9970) and average absolute relative error (AARE=4.41%) were calculated. The results indicate that the constitutive model can be used to accurately predict the flow behavior of dual-phase Mg-9Li-3Al-2Sr alloy during high temperature deformation.
基金supported by Research Program of Chongqing Municipal Education Commission(KJQN201901127)University Innovation Research Group of Chongqing(CXQT20023)+2 种基金Natural Science Foundation of Chongqing(cstc2021ycjh-bgzxm0184)support by the Research Program of Chongqing Municipal Education Commission(KJQN202201151)National Natural Science Foundation of China(52201107).
文摘LZ91 Mg-Li alloy plates with three types of initial texture were rolled by 70%reduction at both room temperature and 200℃to explore the rolling texture formation ofα-Mg phase.The results showed that the rolling texture is largely affected by the initial texture.All the samples exhibited two main texture components as RD-split double peaks texture and TD-split double peaks texture after large strain rolling.The intensity of the two texture components was strongly influenced by the initial orientation and rolling temperature.Extension twinning altered the large-split non-basal orientation to a near basal one at low rolling strain.The basal orientation induced by twinning is unstable,which finally transmitted to the RD-split texture.The strong TD-split texture formed due to slip-induced orientation transition from its initial orientation.The competition between prismatic and basal slip determined the intensity and tilt angle of the TD-split texture.By increasing the rolling temperature,the TD-split texture component was enhanced in all three samples.Limitation of extension twinning behavior and the promotion of prismatic slip at elevated temperature are the main reasons for the difference in hot and cold rolling texture.
基金Project (51001034) supported by the National Natural Science Foundation of ChinaProject (208181) supported by the Key Project of Chinese Ministry of Education+1 种基金Projects (2008AA4CH044, 2009AA1AG065, 2010AA4BE031) supported by the Key Project of Science and Technology of Harbin City, ChinaProject (HEUCF101001) supported by the Fundamental Research Funds for the Central Universities, China
文摘Tungsten inert gas weld was carried out on super-light magnesium-lithium alloy plates with a thickness of 2 mm, using argon gas as a protecting atmosphere. The microstructure and mechanical properties of the welded joints were investigated. The results indicate that the microstructure in the fusion zone is fine, and the microstructure in the heat-affected zone is coarser than the parent metal. The tensile strength of the welded joint is about 84% that of the parent metal. The fracture occurs in a mixed type of toughness and brittleness in the heat-affected zone. During the welding process, aluminum and cerium are enriched at grain boundaries in the fusion zone.
基金Project(2017zzts005) supported by the Fundamental Research Funds for the Central Universities of Central South University
文摘Mg-Li alloy,as a superlight metallic engineering material,shows great potential in the fields of aerospace and militarydue to its high specific strength,better formability,and excellent electromagnetic shielding performance.The research process ofMg-Li alloys is reviewed and three main problems are pointed out.Aimed at the poor corrosion resistance of Mg-Li alloys,thecorrosion behavior is mainly summarized.The surface treatment technologies,including electroplating,electroless plating,plasmaspraying,molten salt replacement,conversion coating,anodizing,micro-arc oxidation,organic coating,and organic-inorganic hybridcoating,are introduced in detail.Finally,the future development of corrosion and protection of Mg?Li alloys is discussed.
基金Project supported by Heilongjiang Province Key Technologies R&D Project (GC06A212)
文摘A series of a-based Mg-Li-A1-Zn-xRE alloys were prepared. These alloys have low density ranging from 1.5 to 1.7 g·cm^-3 and high strength properties. The influence of RE element on the microstructure and the mechanical properties of these alloys were studied. The results indicate that the addition of RE (La, Pr, Ce) leads to the formation of rodshaped intermetallic compound Al2Zn2La distributed in the matrix. Al2Zn2La induces reduction of the laminar spacing and causes refinement of the microstructure. Therefore, this compound improves the strength of alloys at a high temperature.
文摘Micro-arc oxidation (MAO) method was used for the surface modification of an Mg-5wt.%Li alloy. Ceramic coatings were in-situ fabricated on the Mg-Li alloy. The morphology feature,phase composition,and corrosion-resistance of the formed ceramic coatings were studied by SEM,XRD,and electrochemical methods,respectively. The results showed that the coatings produced in a sodium silicate solution system were composed of MgO and Mg2SiO4. The ceramic coating became thicker and the content of Mg2SiO4 phase increase...
基金Funded by the National Natural Science Foundation of China (No.50603003)
文摘A novel Mg-Li alloy was treated in a cerium nitrate solution and cerium chemical conversion coating was obtained on the alloy. Then the forming process, structure and corrosion resistance of the coating were investigated. The influential factors of cerium conversion coating were discussed through orthogonal experiments, and the optimum processing parameters were confirmed. XPS spectra displayed that the conversion coating consisted of cerium compounds, and the major component of the protective layer was a mixture of Ce (IV) oxide and Ce (IV) hydroxide. In addition, XRD pattern illustrated that there was crystalline CeO2 in the conversion coating. Analysis by SEM showed that the cerium conversion coating was uniform with a fiber-like morphology. The thickness of the conversion coating was 12 μm. The results of electrochemical potentiodynamic polarization and hydrogen evolution measurement indicated that the cerium conversion coating provided effective protection to the novel Mg-Li alloy.
文摘Pioneering work on Sc or/and Be added Mg-Li alloys with refined grains was initiated. Various rolling-based thermo-mechanical treatments on these Mg-Li alloys were carried out. Four Mg-Li alloys were prepared by vacuum melting process. A unique route for producing fine grains was applied which concluded solution treatment at 350 ℃, cold rolling with 60% thickness reduction and 250 ℃ annealing, successively.
文摘A new technology for preparation of low cost Mg-Li alloys was studied. The alloys were prepared by electrolysis in molten LiCl-KCl (weight ratio is 1:1) electrolyte with Mg rod severing as the consumed cathode. Main factors that affect current efficiency were investigated, and optimal electrolysis parameters were obtained. Mg-Li alloys with low lithium Content (about 25%) were prepared by the unique method of a higher post-thermal treatment temperature after electrolysis at low temperature. The results showed that the electrolysis can be carried out at low temperature, which resulted in reducing preparation cost due to energy saving. The new technology for the oreoaration of Mg-Li alloy by electrolysis in molten salt was laroved to be feasible.
文摘The electrochemical formation of Mg-Li alloys was investigated in a molten LiCl-KCl (58-42 mol%) eutectic melt at 723 K. The cyclic voltammogram. for a Mo electrode showed that the electroreduction of Li+ proceeds in a single step and the deposition potential of Li metal was -2.40 V (vs. Ag/AgCl). For Mg electrode, the electroreduction of Li+ takes place at less cathodic potential than that at the Mo electrode which was caused by the formation of Mg-Li alloys. Phase of the deposited Mg-Li alloys could be controlled by the electrolysis potential, and the samples were characterized by X-ray diffraction and scanning electron microscopy. The results showed that alpha-Mg and beta-Li phases were obtained at -2.35 and -2.55 V, respectively. (c) 2007 Mi Lin Zhang. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金supported by the grant from the Natural Science Foundation of China(51871244)the Hunan Provincial Innovation Foundation for Postgraduate(CX20200172)the Fundamental Research Funds for the Central Universities of Central South University(1053320190103)。
文摘Twinning-detwinning(TDT)behavior in a strongly basal-textured Mg-Li alloy during two-step compression(RD)-compression(ND)process was investigated using quasi-in-situ EBSD.TDT behavior and TDT variants selection were statistically discussed with the loading path for the first time.Non-Schmid twinning behavior was observed in the first step compression,owing to the local stress fluctuations by neighboring twins;in contrast,Schmid’s law well predicted the detwinning variants selection.This asymmetrical TDT behavior was first investigated to date related with the strong basal texture and loading path.Besides,with the progress of compression,Schmid factors for twinning demonstrated a decreasing tendency;however,those for detwinning during the second step displayed an abnormally increasing trend,fundamentally stemming from prior twinning behavior.
文摘The magnesium-lithium (Mg-Li) alloy exhibits two phase structures between 5.7wt% and 10.3wt% Li contents, consisting of the a (hcp) Mg-rich and the β (bcc) Li-rich phases, at room temperature. In the experiment, Mg-5Li-2Zn, Mg-9Li-2Zn, Mg-16Li-2Zn, Mg-22Li-2Zn, Mg-5Li-2Zn-2Ca, Mg-9Li-2Zn-2Ca, Mg-16Li-2Zn-2Ca, and Mg-22Li-2Zn-2Ca (wt%) were melted. During the melting process, the flux, which was composed of lithium chloride (LiCl) and lithium fluoride (LiF) in the proportion of 3:1 (mass ratio) and argon gas were used to protect the alloys from oxidation. The microstructure, mechanical properties, and cold-rolling workability of the wrought alloys were studied. The crystal grain of the alloys (adding Ga) is fine . The hardness of the studied alloys decreases with an increase in element Li. The density of the studied alloys is in the range of 1.187 to 1.617 g/cm^3. The reduction of the Mg-16Li-2Zn and Mg-22Li-2Zn alloys can exceed 85% at room temperature. The Mg-9Li-2Zn-2Ca alloy was heat treated at 300℃ for 8, 12, 16, and 24 h, respectively. The optimum heat treatment of the Mg-9Li-2Zn-2Ca alloy is 300℃×12h by metallographic observation and by studying the mechanical properties of the alloys.
文摘In this study, powder metallurgy methods were used to fabricate Mg-7.5Li-3Al-Zn alloys from repowdered extruded alloys. Extruded alloys were powdered using ultrasonic atomization, and then laser powder bed fusion(LPBF) and pulse plasma sintering(PPS) were used to consolidate the bulk materials. A comparison of the properties of the fabricated alloys with those of a conventionally extruded one was carried out using methods that characterized the microstructure and corrosion resistance. When compared to their conventionally extruded counterpart, LPBF and PPS materials exhibited refined microstructures with low enrichment in Al Li and coarse Al, Zn, Mn precipitates. The main drawback of the LPBF alloy, printed for the needs of this study, was its porosity, which had a negative effect on its corrosion. The presence of unrecrystallized particle boundaries in the PPS alloy was also unbeneficial with regard to corrosion. The advantage of the LPBF and PPS processes was the ability to change the proportion of α(Mg) to β(Li), which when the complete consolidation of the material is achievable, may increase the corrosion resistance of dual-structured Mg-Li alloys. The results show that powder metallurgy routes have a wide potential to be used for the manufacture of Mg-Li based alloys.
基金This work was kindly supported by National High Technology Research and Development Program of China (No.2003AA30507l).
文摘An effort was made to design an age hardening Mg-Li alloy based on the phase diagrams calculated by means of 'THERMO-CALC'—a thermodynamic software. Experiments were carried out to verify the calculated results by melting the alloy and examining its structure and aging behavior. The results show that the alloy possesses a structure constituent as expected, besides, the alloy has apparent aging behavior and over aging happens even at lower temperature. Metastable (Mg, Li, Al, Zn) phase has been identified when the hardness reaches the aging peak. With the increase of the aging time, (Mg, Li, Al, Zn) phase transforms to stable α phase and over aging happens.
基金Funded by the Key Laboratory of Superlight Materials and Surface Technology,Ministry of Education
文摘The impact of phytic acid concentration,immersion time and soaking temperature on phytic acid conversion coating of the Mg-Li alloy are studied.The surface morphology and the corrosion of the phytic acid conversion coating are tested by using scanning electron microscopy and the electrochemical analyzer.The results show that phytic acid concentration and immersion time,soaking temperature affects the microstructure and corrosion resistance of the phytic acid conversion coating.There is a passivation interval with a smaller capacitor and larger resistor in the phytic acid conversion coating.The phytic acid conversion coating is made up of white particle and flake film.
基金Project(51205419)supported by the National Natural Science Foundation of China
文摘A novel thermomechanical processing was developed for producing fine grained Al-Mg-Li alloy sheets. The influences of static recrystallization annealing on the grain structure and superplastic behavior were investigated. The results show that the refined microstructure has a variation in the distribution of grain size, shape and texture across the normal direction of the sheet. The surface layer (SL) has fine, nearly equiaxed grains with a rotated cUbeND {001 }(310) orientation, whereas the center layer (CL) has coarse, elongated grains with a portion of a fiber orientation. Increasing static recrystallized temperature results in grain growth in the full thickness, decreasing of grain aspect ratio in the center layer, texture sharpening in the surface layer, but weakening in the center layer as well as decreasing of superplastic elongation. Increasing the annealing temperature also produces an sharpening of the rotated cube {001}(310) component and a decreasing of the a fiber texture in the full thickness of the sheet. The formation mechanisms of recrystallization texture at various temperatures and layers were discussed.
基金supported by the National Key Research and Development Program of China (2017YFA0403803)the National Natural Science Foundation of China [Grant Nos.52022017,52074172,51974058,51927801]+1 种基金the Innovation Foundation of Science and Technology of Dalian [Grant No.2020RQ124]Fundamental Research Funds for the Central Universities。
文摘Bioinspired by Nepenthes, lubricant infused surfaces(LIS) have attracted widespread attention in the field of anticorrosion. However,the lubricant coating has some disadvantages such as complex construction processing and easy loss of oil phase in air or dynamic water phase. In this study, oleogel is infused into a lotus leaf inspired super-hydrophobic matrix to form an oleogel infused surface(OIS) for enhancing corrosion resistance of active Mg-Li alloy. For reserving oleogel, firstly, a facile one-step electrodeposition method is used to construct super-hydrophobic surface(SHS) composed by samarium/myristic acid complex micro-nano flower structure onto Mg-Li alloy.The coating exhibits excellent superhydrophobic property at a static contact angle of 160° by applying 30 V electrolysis for 30 min. The protection efficiency of single SHS highly relates with the metal itself. For short period immersion in water phase, SHS can afford protection to Mg-Li alloy. However, the long-term immersion will see the rapid failure of SHS, and the high activity of Mg-Li alloy is one main reason.We assume that SHS cannot be a good choice for protecting Mg-Li alloy. Then, a Nepenthes inspired liquid coating is formed by infusing oleogel into the micro-nano structure by a spin-coating method. The liquid coating performs prominent corrosion resistance with Rctreaching as high as 1.51 × 10^(10)Ω cm^(2). After the mechanical damage from the external environment, the liquid coating can realize self-repair through thermal assistance, and the liquid coating can still restore Rctup to 1.24 × 10^(10)Ω cm^(2) after healing. The corrosion resistance of the liquid coating remains strong by showing Rctas high as 1.14 × 10^(9)Ω cm^(2), even after immersion in representative corrosive 3.5 wt% Na Cl solution for 30 d.
基金supported by the National High-Tech Research and Development Program of China (No. 2006AA03Z510)the National Natural Science Foundation of China (No. 50871033)+1 种基金the Scientific Technology Project of Heilong jiang Province, China (No. GC06A212)the fund from Harbin Municipal Science & Technology Bureau (No. 2006PFXXG006)
文摘Electrochemical codeposition of Mg-Li alloys on molybdenum electrodes was investigated in LiCl-KCl(50 wt.%:50 wt.%) melts containing different concentrations of MgCl2 at 973 K.Cyclic voltammograms show that the underpotential deposition of lithium on pre-deposited magnesium leads to the formation of liquid Mg-Li alloys.The deposition potentials of Mg(II) and Li(I) ions gradually near each other with MgCl2 concentration decreasing.Mg-Li alloys with typical α + β phases could be obtained by potentiostatic electrolysis from LiCl-KCl melts containing 5 wt.% MgCl2 at -2.25 V vs.Ag/AgCl(cathodic current density 1.70 A·cm-2) for 2.5 h.α phase, α + β phases, and β phase Mg-Li alloys with different lithium contents were obtained by potentiostatic electrolysis from LiCl-KCl melts with the different concentrations of MgCl2.The samples were characterized by X-ray diffraction and scanning electron microscopy.