A new direction toward the future of orthopedic implants is to combine biodegradable Mg alloys with permanent Ti to produce selectively biodegradable hybrid joints for advanced tissue engineering.However,the strong ga...A new direction toward the future of orthopedic implants is to combine biodegradable Mg alloys with permanent Ti to produce selectively biodegradable hybrid joints for advanced tissue engineering.However,the strong galvanic corrosion between Mg and Ti is a major issue to be considered.This work aims to explore plasma electrolytic oxidation(PEO)as a single-step coating treatment to allow for an acceptable degradation behavior of MgTi hybrid systems.To this end,MgTi hybrid joints were produced through the heat treatment of Mg-0.6Ca and commercially pure Ti specimens at 640°C for 8 h.A single-step PEO treatment was then employed to create a protective layer on the surface of hybrid couples.Even though the scanning electron microscopy(SEM)images showed only a porosity of 6%and 12%within the PEO layers on single Mg and MgTi couples,3D investigation of the synchrotron-based microtomography data demonstrated a porosity of 18%and 30%with a considerable number of interconnected pores.According to the electrochemical impedance spectroscopy measurements,the impedance modulus at all frequencies on coated MgTi coupled specimens was lower than that on the coated single Mg-0.6Ca and pure Ti.However,the application of PEO treatment significantly decreased the strong galvanic degradation of Mg-0.6Ca in contact with Ti.The results of hydrogen evolution tests revealed that PEO-treated MgTi couples showed a similar degradation behavior as the single alloy during the first day of immersion.展开更多
An innovative physical simulation apparatus, including high speed camera, red thermal imaging system, and mechanical quantity sensor, was used to investigate the friction heat generation and atom diffusion behavior du...An innovative physical simulation apparatus, including high speed camera, red thermal imaging system, and mechanical quantity sensor, was used to investigate the friction heat generation and atom diffusion behavior during Mg-Ti friction welding process. The results show that the friction coefficient mainly experiences two steady stages. The first steady stage corresponds to the Coulomb friction with material abrasion. The second steady stage corresponds to the stick friction with fully plastic flow. Moreover, the increasing rates of axial displacement, temperature and friction coefficient are obviously enhanced with the increase of rotation speed and axial pressure. It can also be found that the there exists rapid diffusion phenomenon in the Mg-Ti friction welding system. The large deformation activated diffusion coefficient is about 105 higher than that activated by thermal.展开更多
A new kind of functionally graded materials (FGM) with density gradient has come to show great potentials as flier-plates for creating quasi-isotropic compression waves.In order to meet the demand of lower density in ...A new kind of functionally graded materials (FGM) with density gradient has come to show great potentials as flier-plates for creating quasi-isotropic compression waves.In order to meet the demand of lower density in the front face for such flier-plate,Mg with a low density of 1.74g/cm3 is selected to make a Mg-Ti FGM.Mg-Ti alloys with various weight ratios were sintered by spark plasma sintering (SPS) technique at relative low temperatures,and the processing of densification is mainly investigated.It is found that,up to 75wt%Ti,the Mg-Ti alloys can be fully densified at 560℃ due to the conglutination of Mg and the formation of a small amount of Mg-Ti solid solution.Finally,the Mg-Ti FGM with a density gradient from 1.74g/cm3 to 3.23g/cm3 is successfully fabricated.展开更多
The ultrafine pure Mg and Mg-Ti particles were prepared through a direct current (DC) arc plasma method. The X-ray diffraction (XRD), transmission electron microscopy (TEM), pressure-composition-temperature (PC...The ultrafine pure Mg and Mg-Ti particles were prepared through a direct current (DC) arc plasma method. The X-ray diffraction (XRD), transmission electron microscopy (TEM), pressure-composition-temperature (PCT) method and TG/DTA techniques were used to study the phase components, microstructure and hydrogen sorption properties of the powders before and after hydrogen absorption. It is revealed that most of the ultrafine Mg and Mg-Ti particles are hexagonal in shape with particle size in the range of 50-700 nm. According to the Van’t Hoff equation, the hydrogenation enthalpy of Mg-Ti powders is determined to be about -67 kJ/mol H2 based on the PCT curves of hydrogen absorption plateau pressures. This value is much higher than -78.6 kJ/mol H2 for pure Mg powders. TG/DTA analyses show that the onset dehydriding temperature of hydrogenated Mg-Ti powders is 386 °C, which is significantly lower than that of the hydrogenated Mg (423 °C). The results prove that the addition of Ti into Mg through arc evaporation method can improve the thermodynamic properties of Mg for hydrogen storage.展开更多
The effects of rare earths(RE)-Mg-Ti compound modification on the structures and properties of high-carbon high speed steel(HSS) were researched.The impact toughness(α_k),the fracture toughness(K_(1c))and threshold o...The effects of rare earths(RE)-Mg-Ti compound modification on the structures and properties of high-carbon high speed steel(HSS) were researched.The impact toughness(α_k),the fracture toughness(K_(1c))and threshold of fatigue crack growth(ΔK_(th))are tested.The thermal fatigue test is done on a self-straining thermal fatigue tester,the wear test is done on a high temperature wear test machine.The results show that the matrix can be refined by the RE-Mg-Ti compound modification,the eutectic carbides are inclined to spheroidicize and are distributed evenly,the morphology and distribution of eutectic carbides are improved by appropriate RE-Mg-Ti complex modification.After RE-Mg-Ti compound modification,a little effects can be found on the strength,hardness and red hardness,but the fracture toughness(K_(1c)) and threshold of fatigue crack growth(△K_(th)) are improved in the meantime,the impact toughness (α_k) is increased by over one time,and the resistance to thermal fatigue and wear resistance at an elevated temperature are remarkably improved.展开更多
基金support from the Alexander von Humboldt Foundation.We thank DESY(Hamburg,Germany)for granting the proposal I20221296support at the PETRA III P05 end-station.
文摘A new direction toward the future of orthopedic implants is to combine biodegradable Mg alloys with permanent Ti to produce selectively biodegradable hybrid joints for advanced tissue engineering.However,the strong galvanic corrosion between Mg and Ti is a major issue to be considered.This work aims to explore plasma electrolytic oxidation(PEO)as a single-step coating treatment to allow for an acceptable degradation behavior of MgTi hybrid systems.To this end,MgTi hybrid joints were produced through the heat treatment of Mg-0.6Ca and commercially pure Ti specimens at 640°C for 8 h.A single-step PEO treatment was then employed to create a protective layer on the surface of hybrid couples.Even though the scanning electron microscopy(SEM)images showed only a porosity of 6%and 12%within the PEO layers on single Mg and MgTi couples,3D investigation of the synchrotron-based microtomography data demonstrated a porosity of 18%and 30%with a considerable number of interconnected pores.According to the electrochemical impedance spectroscopy measurements,the impedance modulus at all frequencies on coated MgTi coupled specimens was lower than that on the coated single Mg-0.6Ca and pure Ti.However,the application of PEO treatment significantly decreased the strong galvanic degradation of Mg-0.6Ca in contact with Ti.The results of hydrogen evolution tests revealed that PEO-treated MgTi couples showed a similar degradation behavior as the single alloy during the first day of immersion.
基金Projects (51101126, 51071123) supported by the National Natural Science Foundation of ChinaProjects (20110491684, 2012T50817) supported by the China Postdoctoral Science FoundationProject (20110942K) supported by the Open Fund of State Key Laboratory of Powder Metallurgy of Central South University, China
文摘An innovative physical simulation apparatus, including high speed camera, red thermal imaging system, and mechanical quantity sensor, was used to investigate the friction heat generation and atom diffusion behavior during Mg-Ti friction welding process. The results show that the friction coefficient mainly experiences two steady stages. The first steady stage corresponds to the Coulomb friction with material abrasion. The second steady stage corresponds to the stick friction with fully plastic flow. Moreover, the increasing rates of axial displacement, temperature and friction coefficient are obviously enhanced with the increase of rotation speed and axial pressure. It can also be found that the there exists rapid diffusion phenomenon in the Mg-Ti friction welding system. The large deformation activated diffusion coefficient is about 105 higher than that activated by thermal.
文摘A new kind of functionally graded materials (FGM) with density gradient has come to show great potentials as flier-plates for creating quasi-isotropic compression waves.In order to meet the demand of lower density in the front face for such flier-plate,Mg with a low density of 1.74g/cm3 is selected to make a Mg-Ti FGM.Mg-Ti alloys with various weight ratios were sintered by spark plasma sintering (SPS) technique at relative low temperatures,and the processing of densification is mainly investigated.It is found that,up to 75wt%Ti,the Mg-Ti alloys can be fully densified at 560℃ due to the conglutination of Mg and the formation of a small amount of Mg-Ti solid solution.Finally,the Mg-Ti FGM with a density gradient from 1.74g/cm3 to 3.23g/cm3 is successfully fabricated.
基金Project (10JC1407700) supported by the Key Basic Project from Science and Technology Committee of Shanghai, ChinaProject(11ZR1417600) supported by Shanghai Nature Science Foundation from Science and Technology Committee of Shanghai, China+2 种基金Project(11PJ1406000) supported by ‘Pujiang’ project from the Science and Technology Committee of Shanghai, ChinaProject (12ZZ017)supported by Shanghai Education Commission, ChinaProject (20100073120007) supported by China Education Commission
文摘The ultrafine pure Mg and Mg-Ti particles were prepared through a direct current (DC) arc plasma method. The X-ray diffraction (XRD), transmission electron microscopy (TEM), pressure-composition-temperature (PCT) method and TG/DTA techniques were used to study the phase components, microstructure and hydrogen sorption properties of the powders before and after hydrogen absorption. It is revealed that most of the ultrafine Mg and Mg-Ti particles are hexagonal in shape with particle size in the range of 50-700 nm. According to the Van’t Hoff equation, the hydrogenation enthalpy of Mg-Ti powders is determined to be about -67 kJ/mol H2 based on the PCT curves of hydrogen absorption plateau pressures. This value is much higher than -78.6 kJ/mol H2 for pure Mg powders. TG/DTA analyses show that the onset dehydriding temperature of hydrogenated Mg-Ti powders is 386 °C, which is significantly lower than that of the hydrogenated Mg (423 °C). The results prove that the addition of Ti into Mg through arc evaporation method can improve the thermodynamic properties of Mg for hydrogen storage.
文摘The effects of rare earths(RE)-Mg-Ti compound modification on the structures and properties of high-carbon high speed steel(HSS) were researched.The impact toughness(α_k),the fracture toughness(K_(1c))and threshold of fatigue crack growth(ΔK_(th))are tested.The thermal fatigue test is done on a self-straining thermal fatigue tester,the wear test is done on a high temperature wear test machine.The results show that the matrix can be refined by the RE-Mg-Ti compound modification,the eutectic carbides are inclined to spheroidicize and are distributed evenly,the morphology and distribution of eutectic carbides are improved by appropriate RE-Mg-Ti complex modification.After RE-Mg-Ti compound modification,a little effects can be found on the strength,hardness and red hardness,but the fracture toughness(K_(1c)) and threshold of fatigue crack growth(△K_(th)) are improved in the meantime,the impact toughness (α_k) is increased by over one time,and the resistance to thermal fatigue and wear resistance at an elevated temperature are remarkably improved.