期刊文献+
共找到2,185篇文章
< 1 2 110 >
每页显示 20 50 100
Effects of doping Fe and Al on microstructure and electrochemical characteristics of Mg-based hydrogen storage alloys
1
作者 谢昭明 《Journal of Chongqing University》 CAS 2005年第4期218-222,共5页
The Mg-based hydrogen storage alloys Mg2Ni, Mg2Ni0.7Fe0.3 and Mgl.7Alo.3Ni were successfully synthesized by a two-step process (sintering and ball milling). The crystal structure and microstructure were examined by ... The Mg-based hydrogen storage alloys Mg2Ni, Mg2Ni0.7Fe0.3 and Mgl.7Alo.3Ni were successfully synthesized by a two-step process (sintering and ball milling). The crystal structure and microstructure were examined by X-ray diffraction, Scanning Electron Microscope and Malvern particle size analyzer. New phase appears in the tripe alloys doped with A1 and Fe, and the particle size ranges from 3μm to 5 μm. The electrochemical performance studies indicate that the partial substitution of AI for Mg, and Fe for Ni significantly improve the cycle life, reversibility of hydrogen absorption and desorption. The diffusion process is the control step in the electrode reaction of hydrogen storage alloys. 展开更多
关键词 mg-based hydrogen storage alloys two-slep process electrochemical properties
下载PDF
Shell and shrinking core kinetics model of Mg-based hydrogen storage alloys
2
作者 于振兴 王尔德 +3 位作者 张文丛 房文斌 孙宏飞 梁吉 《中国有色金属学会会刊:英文版》 CSCD 2005年第S2期178-182,共5页
The kinetics equation of the Mg-based hydrogen storage alloys (Mg-Ni-MO) was established by the shell and shrinking core model. The total coefficients of the kinetics equation of the hydrogen absorption and desorption... The kinetics equation of the Mg-based hydrogen storage alloys (Mg-Ni-MO) was established by the shell and shrinking core model. The total coefficients of the kinetics equation of the hydrogen absorption and desorption process with shell diffusion as the controlling step were determined by semi-empirical and semi-theoretical methods, and the apparent activation energy of the hydrogen absorption process was obtained. The calculation results can well accord with the experimental data, and can well forecast the hydrogen storage capacity and absorption rate at different times. By using the kinetics equation, the effects of temperature and pressure on the hydrogen storage process can also be well understood. The kinetics equation is helpful for the design of the hydrogen storage container. 展开更多
关键词 mg-based alloys hydrogen storage SHELL and CORE SHRINKING model KINETICS EQUATION
下载PDF
Study on Nanocrystalline Rare Earth Mg-Based System Hydrogen Storage Alloys with AB_3-Type 被引量:7
3
作者 唐仁衡 卢其云 +2 位作者 肖方明 彭能 王英 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期343-346,共4页
A sort of rare earth Mg-based system hydrogen storage alloys with AB3-type was prepared by double-roller rapid quenching method. The alloys were nanocrystalline multi-phase structures composed of LaNi3 phase and LaNi5... A sort of rare earth Mg-based system hydrogen storage alloys with AB3-type was prepared by double-roller rapid quenching method. The alloys were nanocrystalline multi-phase structures composed of LaNi3 phase and LaNi5 phase by X-ray diffraction and scanning electron microscopy analyses, and the suitable absorption/desorption plateau was revealed by the measurement of P-C-I curve. Electrochemical studies indicate that the alloys exhibit good electrochemical properties such as high capacity and stable cycle life, and the discharge capacity is 369 mAh·g-1 at 0.2 C (72 mA·g-1). after 460 cycles, the capacity decay was only 19.4% at 2 C (720 mA·g-1). 展开更多
关键词 NANOCRYSTALLINE double-roller rapid quenching rare earth mg-based compounds hydrogen storage alloy
下载PDF
Effect of Heat-Treatment Process on Properties of Rare Earth Mg-Based System Hydrogen Storage Alloys with AB_3-Type 被引量:7
4
作者 王英 卢其云 +2 位作者 彭能 肖方明 唐仁衡 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第z2期340-342,共3页
The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau v... The effect of heat-treatment process on the properties of Mm0.8Mg0.2(NiCoAlMn)3.5 hydrogen storage alloy was discussed . The electrochemical properties such as cycling stability, activation property, and the plateau voltage of the alloy which was heat-treated in various temperatures and times had different changes during the cycle process, the optimum heat-treatment conditions of this alloy were determined by this work. 展开更多
关键词 heat-treatment rare earth mg-based system hydrogen storage alloy Ni/MH battery
下载PDF
Synergy of inside doped metals–Outside coated graphene to enhance hydrogen storage in magnesium-based alloys
5
作者 Kun Zhang Yu Chang +7 位作者 Jingjing Lei Jing Chen Tingzhi Si Xiaoli Ding Ping Cui Hai-Wen Li Qingan Zhang Yongtao Li 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第6期2462-2471,共10页
Grain growth of magnesium(Mg)and its hydride is one of the main reasons for kinetic and capacity degradation during the hydrogen absorption and desorption cycles.To solve this problem,herein we propose a novel method ... Grain growth of magnesium(Mg)and its hydride is one of the main reasons for kinetic and capacity degradation during the hydrogen absorption and desorption cycles.To solve this problem,herein we propose a novel method involving synergistic effect of inside embedded metals and outside coated graphene to limit the growth of Mg and its hydride grains.The graphene coated Mg-Y-Al alloys were selected as a model system for demonstrating this positive effect where the Mg_(91)Y_(3)Al_(6)alloy was first prepared by rapidly solidified method and then high-pressure milled with 5 wt%graphene upon 5 MPa hydrogen gas for obtaining in-situ formed YAl_(2)and YH_(3)embedded in the MgH_(2)matrix with graphene shell(denoted as MgH_(2)-Y-Al@GR).In comparison to pure MgH_(2),the obtained MgH_(2)-Y-Al@GR composites deliver much better kinetics and more stable cyclic performance.For instance,the MgH_(2)-Y-Al@GR can release about 6.1 wt%H_(2)within 30 min at 300℃ but pure MgH_(2)only desorbs∼1.5 wt%H_(2).The activation energy for desorption of MgH_(2)-Y-Al@GR samples is calculated to be 75.3±9.1 kJ/mol that is much lower than approximately 160 kJ/mol for pure MgH_(2).Moreover,its capacity retention is promoted from∼57%of pure MgH_(2)to∼84%after 50th cycles without obvious particle agglomeration and grain growth.The synergistic effect of outside graphene coating with inside embedded metals which could provide a huge number of active sites for catalysis as well as inhibit the grain growth of Mg and its hydride is believed to be responsible for these. 展开更多
关键词 Energy hydrogen storage Mg alloys Synergy effect
下载PDF
Modification of BCC phase and the enhanced reversible hydrogen storage properties of Ti-V-Fe-Mn alloys with varied V/Fe ratios
6
作者 Xiang-feng Ma Xin Ding +4 位作者 En-lai Liu Rui-run Chen Xin-xiu Wang Yong Zhang Jing-jie Guo 《China Foundry》 SCIE EI CAS CSCD 2024年第5期546-554,共9页
Ti-V-based alloys are proved of huge potential in storing hydrogen,but the incomplete reversible hydrogen storage capacity caused by overstability of V hydride has limited the large-scale application.In this study,Ti_... Ti-V-based alloys are proved of huge potential in storing hydrogen,but the incomplete reversible hydrogen storage capacity caused by overstability of V hydride has limited the large-scale application.In this study,Ti_(32)V_(40+x)Fe_(23-x)Mn_(5)(x=0,4,8,12,at.%)alloys were designed,and the effects of V/Fe ratio on phase constitution and hydrogen storage properties were investigated.The main phase of the alloys is body-centered cubic(BCC)phase,and the lattice constants of the BCC phase decrease with the decrease of V/Fe ratio.Moreover,C14 Laves phase exists in alloys with a Fe content of 19at.%to 23at.%.For hydrogenation,the C14 Laves phase can accelerate the hydrogen absorption rate,but the hydrogen absorption capacity is reduced.With the decrease of V/Fe ratio,the hydride gradually destabilizes.Owing to its large lattice constant and high hydrogen absorption phase content,the Ti_(32)V_(52)Fe_(11)Mn_(5)alloy shows the most enhanced hydrogen storage properties with hydrogenation and dehydrogenation capacities of 3.588wt.%at 298 K and 1.688wt.%at 343 K,respectively.The hydrogen absorption capacity of this alloy can be reserved to 3.574wt.%after 20 cycles of hydrogen absorption and desorption. 展开更多
关键词 hydrogen storage Ti-based alloy lattice constant BCC phase
下载PDF
Nanostructuring of Mg-Based Hydrogen Storage Materials:Recent Advances for Promoting Key Applications 被引量:10
7
作者 Li Ren Yinghui Li +6 位作者 Ning Zhang Zi Li Xi Lin Wen Zhu Chong Lu Wenjiang Ding Jianxin Zou 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第7期30-56,共27页
With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels... With the depletion of fossil fuels and global warming,there is an urgent demand to seek green,low-cost,and high-efficiency energy resources.Hydrogen has been considered as a potential candidate to replace fossil fuels,due to its high gravimetric energy density(142 MJ kg^(-1)),high abundance(H_(2)O),and environmentalfriendliness.However,due to its low volume density,effective and safe hydrogen storage techniques are now becoming the bottleneck for the"hydrogen economy".Under such a circumstance,Mg-based hydrogen storage materials garnered tremendous interests due to their high hydrogen storage capacity(~7.6 wt%for MgH_(2)),low cost,and excellent reversibility.However,the high thermodynamic stability(ΔH=-74.7 kJ mol^(-1)H_(2))and sluggish kinetics result in a relatively high desorption temperature(>300℃),which severely restricts widespread applications of MgH_(2).Nano-structuring has been proven to be an effective strategy that can simultaneously enhance the ab/de-sorption thermodynamic and kinetic properties of MgH_(2),possibly meeting the demand for rapid hydrogen desorption,economic viability,and effective thermal management in practical applications.Herein,the fundamental theories,recent advances,and practical applications of the nanostructured Mg-based hydrogen storage materials are discussed.The synthetic strategies are classified into four categories:free-standing nano-sized Mg/MgH_(2)through electrochemical/vapor-transport/ultrasonic methods,nanostructured Mg-based composites via mechanical milling methods,construction of core-shell nano-structured Mg-based composites by chemical reduction approaches,and multi-dimensional nano-sized Mg-based heterostructure by nanoconfinement strategy.Through applying these strategies,near room temperature ab/de-sorption(<100℃)with considerable high capacity(>6 wt%)has been achieved in nano Mg/MgH_(2)systems.Some perspectives on the future research and development of nanostructured hydrogen storage materials are also provided. 展开更多
关键词 mg-based hydrogen storage materials NANOSTRUCTURE hydrogen storage THERMODYNAMICS KINETICS On-board hydrogen storage
下载PDF
Kinetics in Mg-based hydrogen storage materials:Enhancement and mechanism 被引量:23
8
作者 Qun Luo Jianding Li +3 位作者 Bo Li Bin Liu Huaiyu Shao Qian Li 《Journal of Magnesium and Alloys》 SCIE EI CAS 2019年第1期58-71,共14页
Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for... Mg-based materials have been intensively studied for hydrogen storage applications due to their high energy density up to 2600 Wh/kg or 3700 Wh/L.However,the Mg-based materials with poor kinetics and the necessity for a high temperature to achieve 0.1 MPa hydrogen equilibrium pressure limit the applications in the onboard storage in Fuel cell vehicles(FCVs).Over the past decades,many methods have been applied to improve the hydriding/dehydriding(H/D)kinetics of Mg/MgH 2 by forming amorphous or nanosized particles,adding catalysts and employing external energy field,etc.However,which method is more effective and the intrinsic mechanism they work are widely differing versions.The hydrogenation and dehydrogenation behaviors of Mg-based alloys analyzing by kinetic models is an efficient way to reveal the H/D kinetic mechanism.However,some recently proposed models with physical meaning and simple analysis method are not known intimately by researchers.Therefore,this review focuses on the enhancement method of kinetics in Mg-based hydrogen storage materials and introduces the new kinetic models. 展开更多
关键词 Magnesium alloys hydrogen storage materials Hydriding/dehydriding reactions KINETICS
下载PDF
Hydrogen storage behavior of Mg-based alloy catalyzed by carbon-cobalt composites 被引量:4
9
作者 Hui Yong Xin Wei +4 位作者 Jifan Hu Zeming Yuan Shihai Guo Dongliang Zhao Yanghuan Zhang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第6期1977-1988,共12页
The composites comprised of Co nanoparticle and C nanosheet were prepared though a high-temperature carbonization reaction.The catalysis of Co@C composites on the hydrogen storage behavior of Mg_(90)Ce_(5)Y_(5)alloy w... The composites comprised of Co nanoparticle and C nanosheet were prepared though a high-temperature carbonization reaction.The catalysis of Co@C composites on the hydrogen storage behavior of Mg_(90)Ce_(5)Y_(5)alloy was investigated in detail by XRD,SEM,TEM,PCI,and DSC method.Because of the synergistic catalytic function of C and Co in C@Co nanocomposites,the Mg_(90)Ce_(5)Y_(5)alloy with 10 wt.%C@Co shows the excellent hydrogen absorption and desorption performances.Time for releasing hydrogen reduces from 150 min to 11 min with the addition of the C@Co composites at the temperature of 300℃.Meanwhile,the dehydrogenation activation energy also declines from 130.3 to 81.9 kJ mol^(-1)H_(2)after the addition of the C@Co composites.This positive effect attributes to the C layer with the high defect density and the Co nanoparticles,which reduces the energy barriers for the nucleation of Mg/MgH_(2)phase and the recombination of hydrogen molecule.Besides,the C@Co composites also improve the activation property of the Mg_(90)Ce_(5)Y_(5)alloy which was folly activated in the first cycle.Moreover,the temperature for initial dehydrogenation and the endothermic peak of the alloy hydride were also decreased.Although the addition of the C@Co composites increases the plateau pressures and decreases the value of the decomposition enthalpy,these differences are so small that the improvement on thermodynamics can hardly be seen. 展开更多
关键词 hydrogen storage mg-based alloy KINETICS THERMODYNAMICS Synergistic effect NANOCOMPOSITES
下载PDF
An overview of progress in Mg-based hydrogen storage films 被引量:2
10
作者 Lyu Jinzhe Andrey M Lider Viktor N Kudiiarov 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第9期68-77,共10页
Mg-based hydrogen storage materials are considered to be one of the most promising solid-state hydrogen storage materials due to their large hydrogen storage capacity and low cost. However, slow hydrogen absorption/de... Mg-based hydrogen storage materials are considered to be one of the most promising solid-state hydrogen storage materials due to their large hydrogen storage capacity and low cost. However, slow hydrogen absorption/desorption rate and excessive hydrogen absorption/desorption temperature limit the application of Mg-based hydrogen storage materials.The present paper reviews the advances in the research of Mg-based hydrogen storage film in recent years, including the advantage of the film, the function theory of fabricating method and its functional theory, and the influencing factors in the technological process. The research status worldwide is introduced in detail. By comparing pure Mg, Pd-caped Mg, nonpalladium capped Mg, and Mg alloy hydrogen storage films, an ideal tendency for producing Mg-based film is pointed out,for example, looking for a cheap metal element to replace the high-priced Pd, compositing Mg film with other hydrogen storage alloy of catalytic elements, and so on. 展开更多
关键词 mg-based hydrogen storage FILM Pd-caped Mg FILM Mg alloy FILM INTERLAYER INTERMETALLIC COOPERATIVE effect
下载PDF
Development of Mg-based Hydrogen Storage Alloy 被引量:1
11
作者 Lian bang WANG, Yijing WANG and Hualang YUAM Institute of New Energy Material Chemistry, Nankai University, Tianjin 300071, China Manuscript received June 30, 2000, in revised form September 20, 20001 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2001年第6期590-596,共7页
Mg-based hydrogen storage alloys are considered as a promising candidate for hydrogen system because of its lightweight, high storage capacity, low price and rich mineral resources. In detail, we reviewed the preparat... Mg-based hydrogen storage alloys are considered as a promising candidate for hydrogen system because of its lightweight, high storage capacity, low price and rich mineral resources. In detail, we reviewed the preparation and properties of Mg-Ni-based hydrogen storage alloys. All kinds of attempts have been done to improve the hydriding and dehydriding behaviors. It is found that the partial substitution of foreign elements can decrease the hydrogen absorption temperature, especially the substitution of a more electronegative element, such as AI and Mn. Mechanical alloying (MA) and mechanical grinding (MG) are the most effective methods to improve the hydriding/dehydriding kinetics and electrochemical capacity, and decrease the desorption temperature. but the corrosion resistance is so poor that the 80% of maximum capacity is lost within ten cycles. Microencapsulation is a useful measurement for improving the corrosion resistance and electrocatalytic activity. fn order to improve the properties of the alloys for practical application, the alloys should have a large number of defects, which give activated sites, subsequently, MA, MG and electroless plating should be used to improve the hydriding/dehydriding kinetics and protect the surface of alloys, respectively. The new composite Mg-based alloys give a new way for the hydrogen storage material to practical application. Furthermore we put forward several problems which will be discussed in future. 展开更多
关键词 Development of mg-based hydrogen storage Alloy NI
下载PDF
Hydrogen storage properties of ball-milled Mg-based composite with PdCl_2 additive 被引量:1
12
作者 WANG Xiu-li TU Jiang-ping +1 位作者 ZHANG Pei-long ZHAO Xin-bing 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2007年第9期1510-1513,共4页
Mg-25 wt% Mg2Ni composite was prepared by sintered method, hydrided at 613 K and then ball-milled with 1.5 wt% PdC12 additive for 51 h. The effects of PdCl2 on the hydriding and dehydriding behavior of Mg-25 wt% Mg2Ni... Mg-25 wt% Mg2Ni composite was prepared by sintered method, hydrided at 613 K and then ball-milled with 1.5 wt% PdC12 additive for 51 h. The effects of PdCl2 on the hydriding and dehydriding behavior of Mg-25 wt% Mg2Ni composite were investigated. The absorption and desorption rate of the composite with PdCl2 is fast and the hydrogen storage capacity is more than that of the composite without PdCl2. The maximum hydrogen storage capacity reached 3.48 wt% at 373 K, and 5.05 wt% H at 453 K, respectively. The improvement of sorption and desorption kinetics is attributed to the catalytic effect of PdCl2, and the grain refining and lattice strain introduced by ball milling. 展开更多
关键词 hydrogen storage mg-based composite PdCl2 additive Ball milling
下载PDF
Effects of carbon nanotubes on hydrogen storage property of Mg-based nanocomposites
13
作者 于振兴 孙宏飞 +3 位作者 王尔德 梁吉 房文斌 张文丛 《中国有色金属学会会刊:英文版》 CSCD 2005年第S2期173-177,共5页
Mg-based hydrogen storage nanocomposites added with carbon nanotubes(CNTs) were prepared by mechanical milling under the atmosphere of hydrogen. The results show that because of their own excellent heat conductivity a... Mg-based hydrogen storage nanocomposites added with carbon nanotubes(CNTs) were prepared by mechanical milling under the atmosphere of hydrogen. The results show that because of their own excellent heat conductivity and good hydrogen storage ability, the carbon nanotubes improve the mass transfer and heat transfer properties of the Mg-based nanocomponents, thus enhancing the kinetic property of hydrogen absorption and desorption of the hydrogen storage nanocomposites, and raising the hydrogen storage capacity. Due to the addition of the carbon nanotubes, the milling stress in the process of preparing the Mg-based nanocomposites is reduced, the components can be closely bonded easily, and the additives can play better catalytic roles. 展开更多
关键词 hydrogen storage material CARBON NANOTUBES mg-based composite hydrogen storage capacity
下载PDF
Electrochemical hydrogen storage characteristics of nanocrystalline and amorphous Mg_2Ni-type alloys prepared by melt-spinning 被引量:4
14
作者 张羊换 吕科 +3 位作者 赵栋梁 郭世海 祁焱 王新林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期502-511,共10页
The nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) were synthesized by melt-spinning technique. The spun alloy ribbons with a continuous length, a ... The nanocrystalline and amorphous Mg2Ni-type alloys with nominal compositions of Mg2Ni1-xMnx (x=0, 0.1, 0.2, 0.3, 0.4) were synthesized by melt-spinning technique. The spun alloy ribbons with a continuous length, a thickness of about 30 μm and a width of about 25 mm are obtained. The structures of the as-spun alloy ribbons were characterized by XRD and HRTEM. The electrochemical hydrogen storage characteristics of the as-spun alloy ribbons were measured by an automatic galvanostatic system. The electrochemical impedance spectrums (EIS) were plotted by an electrochemical workstation. The hydrogen diffusion coefficients (D) in the alloys were calculated by virtue of potential-step measurement. The results show that all the as-spun (x=0) alloys hold a typical nanocrystalline structure, whereas the as-spun (x=0.4) alloy displays a nanocrystalline and amorphous structure, confirming that the substitution of Mn for Ni facilitates the glass formation in the Mg2Ni-type alloy. The substitution of Mn for Ni significantly improves the electrochemical hydrogen storage performances of the alloys, involving the discharge capacity and the electrochemical cycle stability. With an increase in the amount of Mn substitution from 0 to 0.4, the discharge capacity of the as-spun (20 m/s) alloy increases from 96.5 to 265.3 mA·h/g, and its capacity retaining rate (S20) at the 20th cycle increases from 31.3% to 70.2%. Furthermore, the high rate dischargeability (HRD), electrochemical impedance spectrum and potential-step measurements all indicate that the electrochemical kinetics of the alloy electrodes first increases then decreases with raising the amount of Mn substitution. 展开更多
关键词 Mg2Ni-type alloy electrochemical hydrogen storage MELT-SPINNING substituting Ni with Mn
下载PDF
Phase structure and electrochemical properties of La_(0.7)Ce_(0.3)Ni_(3.75)Mn_(0.35)Al_(0.15)Cu_(0.75-x)Fe_x hydrogen storage alloys 被引量:2
15
作者 刘宝忠 李安铭 +2 位作者 范燕平 胡梦娟 张宝庆 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第11期2730-2735,共6页
La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were inves... La0.7Ce0.3Ni3.75Mn0.35Al0.15Cu0.75-xFex (x=0-0.20) hydrogen storage alloys were synthesized by induction melting and subsequent annealing treatment, and phase structure and electrochemical characteristics were investigated. All alloys consist of a single LaNi5 phase with CaCu5 structure, and the lattice constant a and the cell volume (V) of the LaNi5 phase increase with increasing x value. The maximum discharge capacity gradually decreases from 319.0 mA?h/g (x=0) to 291.9 mA?h/g (x=0.20) with the increase in x value. The high-rate dischargeability at the discharge current density of 1200 mA/g decreases monotonically from 53.1% (x=0) to 44.2% (x=0.20). The cycling stability increases with increasing x from 0 to 0.20, which is mainly ascribed to the improvement of the pulverization resistance. 展开更多
关键词 hydrogen storage alloy AB5-type hydrogen storage alloys phase structures electrochemical property KINETICS Ni-MH battery LaNi5 phase
下载PDF
Electrochemical hydrogen storage characteristics of as-cast and annealed La_(0.8-x)Nd_xMg_(0.2)Ni_(3.15)Co_(0.2)Al_(0.1)Si_(0.05)(x=0-0.4)alloys 被引量:3
16
作者 张羊换 候忠辉 +3 位作者 李保卫 任慧平 蔡颖 赵栋梁 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第5期1403-1412,共10页
The La-Mg-Ni-based A2B7-type La0.8-xNdxMg0.2Ni3.15Co0.2Al0.15 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were prepared by casting and annealing. The influences of partial substitution of Nd for La on the structure a... The La-Mg-Ni-based A2B7-type La0.8-xNdxMg0.2Ni3.15Co0.2Al0.15 (x=0, 0.1, 0.2, 0.3, 0.4) electrode alloys were prepared by casting and annealing. The influences of partial substitution of Nd for La on the structure and electrochemical performance of the as-cast and annealed alloys were investigated. It was found that the experimental alloys consist of two major phases, (La, Mg)2Ni7 phase with the hexagonal Ce2Ni7-type structure and LaNi5 phase with the hexagonal CaCu5-type structure, as well as some residual phase LaNi3 and NdNi5. The discharge capacity and high rate discharge ability (HRD) of the as-cast and annealed alloys first increase and then decrease with Nd content growing. The as-cast and annealed alloys (x=0.3) yield the largest discharge capacities of 380.3 and 384.3 mA·h/g, respectively. The electrochemical cycle stability of the as-cast and annealed alloys markedly grows with Nd content rising. As the Nd content increase from 0 to 0.4. The capacity retaining rate (S100) at the 100th charging and discharging cycle increases from 64.98% to 85.17% for the as-cast alloy, and from 76.60% to 96.84% for the as-annealed alloy. 展开更多
关键词 Ni-MH battery hydrogen storage A2B7-type electrode alloy ND LA SUBSTITUTION electrochemical characteristics
下载PDF
Phase structure and electrochemical properties of La_(1.7+x)Mg_(1.3-x)(NiCoMn)_(9.3)(x=0-0.4) hydrogen storage alloys 被引量:2
17
作者 魏范松 黎莉 +2 位作者 项宏福 李惠 魏范娜 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第8期1995-1999,共5页
The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni... The phase structure and electrochemical properties of La1.7+xMg1.3-x(NiCoMn)9.3(x=0-0.4) alloys were investigated. The XRD analysis reveals that the alloys consist of LaNi5 phase and other phases, such as LaMg2Ni9 phase (PuNi3 structure) and La4MgNi19 phases (Ce5Co19+Pr5Co19 structure, namely A5B19 type). With the increase of the x value, the LaMg2Ni9 phase fades away and La4MgNi19 phases appear, while the abundance of LaNi5 phase firstly increases and then decreases. At the same time, the cell volume of LaNi5 phase and LaMg2Ni9 phase decreases. The electrochemical measurement shows that alloy electrodes could be activated in 4-5 cycles, and with the increase of the x value, the maximum discharge capacity gradually increases from 330.9 mA-h/g (x=0) to 366.8 mA-h/g (x=0.4), but the high-rate dischargeability (HRD) and cyclic stability (S) decrease somewhat (x=0.4, HRD600=82.32%, S100=73.8%). It is found that the HRD is mainly controlled by the electrocatalytic activity on the alloy electrode surface, and the decline of cyclic stability is due to the appearance of A5B19 type phase with larger hydrogen storage capacity, which leads to larger volume expansion and more intercrystalline stress and then easier pulverization during charging/discharging. 展开更多
关键词 hydrogen storage alloy A5B19 type crystal structure electrochemical property La-Mg-Ni system
下载PDF
Hydrogen absorption/desorption cycling performance of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines 被引量:4
18
作者 Fenghai Guo Tiebang Zhang +1 位作者 Limin Shi Lin Song 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第4期1180-1192,共13页
Aiming to elucidate the hydrogen absorption/desorption cycling properties of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines,the hydrogen storage cycle stability,hydriding/dehydriding c... Aiming to elucidate the hydrogen absorption/desorption cycling properties of Mg-based alloys with in-situ formed Mg_(2)Ni and LaH_(x)(x=2,3)nanocrystallines,the hydrogen storage cycle stability,hydriding/dehydriding cycling kinetics and thermodynamic stability of the experimental alloys have been investigated in detail.The results show that the Mg-Ni-La alloys exhibit improved hydrogen storage cycling properties and can remain storage hydrogen above 5.5 wt%after 200 cycles.With the increase of cycling numbers,the dehydrogenation rates of the experimental samples increase firstly and then gradually decrease,and eventually maintain relative stable state.Microstructure observation reveals that powders sintering and hydrogen decrepitation both exist during hydrogen absorption/desorption cycles due to repeated volume expansion and contraction.Meanwhile,the in-situ formed LaH_(x)(x=2,3)and Mg_(2)Ni nanocrystallines stabilize the microstructures of the particles and hinder the powders sintering.After 200 cycles,the average particle size of the experimental samples decreases and the specific surface area apparently increases,which leads to the decomposition temperatures of MgH_(2)and Mg_(2)NiH_(4)slightly shift to lower temperatures.Moreover,Mg_(2)Ni and LaH_(x)(x=2,3)have been proven to be stable catalysts during long-term cycling,which can still uniformly distribute within the powders after 200 cycles. 展开更多
关键词 mg-based hydrogen storage alloys Cycle stability Microstructure evolution Catalyst stability THERMODYNAMICS
下载PDF
In situ formation of multiple catalysts for enhancing the hydrogen storage of MgH_(2) by adding porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres 被引量:1
19
作者 Bing Zhang Xiubo Xie +6 位作者 Yukun Wang Chuanxin Hou Xueqin Sun Yuping Zhang Xiaoyang Yang Ronghai Yu Wei Du 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期1227-1238,共12页
MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high... MgH_(2) is considered one of the most promising hydrogen storage materials because of its safety,high efficiency,high hydrogen storage quantity and low cost characteristics.But some shortcomings are still existed:high operating temperature and poor hydrogen absorption dynamics,which limit its application.Porous Ni_(3)ZnC_(0.7)/Ni loaded carbon nanotubes microspheres(NZC/Ni@CNT)is prepared by facile filtration and calcination method.Then the different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%)is added to the MgH_(2) by ball milling.Among the three samples with different amount of NZC/Ni@CNT(2.5,5.0 and 7.5 wt%),the MgH_(2)-5 wt%NZC/Ni@CNT composite exhibits the best hydrogen storage performances.After testing,the MgH_(2)-5 wt%NZC/Ni@CNT begins to release hydrogen at around 110℃ and hydrogen absorption capacity reaches 2.34 wt%H_(2) at 80℃ within 60 min.Moreover,the composite can release about 5.36 wt%H_(2) at 300℃.In addition,hydrogen absorption and desorption activation energies of the MgH_(2)-5 wt%NZC/Ni@CNT composite are reduced to 37.28 and 84.22 KJ/mol H_(2),respectively.The in situ generated Mg_(2)NiH_(4)/Mg_(2)Ni can serve as a"hydrogen pump"that plays the main role in providing more activation sites and hydrogen diffusion channels which promotes H_(2) dissociation during hydrogen absorption process.In addition,the evenly dispersed Zn and MgZn2 in Mg and MgH_(2) could provide sites for Mg/MgH_(2) nucleation and hydrogen diffusion channel.This attempt clearly proved that the bimetallic carbide Ni_(3)ZnC_(0.7) is a effective additive for the hydrogen storage performances modification of MgH_(2),and the facile synthesis of the Ni_(3)ZnC_(0.7)/Ni@CNT can provide directions of better designing high performance carbide catalysts for improving MgH_(2). 展开更多
关键词 mg-based hydrogen storage material Ni_(3)ZnC_(0.7)/Ni@CNT particles Ni loaded carbon nanotubes Multiple catalysts.
下载PDF
Preparation of LaMgNi_(4-x)Co_x alloys and hydrogen storage properties 被引量:3
20
作者 谭剑波 曾小勤 +2 位作者 邹建新 吴晓梅 丁文江 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第8期2307-2311,共5页
The LaMgNi4xCox (x=0, 0.3, 0.5) compounds were prepared by the method of levitation melting and a subsequent heat treatment at 1073 K for 10 h. XRD analysis shows that the obtained LaMgNia-xCox alloys consist of a s... The LaMgNi4xCox (x=0, 0.3, 0.5) compounds were prepared by the method of levitation melting and a subsequent heat treatment at 1073 K for 10 h. XRD analysis shows that the obtained LaMgNia-xCox alloys consist of a single phase with the structure of cubic SnMgCu4 (AuBe5 type). The hydrogen absorption/desorption properties of LaMgNi4 were investigated by PCI measurement at various temperatures (T=373, 398, 423 K) and the results show that the maximum absorbed hydrogen capacity reaches 1.45% (5.79H/M) under a hydrogen pressure of 4.3 MPa at 373 K. The XRD patterns during absorbing procedure at 373 K indicate the phase structure changing from cubic (a-LaMgNi4) to orthorhombic (fl-LaMgNiaH3.41) and after hydrogenation finally back to cubic (y-LaMgNiaH4.87), and a partial desorption was also observed under this condition. With increasing temperature, a slight decrease of the absorbed hydrogen content was observed and the number of plateaus reduces from two to one, but the hydrogen absorption kinetics improves. The electrochemical properties of the LaMgNiaxCox were measured by simulated battery test, which shows that the discharge capacity of the alloys significantly improves with the increase of Co content. 展开更多
关键词 hydrogen storage alloy electrochemical properties LaMgNi4-xCox
下载PDF
上一页 1 2 110 下一页 到第
使用帮助 返回顶部