In the present work,dispersive liquid-liquid microextraction(DLLME)was used to extract six synthetic cannabinoids(JWH-018,JWH-019,JWH-073,JWH-200,or WIN 55,225,JWH-250,and AM-694)from oral fluids.A rapid baseline sepa...In the present work,dispersive liquid-liquid microextraction(DLLME)was used to extract six synthetic cannabinoids(JWH-018,JWH-019,JWH-073,JWH-200,or WIN 55,225,JWH-250,and AM-694)from oral fluids.A rapid baseline separation of the analytes was achieved on a bidentate octadecyl silica hydride phase(Cogent Bidentate C18;4.6 mm×250 mm,4μm)maintained at 37℃,by eluting in isocratic conditions(water:acetonitrile(25:75,V/V)).Detection was performed using positive electrospray ionization-tandem mass spectrometry.The parameters affecting DLLME(pH and ionic strength of the aqueous phase,type and volume of the extractant and dispersive solvent,vortex and centrifugation time)were optimized for maximizing yields.In particular,using 0.5 mL of oral fluid,acetonitrile(1 mL),was identified as the best option,both as a solvent to precipitate proteins and as a dispersing solvent in the DLLME procedure.To select an extraction solvent,a low transition temperature mixture(LTTM;composed of sesamol and chlorine chloride with a molar ratio of 1:3)and dichloromethane were compared;the latter(100μL)was proved to be a better extractant,with recoveries ranging from 73%to 101%by vortexing for 2 min.The method was validated according to the guidelines of Food and Drug Administration bioanalytical methods:intra-day and inter-day precisions ranged between 4%and 18%depending on the spike level and analyte;limits of detection spanned from 2 to 18 ng/mL;matrixmatched calibration curves were characterized by determination coefficients greater than 0.9914.Finally,the extraction procedure was compared with previous methods and with innovative techniques,presenting superior reliability,rapidity,simplicity,inexpensiveness,and efficiency.展开更多
For identifying and quantifying prohibited substances,solid-phase microextraction(SPME)continues to arouse interest as a sample preparation method.However,the practical implementation of this method in routine laborat...For identifying and quantifying prohibited substances,solid-phase microextraction(SPME)continues to arouse interest as a sample preparation method.However,the practical implementation of this method in routine laboratory testing is currently hindered by the limited number of coatings compatible with the ubiquitous high-performance liquid chromatography(HPLC)systems.Only octadecyl(C18)and polydimethylsiloxane/divinylbenzene ligands are currently marketed for this purpose.To address this situation,the present study evaluated 12 HPLC-compatible coatings,including several chemistries not currently used in this application.The stationary phases of SPME devices in the geometry of thin filmcoated blades were prepared by applying silica particles bonded with various functional ligands(C18,octyl,phenyl-hexyl,3-cyanopropyl,benzenesulfonic acid,and selected combinations of these),as well as unbonded silica,to a metal support.Most of these chemistries have not been previously used as microextraction coatings.The 48 most commonly misused substances were selected to assess the extraction efficacy of each coating,and eight desorption solvent compositions were used to optimize the desorption conditions.All samples were analyzed using an HPLC system coupled with triple quadrupole tandem mass spectrometry.This evaluation enables selection of the best-performing coatings for quantifying prohibited substances and investigates the relationship between extraction efficacy and the physicochemical characteristics of the analytes.Ultimately,using the most suitable coatings is essential for trace-level analysis of chemically diverse prohibited substances.展开更多
Volatile constituents in fully mature fruits of apricot (Prunus armeniaca L.) cultivar Xinshiji were extracted using headspace solid-phase microextraction (HS-SPME) and simultaneous steam distillation extraction ...Volatile constituents in fully mature fruits of apricot (Prunus armeniaca L.) cultivar Xinshiji were extracted using headspace solid-phase microextraction (HS-SPME) and simultaneous steam distillation extraction (SSDE) and then analyzed using capillary gas chromatography and gas chromatography-mass spectrometry. A total of 70 components were identified by HSSPME, including 20 esters, 19 hydrocarbons, 5 alcohols, 5 ketones, 4 acids, 4 lactones, 3 aldehydes, and 10 miscellaneous components, with the esters being the dominant constituent. On the basis of the odor unit values, it is believed that the following compounds probably contributed to the fresh apricot odor: hexyl acetate, β-ionone, butyl acetate, (E)-2-hexenal, linalool, limonene, γ-decalactone, and hexanal. A total of 49 components were also detected by SSDE, including 13 hydrocarbons, 9 alcohols, 7 aldehydes, 9 esters, 4 ketones, 4 lactones, 2 acids, and 1 miscellaneous component, of which the monoterpene alcohols were the dominant constituents. It could be judged from the odor unit values that the following compounds were the major contributors to boiled apricot aroma: β-ionone, linalool, hexyl acetate, γ-dodecalactone, γ- decalactone, (E)-2-hexenal, hexanal, γ-octalactone, phenylacetaldehyde, butyl acetate, limonene, α-terpineol, and δ-decalactone. The results show that HS-SPME is a simple, rapid, and solvent-free method, which is an alternative to the classical SSDE.展开更多
A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) ...A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detector (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 5 to 1000 ng mL^-1 for all the five carbamate pesticides, with the correlation coefficients (r^2) varying from 0.9984 to 0.9994. Good enrichment factors were achieved ranging from 80 to 177- fold, depending on the compound. The limits of detection (LODs) (S/N = 3) were ranged from 0.1 to 0.5 ng mL^-1. The method has been successfully applied to the analysis of the pesticide residues in environmental water samples.展开更多
In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4...In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L^-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.展开更多
Development of a novel in vivo lung perfusion(IVLP)procedure allows localized delivery of high-dose doxorubicin(DOX)for targeting residual micrometastatic disease in the lungs.However,DOX delivery via IVLP requires ca...Development of a novel in vivo lung perfusion(IVLP)procedure allows localized delivery of high-dose doxorubicin(DOX)for targeting residual micrometastatic disease in the lungs.However,DOX delivery via IVLP requires careful monitoring of drug level to ensure tissue concentrations of this agent remain in the therapeutic window.A small dimension nitinol wire coated with a sorbent of biocompatible morphology(Bio-SPME)has been clinically evaluated for in vivo lung tissue extraction and determination of DOX and its key metabolites.The in vivo Bio-SPME-IVLP experiments were performed on pig model over various(150 and 225 mg/m^(2))drug doses,and during human clinical trial.Two patients with metastatic osteosarcoma were treated with a single 5 and 7 μg/mL(respectively)dose of DOX during a 3-h IVLP.In both pig and human cases,DOX tissue levels presented similar trends during IVLP.Human lung tissue concentrations of drug ranged between 15 and 293 μg/g over the course of the IVLP procedure.In addition to DOX levels,Bio-SPME followed by liquid chromatography-mass spectrometry analysis generated 64 metabolic features during endogenous metabolite screening,providing information about lung status during drug administration.Real-time monitoring of DOX levels in the lungs can be performed effectively throughout the IVLP procedure by in vivo Bio-SPME chemical biopsy approach.Bio-SPME also extracted various endogenous molecules,thus providing a real-time snapshot of the physiology of the cells,which might assist in the tailoring of personalized treatment strategy.展开更多
Urinary 8-hydroxy-2 -deoxyguanosine(8-OHdG) is an excellent marker of oxidative DNA damage.In this study,employing guanosine as dummy template a novel molecularly imprinted(MIP) monolithic capillary column had been sy...Urinary 8-hydroxy-2 -deoxyguanosine(8-OHdG) is an excellent marker of oxidative DNA damage.In this study,employing guanosine as dummy template a novel molecularly imprinted(MIP) monolithic capillary column had been synthesized,and that was used as medium of in-tube solid phase microextraction(SPME).Coupled with capillary electrophoresis-electrochemical detection(CE-ECD),the system of extraction and detection of 8-OHdG in urinary sample had been developed.Because of its greater phase ratio combined with conv...展开更多
A fast and simple method for determination of α, β, γ-hexachlorocyclohexanes (HCHs) in water using activated carbon fiber-solid phase microextraction(ACF-SPME) were studied. Results showed the performance of adsorp...A fast and simple method for determination of α, β, γ-hexachlorocyclohexanes (HCHs) in water using activated carbon fiber-solid phase microextraction(ACF-SPME) were studied. Results showed the performance of adsorption and desorption of three HCHs on ACF were excellent. A wide linear range from 10 to 100 μg/L and detection limits of the ng/L level were obtained using ACF-SPME with GC-MS in selected ion monitoring(SIM) acquisition mode. The proposed method was also successfully applied for determination of three HCHs in tap water. Compared to commercial fibers, ACF showed some advantages such as better resistance to solvents, higher thermal stability, longer lifetime and lower cost. The data demonstrated that GC-MS with ACF-SPME is well suitable for the analysis of HCHs in water.展开更多
Hollow-fiber liquid-phase microextraction(HF-LPME)and electromembrane extraction(EME)are miniaturized extraction techniques,and have been coupled with various analytical instruments for trace analysis of heavy metals,...Hollow-fiber liquid-phase microextraction(HF-LPME)and electromembrane extraction(EME)are miniaturized extraction techniques,and have been coupled with various analytical instruments for trace analysis of heavy metals,drugs and other organic compounds,in recent years.HF-LPME and EME provide high selectivity,efficient sample cleanup and enrichment,and reduce the consumption of organic sol-vents to a few micro-liters per sample.HF-LPME and EME are compatible with different analytical in-struments for chromatography,electrophoresis,atomic spectroscopy,mass spectrometry,and electrochemical detection.HF-LPME and EME have gained significant popularity during the recent years.This review focuses on hollow fiber based techniques(especially HF-LPME and EME)of heavy metals and pharmaceuticals(published 2017 to May 2019),and their combinations with atomic spectroscopy,UV-VIS spectrophotometry,high performance liquid chromatography,gas chromatography,capillary elec-trophoresis,and voltammetry.展开更多
[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) com...[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS). The main compounds were alcohols( 54. 88%) and aldehydes( 19. 55%). [Results] The top five components with the highest relative content were phenylethyl alcohol( 12. 69%),geraniol( 9. 85%),citronellol( 8. 80%),nerol( 7. 84%) and 2-n-pentylfuran( 7. 45%). [Conclusions] Headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS) can provide basis for further development and utilization of R. davurica.展开更多
A single-drop liquid phase micro-extraction procedure using 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) was demonstrated for the sensitive determination of four phenols in water samples. Under the...A single-drop liquid phase micro-extraction procedure using 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) was demonstrated for the sensitive determination of four phenols in water samples. Under the optimized conditions, the linear range of proposed method was excellent in the range of 0.5-100 μg·L^-1, the reproducibility (RSD, n=6) were in the range 5.4%-8.9% and detection limits (S/N=3) were 0.3, 0.3, 0.5 and 0.5 μg·L^-1 for 2, 4-dichlorophenol, 2-naphthol, 2-nitrophenol and 4-chlorophenol, respectively. The experimental results indicated that the effect of complex matrices natural water samples could be resolved with addition of sodium ethylene diamine tetracetate (EDTA) into the samples. Excellent spiked recoveries were achieved for these four phenols ranged from 86.2%-114.9 %. All these facts demonstrated that the proposed method with merits of low cost, simplicity and easy operating would be a competitive alternative procedure for the determination of such compounds at trace level.展开更多
A convenient,cost-effective and fast method using dynamic microwave-assisted extraction and liquid phase microextraction based on the solidification of a floating drop was proposed to analyze organochlorine pesticides...A convenient,cost-effective and fast method using dynamic microwave-assisted extraction and liquid phase microextraction based on the solidification of a floating drop was proposed to analyze organochlorine pesticides in grains including rice,maize and millet.Twelve samples can be processed simultaneously in the method.During the extraction process,10%acetonitrile-water solutions containing 110μL of n-hexadecane were used to extract organochlorine pesticides.Subsequently,1.0 g sodium chloride was placed in the extract,and then centrifuged and cooled.The n-hexadecane drops containing the analytes were solidifi ed and transferred for determination by gas chromatography-electron capture detector without any further filtration or cleaning process.Limits of detection for organochlorine pesticides were 0.97–1.01μg/kg and the RSDs were in the range of 2.6%–8.5%.The developed technology has succeeded in analyzing six real grains samples and the recoveries of the organochlorine pesticides were 72.2%–94.3%.Compared with the published extraction methods,the developed method was used to analyze organochlorine pesticides in grains,being more environmentally friendly,which is suitable for the daily determination of organochlorine pesticides.展开更多
A simple and sensitive analytical procedure for the determination of multi-component compounds in water samples was developed and optimized using the headspace solid-phase microextraction(HSSPME) coupled with gas chro...A simple and sensitive analytical procedure for the determination of multi-component compounds in water samples was developed and optimized using the headspace solid-phase microextraction(HSSPME) coupled with gas chromatography-mass spectrometry(GC-MS). Ten off-flavor compounds, including geosmin(GSM), 2-methylisoborneol(2-MIB), 2-isopropyl-3-methoxypyrazine(IPMP), 2-isobutyl-3-methoxypyrazine(IBMP), β-ionone, trans-2,cis-6-nonadienal(NDE), 2,3,4-trichloroanisole(2,3,4-TCA), 2,3,6-trichroloanisole(2,3,6-TCA), 2,4,6-trichloroanisole(2,4,6-TCA), and 2,4,6-tribromoanisole(2,4,6-TBA) were used as the target analytes. The optimization of extraction parameters including fibers types, extraction time, extraction temperature, stirring rate, sample volume, and ionic strength was carried out through the univariate approach. Ten off-flavor compounds were quantified within 50 min under the optimal conditions. Calibration curves with good linearity(r^2=0.990-0.998) were obtained in the range 1.0/2.0-100 ng/L, while the limits of detection for all compounds were lower than or close to the odor threshold concentration. Furthermore, the proposed method was applied to analyzing and determining the off-flavor compounds in real water samples from water-treatment plants.展开更多
This paper describes the electrodeposition of polyphosphate-doped polypyrrole/nanosilica nano-composite coating on steel wire for direct solid-phase microextraction of bisphenol A and five phthalates. We optimized inf...This paper describes the electrodeposition of polyphosphate-doped polypyrrole/nanosilica nano-composite coating on steel wire for direct solid-phase microextraction of bisphenol A and five phthalates. We optimized influencing parameters on the extraction efficiency and morphology of the nanocomposite such as deposition potential, concentration of pyrrole and polyphosphate, deposition time and the nanosilica amount. Under the optimized conditions, characterization of the nanocomposite was inves-tigated by scanning electron microscopy and Fourier transform infra-red spectroscopy. Also, the factors related to the solid-phase microextraction method including desorption temperature and time, extrac-tion temperature and time, ionic strength and pH were studied in detail. Subsequently, the proposed method was validated by gas chromatography-mass spectrometry by thermal desorption and acceptable figures of merit were obtained. The linearity of the calibration curves was between 0.01 and 50 ng/mL with acceptable correlation coefficients (0.9956-0.9987) and limits of detection were in the range 0.002-0.01 ng/mL. Relative standard deviations in terms of intra-day and inter-day by five replicate analyses from aqueous solutions containing 0.1 ng/mL of target analytes were in the range 3.3%-5.4% and 5%-7.1%, respectively. Fiber-to-fiber reproducibilities were measured for three different fibers prepared in the same conditions and the results were between 7.3% and 9.8%. Also, extraction recoveries at two different concentrations were ≥96%. Finally, the suitability of the proposed method was demonstrated through its application to the analysis of some eye drops and injection solutions.展开更多
A simple method has been proposed for the determination of clozapine (CLZ) and chlorpromazine (CPZ) in human urine by dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid ...A simple method has been proposed for the determination of clozapine (CLZ) and chlorpromazine (CPZ) in human urine by dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography-ultraviolet detector (HPLC-UV). All important variables influencing the extraction efficiency, such as pH, types of the extraction solvent and the disperser solvent and their volume, ionic strength and centrifugation time were investigated and optimized. Under the optimal conditions, the limit of detection (LODs) and quantification (LOQs) of the method were 13 and 39 ng/mL for CLZ, and 2 and 6 ng/mL for CPZ, respectively. The relative standard deviations (RSDs) of the targets were less than 5.1% (C=0.100 μg/mL, n=9). Good linear behaviors over the tested concentration ranges were obtained with the values of R20.999 for the targets. The absolute extraction efficiencies of CLZ and CPZ from the spiked blank urine samples were 98.3% and 97.8%, respectively. The applicability of the technique was validated by analyzing urine samples and the mean recoveries for spiked urine samples ranged from 93.3% to 105.0%. The method was successfully applied for the determination of CLZ and CPZ in real human urine.展开更多
In this report, gas chromatography-mass spectrometry (GC-MS) based non-targeted metabolomics is used to develop appropriate headspace solid phase microextractions (HS-SPME) to enhance the understanding of volatile com...In this report, gas chromatography-mass spectrometry (GC-MS) based non-targeted metabolomics is used to develop appropriate headspace solid phase microextractions (HS-SPME) to enhance the understanding of volatile complexity of flue-cured tobacco leaves. Non-targeted metabolic profiling of GC-MS shows that the extraction condition of HS-SPME at 100?C for 30 min provides a better metabolite profile than other extraction conditions tested. GC-MS and principal component analyses (PCA) show that among five types of fibers tested, 100 μm polydimethylsiloxane (PMDS), 65 μm polydimethylsiloxane/divinylbenzene (PMDS/DVB) and 75 μm carboxen/polydimethylsiloxane (CAR/ PMS) provide a better reproducible metabolite profile. Based on an appropriate PDMS extraction condition optimized, we use GC-MS analysis and PCA to compare metabolite profiles in flue-cured leaves of tobacco plants grown in North Carolina, India and Brazil, respectively. The resulting data of PCA show that the global metabolic profiles in North Carolina samples are separated from those in Brazil and India samples, two groups of which are characterized by a partially overlapped pattern. Several peaks that were differentially accumulated in samples were annotated to known metabolites by deconvolution analysis, such as norsolanadione, solavetivone and rishtin. Norsolanadione is detected only in Brazil samples. Solavetivone is detected in samples of India and Brazil but not in those of North Carolina. Rishtin is detected in samples of North Carolina and India but not in Brazil samples. These data indicate that not only can a non-targeted metabolic profiling approach enhance the understanding of volatile complexity, but also can identify marker volatile metabolites in tobacco leaves produced in different growth regions.展开更多
Covalent organic nanospheres(CONs)were explored as a fiber coating for solid-phase microextraction of genotoxic impurities(GTIs)from active ingredients(AIs).CONs were synthesized by an easy solutionphase procedure at...Covalent organic nanospheres(CONs)were explored as a fiber coating for solid-phase microextraction of genotoxic impurities(GTIs)from active ingredients(AIs).CONs were synthesized by an easy solutionphase procedure at 25℃.The obtained nanospheres exhibited a high specific surface area,good thermostability,high acid and alkali resistance,and favorable crystallinity and porosity.Two types of GTIs,alkyl halides(1-iodooctane,1-chlorobenzene,1-bromododecane,1,2-dichlorobenzene,1-bromooctane,1-chlorohexane,and 1,8-dibromooctane)and sulfonate esters(methyl p-toluenesulfonate and ethyl ptoluenesulfonate),were chosen as target molecules for assessing the performance of the coating.The prepared coating achieved high enhancement factors(5097-9799)for the selected GTIs.The strong affinity between CONs and GTIs was tentatively attributed to π-π and hydrophobicity interactions,large surface area of the CONs,and size-matching of the materials.Combined with gas chromatography-mass spectrometry(GC-MS),the established analytical method detected the GTIs in capecitabine and imatinib mesylate samples over a wide linear range(0.2-200 ng/g)with a low detection limit(0.04-2.0 ng/g),satisfactory recovery(80.03%-109.5%),and high repeatability(6.20%-14.8%)and reproducibility(6.20%-14.1%).Therefore,the CON-coated fibers are promising alternatives for the sensitive detection of GTIs in AI samples.展开更多
Dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography–flame ionization detection (GC-FID), as a simple, rapid and efficient method, was developed for the determination of amitraz in honey sa...Dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography–flame ionization detection (GC-FID), as a simple, rapid and efficient method, was developed for the determination of amitraz in honey samples. This method involves the use of an appropriate mixture of the extraction and disperser solvents for the formation of a cloudy solution in 5.0 mL aqueous sample containing amitraz. After extraction, phase separation was performed by centrifugation and the concentrated amitraz in the sedimented phase was determined by gas chromatography—flame ionization detection (GC-FID). Some important parameters such as the type and volume of extraction and disperser solvents, and the effect of pH and salt on the extraction recovery of amitraz were investigated. Under the optimum conditions (13 μL of carbon tetrachloride as an extraction solvent, 1 mL of acetonitrile as a disperser solvent, no salt addition and pH 6) preconcentration factor and the extraction recovery were 955 and 95.5%, respectively. The linear range was 0.01 - 1.0 mg?kg–1 and the limit of detection was 0.0015 mg?kg–1. The relative standard deviation (RSD, n = 4) for 0.1 mg?kg–1 of amitraz was 3.2%. The recoveries of amitraz from honey samples at the spiking levels of 0.1 mg?kg-1 were 78.8 and 98.2%. The results indicated that DLLME is an efficient technique for the extraction of amitraz in honey samples.展开更多
Solid phase microextraction (SPME) is a solvent-flee method of sample collection. SPME is an appealing method for sample collection because it is designed for the sampling of trace level analytes with short sampling...Solid phase microextraction (SPME) is a solvent-flee method of sample collection. SPME is an appealing method for sample collection because it is designed for the sampling of trace level analytes with short sampling times in a variety of environments. Additionally, SPME can be used to directly deliver a sample to a gas chromatograph (GC) for analysis by means of thermal desorption. In this paper, the performance of SPME under dynamic conditions was investigated. Additionally, the competence of SPME sampling for the simultaneous analysis of multiple trace analytes was also evaluated. This work is discussed in the context of underground mine ventilation surveys but is applicable to any industry in which ventilation circuits must be evaluated. The results of this paper showed that the performance of the 100 ~m PDMS SPME fiber was both precise and rapid under dynamic conditions. This SPME fiber was also able to simultaneously collect sulfur hexafluoride (SF6) and perfluoromethylcyclohexane (PMCH) with adequate sensitivity.展开更多
Base on the previous work in laboratory, a novel polyaniline doped with polydimethylsiloxane coating was developed on a stainless steel wire for solid phase microextraction(SPME) by electroplating method. This elect...Base on the previous work in laboratory, a novel polyaniline doped with polydimethylsiloxane coating was developed on a stainless steel wire for solid phase microextraction(SPME) by electroplating method. This electroplating method not only has advantages of ease preparation and simple equipments required, but also increases the lifetime of the SPME fiber. The composite fiber(polyaniline/ polydimethylsiloxane(PANI/PDMS)) was evaluated by analyzing n-tridecane, n-tetradecane and n-pentadecane in aqueous sample. The new fiber coating showed comprehensive abilities to extract alkanes compounds. The relative standard deviations were found to be 6.8%-10.33%.展开更多
基金supported by the Sapienza University of Rome through the project RICERCA 2019(protocol number:RG11916B6451D44A)。
文摘In the present work,dispersive liquid-liquid microextraction(DLLME)was used to extract six synthetic cannabinoids(JWH-018,JWH-019,JWH-073,JWH-200,or WIN 55,225,JWH-250,and AM-694)from oral fluids.A rapid baseline separation of the analytes was achieved on a bidentate octadecyl silica hydride phase(Cogent Bidentate C18;4.6 mm×250 mm,4μm)maintained at 37℃,by eluting in isocratic conditions(water:acetonitrile(25:75,V/V)).Detection was performed using positive electrospray ionization-tandem mass spectrometry.The parameters affecting DLLME(pH and ionic strength of the aqueous phase,type and volume of the extractant and dispersive solvent,vortex and centrifugation time)were optimized for maximizing yields.In particular,using 0.5 mL of oral fluid,acetonitrile(1 mL),was identified as the best option,both as a solvent to precipitate proteins and as a dispersing solvent in the DLLME procedure.To select an extraction solvent,a low transition temperature mixture(LTTM;composed of sesamol and chlorine chloride with a molar ratio of 1:3)and dichloromethane were compared;the latter(100μL)was proved to be a better extractant,with recoveries ranging from 73%to 101%by vortexing for 2 min.The method was validated according to the guidelines of Food and Drug Administration bioanalytical methods:intra-day and inter-day precisions ranged between 4%and 18%depending on the spike level and analyte;limits of detection spanned from 2 to 18 ng/mL;matrixmatched calibration curves were characterized by determination coefficients greater than 0.9914.Finally,the extraction procedure was compared with previous methods and with innovative techniques,presenting superior reliability,rapidity,simplicity,inexpensiveness,and efficiency.
基金supported by the National Centre for Research and Development under the Lider IX programme(Grant No.:LIDER/44/0164/L-9/17/NCBR/2018)Permission to conduct experiments with controlled substances was issued by the local Pharmaceutical Inspector(Kujawsko-Pomorski Wojewodzki Inspektor Farmaceutyczny w BydgoszczyPermission No.:WIFBY-KK.857.2.4.2016).
文摘For identifying and quantifying prohibited substances,solid-phase microextraction(SPME)continues to arouse interest as a sample preparation method.However,the practical implementation of this method in routine laboratory testing is currently hindered by the limited number of coatings compatible with the ubiquitous high-performance liquid chromatography(HPLC)systems.Only octadecyl(C18)and polydimethylsiloxane/divinylbenzene ligands are currently marketed for this purpose.To address this situation,the present study evaluated 12 HPLC-compatible coatings,including several chemistries not currently used in this application.The stationary phases of SPME devices in the geometry of thin filmcoated blades were prepared by applying silica particles bonded with various functional ligands(C18,octyl,phenyl-hexyl,3-cyanopropyl,benzenesulfonic acid,and selected combinations of these),as well as unbonded silica,to a metal support.Most of these chemistries have not been previously used as microextraction coatings.The 48 most commonly misused substances were selected to assess the extraction efficacy of each coating,and eight desorption solvent compositions were used to optimize the desorption conditions.All samples were analyzed using an HPLC system coupled with triple quadrupole tandem mass spectrometry.This evaluation enables selection of the best-performing coatings for quantifying prohibited substances and investigates the relationship between extraction efficacy and the physicochemical characteristics of the analytes.Ultimately,using the most suitable coatings is essential for trace-level analysis of chemically diverse prohibited substances.
基金The study was supported by the National Natural Science Foundation of China (30471196).
文摘Volatile constituents in fully mature fruits of apricot (Prunus armeniaca L.) cultivar Xinshiji were extracted using headspace solid-phase microextraction (HS-SPME) and simultaneous steam distillation extraction (SSDE) and then analyzed using capillary gas chromatography and gas chromatography-mass spectrometry. A total of 70 components were identified by HSSPME, including 20 esters, 19 hydrocarbons, 5 alcohols, 5 ketones, 4 acids, 4 lactones, 3 aldehydes, and 10 miscellaneous components, with the esters being the dominant constituent. On the basis of the odor unit values, it is believed that the following compounds probably contributed to the fresh apricot odor: hexyl acetate, β-ionone, butyl acetate, (E)-2-hexenal, linalool, limonene, γ-decalactone, and hexanal. A total of 49 components were also detected by SSDE, including 13 hydrocarbons, 9 alcohols, 7 aldehydes, 9 esters, 4 ketones, 4 lactones, 2 acids, and 1 miscellaneous component, of which the monoterpene alcohols were the dominant constituents. It could be judged from the odor unit values that the following compounds were the major contributors to boiled apricot aroma: β-ionone, linalool, hexyl acetate, γ-dodecalactone, γ- decalactone, (E)-2-hexenal, hexanal, γ-octalactone, phenylacetaldehyde, butyl acetate, limonene, α-terpineol, and δ-decalactone. The results show that HS-SPME is a simple, rapid, and solvent-free method, which is an alternative to the classical SSDE.
基金supported both by the Natural Science Foundations of Hebei(No.B2008000210)the Scientific Research Foundation of Agricultural University of Hebei.
文摘A novel method for the determination of five carbamate pesticides (metolcarb, carbofuran, carbaryl, isoprocard and diethofencard) in water samples was developed by dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography-diode array detector (HPLC-DAD). Some experimental parameters that influence the extraction efficiency were studied and optimized to obtain the best extraction results. Under the optimum conditions for the method, the calibration curve was linear in the concentration range from 5 to 1000 ng mL^-1 for all the five carbamate pesticides, with the correlation coefficients (r^2) varying from 0.9984 to 0.9994. Good enrichment factors were achieved ranging from 80 to 177- fold, depending on the compound. The limits of detection (LODs) (S/N = 3) were ranged from 0.1 to 0.5 ng mL^-1. The method has been successfully applied to the analysis of the pesticide residues in environmental water samples.
基金the National Natural Science Foundation of China(Nos.20375035,20527005,20775070)by Zhejiang Provincial Natural Science Foundation of China(Nos.Z404105,Y507252).
文摘In this work, a new microextraction method termed ionic liquid based dispersive liquid-liquid microextraction (IL-DLLME) was demonstrated for the extraction of 2-methylaniline, 4-chloroaniline, 1-naphthylamine and 4-aminobiphenyl in aqueous matrices. After extraction the ionic liquid (IL) phase was injected directly into the high performance liquid chromatography (HPLC) system for determination. Some parameters that might affect the extraction efficiency were optimized. Under the optimum conditions, good linear relationship, sensitivity and reproducibility were obtained. The limits of detection (LOD, S/N = 3) for the four analytes were in the range of 0.45-2.6 μg L^-1. The relative standard deviations (R.S.D., n = 6) were in the range of 6.2-9.8%. This method was applied for the analysis of the real water samples. The recoveries ranged from 93.4 to 106.4%. The main advantages of the method are high speed, high recovery, good repeatability and volatile organic solvent-free.
文摘Development of a novel in vivo lung perfusion(IVLP)procedure allows localized delivery of high-dose doxorubicin(DOX)for targeting residual micrometastatic disease in the lungs.However,DOX delivery via IVLP requires careful monitoring of drug level to ensure tissue concentrations of this agent remain in the therapeutic window.A small dimension nitinol wire coated with a sorbent of biocompatible morphology(Bio-SPME)has been clinically evaluated for in vivo lung tissue extraction and determination of DOX and its key metabolites.The in vivo Bio-SPME-IVLP experiments were performed on pig model over various(150 and 225 mg/m^(2))drug doses,and during human clinical trial.Two patients with metastatic osteosarcoma were treated with a single 5 and 7 μg/mL(respectively)dose of DOX during a 3-h IVLP.In both pig and human cases,DOX tissue levels presented similar trends during IVLP.Human lung tissue concentrations of drug ranged between 15 and 293 μg/g over the course of the IVLP procedure.In addition to DOX levels,Bio-SPME followed by liquid chromatography-mass spectrometry analysis generated 64 metabolic features during endogenous metabolite screening,providing information about lung status during drug administration.Real-time monitoring of DOX levels in the lungs can be performed effectively throughout the IVLP procedure by in vivo Bio-SPME chemical biopsy approach.Bio-SPME also extracted various endogenous molecules,thus providing a real-time snapshot of the physiology of the cells,which might assist in the tailoring of personalized treatment strategy.
基金the support of the National Natural Science Foundation of China(No.20575051).
文摘Urinary 8-hydroxy-2 -deoxyguanosine(8-OHdG) is an excellent marker of oxidative DNA damage.In this study,employing guanosine as dummy template a novel molecularly imprinted(MIP) monolithic capillary column had been synthesized,and that was used as medium of in-tube solid phase microextraction(SPME).Coupled with capillary electrophoresis-electrochemical detection(CE-ECD),the system of extraction and detection of 8-OHdG in urinary sample had been developed.Because of its greater phase ratio combined with conv...
文摘A fast and simple method for determination of α, β, γ-hexachlorocyclohexanes (HCHs) in water using activated carbon fiber-solid phase microextraction(ACF-SPME) were studied. Results showed the performance of adsorption and desorption of three HCHs on ACF were excellent. A wide linear range from 10 to 100 μg/L and detection limits of the ng/L level were obtained using ACF-SPME with GC-MS in selected ion monitoring(SIM) acquisition mode. The proposed method was also successfully applied for determination of three HCHs in tap water. Compared to commercial fibers, ACF showed some advantages such as better resistance to solvents, higher thermal stability, longer lifetime and lower cost. The data demonstrated that GC-MS with ACF-SPME is well suitable for the analysis of HCHs in water.
基金supported by the Higher education commission of Pakistan(NRPU No.20-3925/R&D/NRPU/HEC/2014)PAK-US science and technology cooperation(Pak-US No6-4/PAK-US/HEC/2015/04)Pakistan science foundation joint research projects with MSRT,Iran(No.PSF-MSRT/Env/KP-AWKUM)。
文摘Hollow-fiber liquid-phase microextraction(HF-LPME)and electromembrane extraction(EME)are miniaturized extraction techniques,and have been coupled with various analytical instruments for trace analysis of heavy metals,drugs and other organic compounds,in recent years.HF-LPME and EME provide high selectivity,efficient sample cleanup and enrichment,and reduce the consumption of organic sol-vents to a few micro-liters per sample.HF-LPME and EME are compatible with different analytical in-struments for chromatography,electrophoresis,atomic spectroscopy,mass spectrometry,and electrochemical detection.HF-LPME and EME have gained significant popularity during the recent years.This review focuses on hollow fiber based techniques(especially HF-LPME and EME)of heavy metals and pharmaceuticals(published 2017 to May 2019),and their combinations with atomic spectroscopy,UV-VIS spectrophotometry,high performance liquid chromatography,gas chromatography,capillary elec-trophoresis,and voltammetry.
基金Supported by Key Science and Technology Project of Gansu Province(1302NKDA028)Science and Technology Planning Project of Lanzhou(2010-1-239+2 种基金 2016-3-4)Talent Project of Lanzhou Science and Technology Bureau(2015-RC-87)Project of Science and Technology Cooperation between Gansu Academy of Agricultural Sciences and Local Areas(2017GAAS63)
文摘[Objectives] To determine the aromatic components of Rosa davurica Pall. [Methods] 42 kinds of aromatic components were identified from the flowers of R. davurica by headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS). The main compounds were alcohols( 54. 88%) and aldehydes( 19. 55%). [Results] The top five components with the highest relative content were phenylethyl alcohol( 12. 69%),geraniol( 9. 85%),citronellol( 8. 80%),nerol( 7. 84%) and 2-n-pentylfuran( 7. 45%). [Conclusions] Headspace solid phase microextraction( HS-SPME) combined with gas chromatography-mass spectrometry( GC-MS) can provide basis for further development and utilization of R. davurica.
文摘A single-drop liquid phase micro-extraction procedure using 1-butyl-3-methylimidazolium hexafluorophosphate ([C4MIM][PF6]) was demonstrated for the sensitive determination of four phenols in water samples. Under the optimized conditions, the linear range of proposed method was excellent in the range of 0.5-100 μg·L^-1, the reproducibility (RSD, n=6) were in the range 5.4%-8.9% and detection limits (S/N=3) were 0.3, 0.3, 0.5 and 0.5 μg·L^-1 for 2, 4-dichlorophenol, 2-naphthol, 2-nitrophenol and 4-chlorophenol, respectively. The experimental results indicated that the effect of complex matrices natural water samples could be resolved with addition of sodium ethylene diamine tetracetate (EDTA) into the samples. Excellent spiked recoveries were achieved for these four phenols ranged from 86.2%-114.9 %. All these facts demonstrated that the proposed method with merits of low cost, simplicity and easy operating would be a competitive alternative procedure for the determination of such compounds at trace level.
基金The study was financially supported by the National Science and Technology Support Program of China(Grant No.2013BAD16B08).
文摘A convenient,cost-effective and fast method using dynamic microwave-assisted extraction and liquid phase microextraction based on the solidification of a floating drop was proposed to analyze organochlorine pesticides in grains including rice,maize and millet.Twelve samples can be processed simultaneously in the method.During the extraction process,10%acetonitrile-water solutions containing 110μL of n-hexadecane were used to extract organochlorine pesticides.Subsequently,1.0 g sodium chloride was placed in the extract,and then centrifuged and cooled.The n-hexadecane drops containing the analytes were solidifi ed and transferred for determination by gas chromatography-electron capture detector without any further filtration or cleaning process.Limits of detection for organochlorine pesticides were 0.97–1.01μg/kg and the RSDs were in the range of 2.6%–8.5%.The developed technology has succeeded in analyzing six real grains samples and the recoveries of the organochlorine pesticides were 72.2%–94.3%.Compared with the published extraction methods,the developed method was used to analyze organochlorine pesticides in grains,being more environmentally friendly,which is suitable for the daily determination of organochlorine pesticides.
基金Project(21277175) supported by the National Natural Science Foundation of ChinaProject(JCYJ20120618164317119) supported by Shenzhen Special Fund for Development of Strategic Emerging,China
文摘A simple and sensitive analytical procedure for the determination of multi-component compounds in water samples was developed and optimized using the headspace solid-phase microextraction(HSSPME) coupled with gas chromatography-mass spectrometry(GC-MS). Ten off-flavor compounds, including geosmin(GSM), 2-methylisoborneol(2-MIB), 2-isopropyl-3-methoxypyrazine(IPMP), 2-isobutyl-3-methoxypyrazine(IBMP), β-ionone, trans-2,cis-6-nonadienal(NDE), 2,3,4-trichloroanisole(2,3,4-TCA), 2,3,6-trichroloanisole(2,3,6-TCA), 2,4,6-trichloroanisole(2,4,6-TCA), and 2,4,6-tribromoanisole(2,4,6-TBA) were used as the target analytes. The optimization of extraction parameters including fibers types, extraction time, extraction temperature, stirring rate, sample volume, and ionic strength was carried out through the univariate approach. Ten off-flavor compounds were quantified within 50 min under the optimal conditions. Calibration curves with good linearity(r^2=0.990-0.998) were obtained in the range 1.0/2.0-100 ng/L, while the limits of detection for all compounds were lower than or close to the odor threshold concentration. Furthermore, the proposed method was applied to analyzing and determining the off-flavor compounds in real water samples from water-treatment plants.
基金financial support of Department of Pharmaceutics, Faculty of Pharmacy, Kerman Medical Science University
文摘This paper describes the electrodeposition of polyphosphate-doped polypyrrole/nanosilica nano-composite coating on steel wire for direct solid-phase microextraction of bisphenol A and five phthalates. We optimized influencing parameters on the extraction efficiency and morphology of the nanocomposite such as deposition potential, concentration of pyrrole and polyphosphate, deposition time and the nanosilica amount. Under the optimized conditions, characterization of the nanocomposite was inves-tigated by scanning electron microscopy and Fourier transform infra-red spectroscopy. Also, the factors related to the solid-phase microextraction method including desorption temperature and time, extrac-tion temperature and time, ionic strength and pH were studied in detail. Subsequently, the proposed method was validated by gas chromatography-mass spectrometry by thermal desorption and acceptable figures of merit were obtained. The linearity of the calibration curves was between 0.01 and 50 ng/mL with acceptable correlation coefficients (0.9956-0.9987) and limits of detection were in the range 0.002-0.01 ng/mL. Relative standard deviations in terms of intra-day and inter-day by five replicate analyses from aqueous solutions containing 0.1 ng/mL of target analytes were in the range 3.3%-5.4% and 5%-7.1%, respectively. Fiber-to-fiber reproducibilities were measured for three different fibers prepared in the same conditions and the results were between 7.3% and 9.8%. Also, extraction recoveries at two different concentrations were ≥96%. Finally, the suitability of the proposed method was demonstrated through its application to the analysis of some eye drops and injection solutions.
基金supported by Science Research Funds of Medical Course, HUST
文摘A simple method has been proposed for the determination of clozapine (CLZ) and chlorpromazine (CPZ) in human urine by dispersive liquid-liquid microextraction (DLLME) in combination with high-performance liquid chromatography-ultraviolet detector (HPLC-UV). All important variables influencing the extraction efficiency, such as pH, types of the extraction solvent and the disperser solvent and their volume, ionic strength and centrifugation time were investigated and optimized. Under the optimal conditions, the limit of detection (LODs) and quantification (LOQs) of the method were 13 and 39 ng/mL for CLZ, and 2 and 6 ng/mL for CPZ, respectively. The relative standard deviations (RSDs) of the targets were less than 5.1% (C=0.100 μg/mL, n=9). Good linear behaviors over the tested concentration ranges were obtained with the values of R20.999 for the targets. The absolute extraction efficiencies of CLZ and CPZ from the spiked blank urine samples were 98.3% and 97.8%, respectively. The applicability of the technique was validated by analyzing urine samples and the mean recoveries for spiked urine samples ranged from 93.3% to 105.0%. The method was successfully applied for the determination of CLZ and CPZ in real human urine.
文摘In this report, gas chromatography-mass spectrometry (GC-MS) based non-targeted metabolomics is used to develop appropriate headspace solid phase microextractions (HS-SPME) to enhance the understanding of volatile complexity of flue-cured tobacco leaves. Non-targeted metabolic profiling of GC-MS shows that the extraction condition of HS-SPME at 100?C for 30 min provides a better metabolite profile than other extraction conditions tested. GC-MS and principal component analyses (PCA) show that among five types of fibers tested, 100 μm polydimethylsiloxane (PMDS), 65 μm polydimethylsiloxane/divinylbenzene (PMDS/DVB) and 75 μm carboxen/polydimethylsiloxane (CAR/ PMS) provide a better reproducible metabolite profile. Based on an appropriate PDMS extraction condition optimized, we use GC-MS analysis and PCA to compare metabolite profiles in flue-cured leaves of tobacco plants grown in North Carolina, India and Brazil, respectively. The resulting data of PCA show that the global metabolic profiles in North Carolina samples are separated from those in Brazil and India samples, two groups of which are characterized by a partially overlapped pattern. Several peaks that were differentially accumulated in samples were annotated to known metabolites by deconvolution analysis, such as norsolanadione, solavetivone and rishtin. Norsolanadione is detected only in Brazil samples. Solavetivone is detected in samples of India and Brazil but not in those of North Carolina. Rishtin is detected in samples of North Carolina and India but not in Brazil samples. These data indicate that not only can a non-targeted metabolic profiling approach enhance the understanding of volatile complexity, but also can identify marker volatile metabolites in tobacco leaves produced in different growth regions.
基金supported by the Key Research and Development Program of Shandong Province(Grant No.:2019GSF111001)the National Natural Science Foundation of China(Grant No.:21906096)+2 种基金the Youth Science Funds of the Shandong Academy of Sciences(Grant No.:2019QN009)the Youth Ph.D.Cooperation Funds of Qilu University of Technology(Shandong Academy of Sciences,Grant No.:2018BSHZ0029)the Program for Taishan Scholars of Shandong Province(Grant No.:tsqn202103099).
文摘Covalent organic nanospheres(CONs)were explored as a fiber coating for solid-phase microextraction of genotoxic impurities(GTIs)from active ingredients(AIs).CONs were synthesized by an easy solutionphase procedure at 25℃.The obtained nanospheres exhibited a high specific surface area,good thermostability,high acid and alkali resistance,and favorable crystallinity and porosity.Two types of GTIs,alkyl halides(1-iodooctane,1-chlorobenzene,1-bromododecane,1,2-dichlorobenzene,1-bromooctane,1-chlorohexane,and 1,8-dibromooctane)and sulfonate esters(methyl p-toluenesulfonate and ethyl ptoluenesulfonate),were chosen as target molecules for assessing the performance of the coating.The prepared coating achieved high enhancement factors(5097-9799)for the selected GTIs.The strong affinity between CONs and GTIs was tentatively attributed to π-π and hydrophobicity interactions,large surface area of the CONs,and size-matching of the materials.Combined with gas chromatography-mass spectrometry(GC-MS),the established analytical method detected the GTIs in capecitabine and imatinib mesylate samples over a wide linear range(0.2-200 ng/g)with a low detection limit(0.04-2.0 ng/g),satisfactory recovery(80.03%-109.5%),and high repeatability(6.20%-14.8%)and reproducibility(6.20%-14.1%).Therefore,the CON-coated fibers are promising alternatives for the sensitive detection of GTIs in AI samples.
文摘Dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography–flame ionization detection (GC-FID), as a simple, rapid and efficient method, was developed for the determination of amitraz in honey samples. This method involves the use of an appropriate mixture of the extraction and disperser solvents for the formation of a cloudy solution in 5.0 mL aqueous sample containing amitraz. After extraction, phase separation was performed by centrifugation and the concentrated amitraz in the sedimented phase was determined by gas chromatography—flame ionization detection (GC-FID). Some important parameters such as the type and volume of extraction and disperser solvents, and the effect of pH and salt on the extraction recovery of amitraz were investigated. Under the optimum conditions (13 μL of carbon tetrachloride as an extraction solvent, 1 mL of acetonitrile as a disperser solvent, no salt addition and pH 6) preconcentration factor and the extraction recovery were 955 and 95.5%, respectively. The linear range was 0.01 - 1.0 mg?kg–1 and the limit of detection was 0.0015 mg?kg–1. The relative standard deviation (RSD, n = 4) for 0.1 mg?kg–1 of amitraz was 3.2%. The recoveries of amitraz from honey samples at the spiking levels of 0.1 mg?kg-1 were 78.8 and 98.2%. The results indicated that DLLME is an efficient technique for the extraction of amitraz in honey samples.
基金Contract No.200-2009-31933,awarded by the National Institute for Occupational Safety and Health(NIOSH)
文摘Solid phase microextraction (SPME) is a solvent-flee method of sample collection. SPME is an appealing method for sample collection because it is designed for the sampling of trace level analytes with short sampling times in a variety of environments. Additionally, SPME can be used to directly deliver a sample to a gas chromatograph (GC) for analysis by means of thermal desorption. In this paper, the performance of SPME under dynamic conditions was investigated. Additionally, the competence of SPME sampling for the simultaneous analysis of multiple trace analytes was also evaluated. This work is discussed in the context of underground mine ventilation surveys but is applicable to any industry in which ventilation circuits must be evaluated. The results of this paper showed that the performance of the 100 ~m PDMS SPME fiber was both precise and rapid under dynamic conditions. This SPME fiber was also able to simultaneously collect sulfur hexafluoride (SF6) and perfluoromethylcyclohexane (PMCH) with adequate sensitivity.
文摘Base on the previous work in laboratory, a novel polyaniline doped with polydimethylsiloxane coating was developed on a stainless steel wire for solid phase microextraction(SPME) by electroplating method. This electroplating method not only has advantages of ease preparation and simple equipments required, but also increases the lifetime of the SPME fiber. The composite fiber(polyaniline/ polydimethylsiloxane(PANI/PDMS)) was evaluated by analyzing n-tridecane, n-tetradecane and n-pentadecane in aqueous sample. The new fiber coating showed comprehensive abilities to extract alkanes compounds. The relative standard deviations were found to be 6.8%-10.33%.