期刊文献+
共找到303篇文章
< 1 2 16 >
每页显示 20 50 100
A theory for three-dimensional response of micropolar plates 被引量:1
1
作者 Dianwu HUANG Linghui HE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1403-1414,共12页
Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding throu... Through combined applications of the transfer-matrix method and asymptotic expansion technique,we formulate a theory to predict the three-dimensional response of micropolar plates.No ad hoc assumptions regarding through-thickness assumptions of the field variables are made,and the governing equations are two-dimensional,with the displacements and microrotations of the mid-plane as the unknowns.Once the deformation of the mid-plane is solved,a three-dimensional micropolar elastic field within the plate is generated,which is exact up to the second order except in the boundary region close to the plate edge.As an illustrative example,the bending of a clamped infinitely long plate caused by a uniformly distributed transverse force is analyzed and discussed in detail. 展开更多
关键词 micropolar plate TRANSFER-MATRIX asymptotic expansion three-dimensional response
下载PDF
Film Flow of Nano-Micropolar Fluid with Dissipation Effect
2
作者 Abuzar Abid Siddiqui Mustafa Turkyilmazoglu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2487-2512,共26页
The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the influence of gravitational and thermal forces in the presence of nanoparticles is formulated.Five differ... The physical problem of the thin film flow of a micropolar fluid over a dynamic and inclined substrate under the influence of gravitational and thermal forces in the presence of nanoparticles is formulated.Five different types of nanoparticle samples are accounted for in this current study,namely gold Au,silver Ag,molybdenum disulfide MoS_(2),aluminum oxide Al_(2)O_(3),and silicon dioxide SiO_(2).Blood,a micropolar fluid,serves as the common base fluid.An exact closed-form solution for this problem is derived for the first time in the literature.The results are particularly validated against those for the Newtonian fluid and show excellent agreement.It was found that increasing values of the spin boundary condition and micropolarity lead to a reduction in both the thermal and momentum boundary layers.A quantitative decay in the Nusselt number for a micropolar fluid,as compared to a Newtonian one for all the tested nanoparticles,is anticipated.Gold and silver nanoparticles(i)intensify in the flow parameter as the concentration of nanoparticles increases(ii)yield a higher thermal transfer rate,whereas molybdenum disulfide,aluminum oxide,and silicon dioxide exhibit a converse attitude for both Newtonian and micropolar fluids.The reduction in film thickness for fluid comprising gold particles,as compared to the rest of the nanoparticles,is remarkable. 展开更多
关键词 Thin film flow micropolar fluid NANOPARTICLES molybdenum disulfide inclined substrate
下载PDF
Chemically Radiative MHD Flow of a Micropolar Nanofluid over a Stretching/ Shrinking Sheet with a Heat Source or Sink
3
作者 Parakapali Roja Shaik Mohammed Ibrahim +1 位作者 Thummala Sankar Reddy Giulio Lorenzini 《Fluid Dynamics & Materials Processing》 EI 2024年第2期257-274,共18页
This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into accoun... This study examines the behavior of a micropolar nanofluidflowing over a sheet in the presence of a transverse magneticfield and thermal effects.In addition,chemical(first-order homogeneous)reactions are taken into account.A similarity transformation is used to reduce the system of governing coupled non-linear partial differ-ential equations(PDEs),which account for the transport of mass,momentum,angular momentum,energy and species,to a set of non-linear ordinary differential equations(ODEs).The Runge-Kutta method along with shoot-ing method is used to solve them.The impact of several parameters is evaluated.It is shown that the micro-rota-tional velocity of thefluid rises with the micropolar factor.Moreover,the radiation parameter can have a remarkable influence on theflow and temperature profiles and on the angular momentum distribution. 展开更多
关键词 Chemical(first order homogeneous)reaction MAGNETOHYDRODYNAMICS micropolar nanofluid stretching/shrinking sheet heat source
下载PDF
Numerical Study of Temperature-Dependent Viscosity and Thermal Conductivity of Micropolar Ag–MgO Hybrid Nanofluid over a Rotating Vertical Cone
4
作者 Mekonnen S.Ayano Thokozani N.Khumalo +1 位作者 Stephen T.Sikwila Stanford Shateyi 《Frontiers in Heat and Mass Transfer》 EI 2024年第4期1153-1169,共17页
The present paper examines the temperature-dependent viscosity and thermal conductivity of a micropolar silver(Ag)−Magnesium oxide(MgO)hybrid nanofluid made of silver and magnesium oxide over a rotating vertical cone,... The present paper examines the temperature-dependent viscosity and thermal conductivity of a micropolar silver(Ag)−Magnesium oxide(MgO)hybrid nanofluid made of silver and magnesium oxide over a rotating vertical cone,with the influence of transverse magnetic field and thermal radiation.The physical flow problem has been modeled with coupled partial differential equations.We apply similarity transformations to the nondimensionalized equations,and the resulting nonlinear differential equations are solved using overlapping grid multidomain spectral quasilinearization method.The flow behavior for the fluid is scrutinized under the impact of diverse physical constraints,which are illustrated graphically.The results of the skin friction coefficient and Nusselt number varying different flow parameters are presented in the form of a table.It is observed that the main flow of the hybrid nanofluid,nano particle fraction of silver and Magnesium/water,enhances compared to the mono-nano fluid MgO as the coupling number increases.The application of studies like this can be found in the atomization process of liquids such as centrifugal pumps,viscometers,rotors,fans. 展开更多
关键词 micropolar fluid hybrid nanofluid radiation magnetohydrodynamic rotating cone overlapping grid spectral quasilinearization
下载PDF
The Effects of Thermal Radiation and Viscous Dissipation on the Stagnation Point Flow of a Micropolar Fluid over a Permeable Stretching Sheet in the Presence of Porous Dissipation 被引量:1
5
作者 Muhammad Salman Kausar H.A.M.Al-Sharifi +1 位作者 Abid Hussanan Mustafa Mamat 《Fluid Dynamics & Materials Processing》 EI 2023年第1期61-81,共21页
In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suit... In this paper,the effects of thermal radiation and viscous dissipation on the stagnation–point flow of a micropolar fluid over a permeable stretching sheet with suction and injection are analyzed and discussed.A suitable similarity transformation is used to convert the governing nonlinear partial differential equations into a system of nonlinear ordinary differential equations,which are then solved numerically by a fourth–order Runge–Kutta method.It is found that the linear fluid velocity decreases with the enhancement of the porosity,boundary,and suction parameters.Conversely,it increases with the micropolar and injection parameters.The angular velocity grows with the boundary,porosity,and suction parameters,whereas it is reduced if the micropolar and injection parameters become larger.It is concluded that the thermal boundary layer extension increases with the injection parameter and decreases with the suction parameter. 展开更多
关键词 micropolar fluid viscous dissipation stagnation point stretching sheet porous media thermal radiation
下载PDF
On complete and micropolar-based incomplete strain gradient theories for periodic lattice structures
6
作者 Zeyang CHI Jinxing LIU A.K.SOH 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第10期1651-1674,共24页
The micropolar(MP) and strain gradient(SG) continua have been generally adopted to investigate the relations between the macroscopic elastic constants and the microstructural geometric parameters. Owing to the fact th... The micropolar(MP) and strain gradient(SG) continua have been generally adopted to investigate the relations between the macroscopic elastic constants and the microstructural geometric parameters. Owing to the fact that the microrotation in the MP theory can be expressed in terms of the displacement gradient components, we may regard the MP theory as a particular incomplete SG theory called the MPSG theory,compared with the existing SG theories which are deemed complete since all the SGs are included. Taking the triangular lattice comprising zigzag beams as an example, it is found that as the angle of the zigzag beams increases, the bending of the beams plays a more important role in the total strain energy, and the difference between the results by the two theories gradually decreases. Finally, the models are verified with the pure bending and simple shear of lattices by comparing with the results obtained by the finite element method(FEM)-based structure analyses. 展开更多
关键词 periodic lattice metamaterial energy principle HOMOGENIZATION micropolar(MP) strain gradient(SG)theory
下载PDF
Theory and Semi-Analytical Study of Micropolar Fluid Dynamics through a Porous Channel
7
作者 Aziz Khan Sana Ullah +3 位作者 Kamal Shah Manar A.Alqudah Thabet Abdeljawad Fazal Ghani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1473-1486,共14页
In this work,We are looking at the characteristics of micropolar flow in a porous channel that’s being driven by suction or injection.The working of the fluid is described in the flowmodel.We can reduce the governing... In this work,We are looking at the characteristics of micropolar flow in a porous channel that’s being driven by suction or injection.The working of the fluid is described in the flowmodel.We can reduce the governing nonlinear partial differential equations(PDEs)to a model of coupled systems of nonlinear ordinary differential equations using similarity variables(ODEs).In order to obtain the results of a coupled system of nonlinear ODEs,we discuss a method which is known as the differential transform method(DTM).The concern transform is an excellent mathematical tool to obtain the analytical series solution to the nonlinear ODEs.To observe beast agreement between analytical method and numerical method,we compare our result with the Rung-Kutta method of order four(RK4).We also provide simulation plots to the obtained result by using Mathematica.Onthese plots,we discuss the effect of different parameters which arise during the calculation of the flow model equations. 展开更多
关键词 Mass transfer micropolar flow porous channel similarity variables differential transform method
下载PDF
VANISHING VISCOSITY LIMIT FOR THE 3D INCOMPRESSIBLE MICROPOLAR EQUATIONS IN A BOUNDED DOMAIN
8
作者 储洋洋 肖跃龙 《Acta Mathematica Scientia》 SCIE CSCD 2023年第2期959-974,共16页
In this paper,we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions.It is shown that there exist global weak solutions of the micropolar... In this paper,we investigate the vanishing viscosity limit of the 3D incompressible micropolar equations in bounded domains with boundary conditions.It is shown that there exist global weak solutions of the micropolar equations in a general bounded smooth domain.In particular,we establish the uniform estimate of the strong solutions for when the boundary is flat.Furthermore,we obtain the rate of convergence of viscosity solutions to the inviscid solutions as the viscosities tend to zero(i.e.,(ε,χ,γ,κ)→0). 展开更多
关键词 incompressible micropolar equations initial-and boundary-valuc problcm van-ishingviscositylimit
下载PDF
Strain localization of Mohr-Coulomb soils with non-associated plasticity based on micropolar continuum theory
9
作者 Jianbin Tang Xi Chen +1 位作者 Liusheng Cui Zongqi Liu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第12期3316-3327,共12页
To address the problems of strain localization, the exact Mohr-Coulomb (MC) model is used based on second-order cone programming (mpcFEM-SOCP) in the framework of micropolar continuum finite element method. Using the ... To address the problems of strain localization, the exact Mohr-Coulomb (MC) model is used based on second-order cone programming (mpcFEM-SOCP) in the framework of micropolar continuum finite element method. Using the uniaxial compression test, we focused on the earth pressure problem of rigid wall segment involving non-associated plasticity. The numerical results reveal that when mpcFEM-SOCP is applied, the problems of mesh dependency can be effectively addressed. For geotechnical strain localization analysis involving non-associated MC plasticity, mpcFEM-SOCP in conjunction with the pseudo-time discrete scheme can improve the numerical stability and avoid the unreasonable softening issue in the pressure-displacement curves, which may be encountered in the conventional FEM. It also shows that the pressure-displacement responses calculated by mpcFEM-SOCP with the pseudo-time discrete scheme are higher than those calculated by mpcFEM-SOCP with the Davis scheme. The inclination angle of shear band predicted by mpcFEM-SOCP with the pseudo-time discrete scheme agrees well with the theoretical solution of non-associated MC plasticity. 展开更多
关键词 Strain localization micropolar continuum Mohr-Coulomb(MC)model Non-associated plasticity Second-order cone programming
下载PDF
Unsteady Flow and Heat Transfer of a Casson Micropolar Nanofluid over a Curved Stretching/Shrinking Surface
10
作者 Muhammad A.Sadiq Nadeem Abbas +1 位作者 Haitham M.S.Bahaidarah Mohammad Amjad 《Fluid Dynamics & Materials Processing》 EI 2023年第2期471-486,共16页
We present the results of an investigation into the behavior of the unsteady flow of a Casson Micropolar nanofluid over a shrinking/stretching curved surface,together with a heat transfer analysis of the same problem.... We present the results of an investigation into the behavior of the unsteady flow of a Casson Micropolar nanofluid over a shrinking/stretching curved surface,together with a heat transfer analysis of the same problem.The body force acting perpendicular to the surface wall is in charge of regulating the fluid flow rate.Curvilinear coordinates are used to account for the considered curved geometry and a set of balance equations for mass,momentum,energy and concentration is obtained accordingly.These are turned into ordinary differential equations using a similarity transformation.We show that these equations have dual solutions for a number of different combinations of various parameters.The stability of such solutions is investigated by applying perturbations on the steady states.It is found that high values of the Micropolar and Casson parameters cause the flow to move more slowly.However,when compared to a shrunken surface,a stretched surface produces a greater Micro-rotation flux. 展开更多
关键词 Dual solutions micropolar Casson fluid curved surface PERTURBATION eigen values
下载PDF
NCCT for Micropolar Solid and Fluid Media Based on Internal Rotations and Rotation Rates with Rotational Inertial Physics: Model Problem Studies
11
作者 Karan S. Surana Jacob K. Kendall 《Applied Mathematics》 2023年第9期612-651,共40页
This paper presents model problem studies for micropolar thermoviscoelastic solids without memory and micropolar thermoviscous fluid using micropolar non-classical continuum theories (NCCT) based on internal rotations... This paper presents model problem studies for micropolar thermoviscoelastic solids without memory and micropolar thermoviscous fluid using micropolar non-classical continuum theories (NCCT) based on internal rotations and rotation rates in which rotational inertial physics is considered in the derivation of the conservation and balance laws (CBL). The dissipation mechanism is due to strain rates as well as rotation rates. Model problems are designed to demonstrate and illustrate various significant aspects of the micropolar NCCT with rotational inertial physics considered in this paper. In case of micropolar solids, the translational and rotational waves are shown to coexist. In the absence of microconstituents (classical continuum theory, CCT) the internal rotations are a free field, hence have no influence on CCT. Absence of gradients of displacements and strains in micropolar thermoviscous fluid medium prohibits existence of translational waves as well as rotational waves even though the appearance of the mathematical model is analogous to the solids, but in terms of strain rates. It is shown that in case of micropolar thermoviscous fluids the BAM behaves more like time dependent diffusion equation i.e., like heat conduction equation in Lagrangian description. The influence of rotational inertial physics is demonstrated using BLM as well as BAM in the model problem studies. 展开更多
关键词 micropolar Internal Rotations Internal Rotation Rates Translational Waves Rotational Waves DISSIPATION Thermoviscous Rotational Inertial Physics
下载PDF
Mathematical Study of HD Micropolar Fluid Flow with Radiation and Dissipative Impacts over a Permeable Stretching Sheet:Slip Effects Phenomena
12
作者 Pudhari Srilatha Ahmed M.Hassan +1 位作者 B.Shankar Goud E.Ranjit Kumar 《Frontiers in Heat and Mass Transfer》 EI 2023年第1期539-562,共24页
The purpose of this research is to investigate the influence that slip boundary conditions have on the rate of heat and mass transfer by examining the behavior of micropolar MHD flow across a porous stretching sheet.I... The purpose of this research is to investigate the influence that slip boundary conditions have on the rate of heat and mass transfer by examining the behavior of micropolar MHD flow across a porous stretching sheet.In addition to this,the impacts of thermal radiation and viscous dissipation are taken into account.With the use of various computing strategies,numerical results have been produced.Similarity transformation was utilized in order to convert the partial differential equations(PDEs)that regulated energy,rotational momentum,concentration,and momentum into ordinary differential equations(ODEs).As compared to earlier published research,MATLAB inbuilt solver solution shows an extremely good correlation in exceptional instances.In exceptional instances,the present MATLAB inbuilt solver solution has a very excellent connection with the findings of the previously published investigations.A variety of flow field factors impact the Nusselt number,the wall couple shear stress,the friction factor,Sherwood numbers the dimensionless distributions discussed in detail.When the Eckert number rises,the temperature rises,and the Schmidt number falls,the concentration falls.Velocity increases with increases in the material factor but drops with increases in the magnetic parameter and the surface condition factor. 展开更多
关键词 micropolar RADIATION bvp4c MHD suction/injection
下载PDF
Computational Dynamics of Stagnation Point Flow of Micropolar Fluid Past Vertical Porous Plates
13
作者 Ayando Timothy Ibrahim Y. Seini Musah Sulemana 《Journal of Applied Mathematics and Physics》 2023年第11期3484-3504,共21页
This work examines the flow of a micropolar fluid over a vertical porous plate at the MHD stagnation point under viscous dissipation, convective boundary conditions, and thermal radiation. The governing partial differ... This work examines the flow of a micropolar fluid over a vertical porous plate at the MHD stagnation point under viscous dissipation, convective boundary conditions, and thermal radiation. The governing partial differential equations and a set of similarity parameters were used to transform them into ordinary differential equations. The Runge-Kutta fourth-order algorithm is used in conjunction with the Newton Raphson shooting technique to numerically solve the generated self-similar equations. Results were tabulated both numerically and graphically, and examples for different controlling factors are quantitatively analyzed. According to the study, the vortex viscosity parameter (k) causes the velocity profiles to rise while the magnetic parameter, suction parameter, and radiation parameter cause them to fall. In contrast, as the flow’s suction and prandtl values rise, so do the magnetic parameter, radiation, and vortex viscosity, while the thickness of the thermal boundary layer decreases. . 展开更多
关键词 MHD Viscous Dissipation Thermal Radiation MICROROTATION micropolar Fluid
下载PDF
带有分数阶耗散项的Magneto-Micropolar方程组的整体适定性
14
作者 石婷 张辉 《应用数学》 北大核心 2023年第4期915-921,共7页
本文通过对三维磁场微极流方程组(Magneto-Micropolar fluid)的非线性结构进行细致分析并结合能量估计的方法,对一类带有分数阶耗散项的磁场微极流方程组解的整体适定性进行了研究,获得了当α≥5/2时磁场微极流方程组解的整体适定性.
关键词 磁场微极流方程组 分数阶耗散项 整体适定性
下载PDF
Wave propagation in liquid-saturated porous solid with micropolar elastic skelton at boundary surface 被引量:1
15
作者 Rajneesh Kumar Mahabir Barak 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第3期337-349,共13页
The present study is concerned with the reflection and transmission of plane waves at an interface between homogenous invisicid liquid half space and a micropolar liquid-saturated porous solid half space. The reflecti... The present study is concerned with the reflection and transmission of plane waves at an interface between homogenous invisicid liquid half space and a micropolar liquid-saturated porous solid half space. The reflection and transmission coefficients of various reflected and transmitted waves with the angle of incident have been obtained. Numerical calculation has been performed for amplitude ratios of various reflected and transmitted waves. Micropolarity and porosity effects on the reflection and transmission coefficients have been depicted graphically. Some particular cases have been deduced from the present formulation. 展开更多
关键词 micropolar liquid-saturated porous solid reflection transmission amplitude ratios micropolarity and porosity effects
下载PDF
二维有界区域内具Lions边值的magneto-micropolar系统解的存在性
16
作者 王涛 宋崇凯 《宁夏大学学报(自然科学版)》 CAS 北大核心 2009年第3期213-216,共4页
在二维有界区域上研究u,h具Lions边值条件,m具齐次边值条件的magneto-micropolar方程,用Galerkin方法证明了其弱解和强解的存在唯一性.
关键词 magneto-micropolar方程 弱解 强解 Lions边值条件
下载PDF
Wave propagation at interface of heat conducting micropolar solid and fluid media
17
作者 R.KUMAR M.KAUR S.C.RAJVANSHI 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第7期881-902,共22页
The present investigation is concerned with the wave propagation at an interface of a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space. Reflection and transmissio... The present investigation is concerned with the wave propagation at an interface of a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space. Reflection and transmission phenomena of plane waves are investigated, which impinge obliquely at the plane interface between a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space. The incident wave is assumed to be striking at the interface after propagating through the micropolar generalized thermoelastic solid. The amplitude ratios of various reflected and transmitted waves are obtained in a closed form. It is found that they are a function of the angle of incidence and frequency and are affected by the elastic properties of the media. Micropolarity and thermal relaxation effects are shown on the amplitude ratios for a specific model. The results of some earlier literatures are also deduced from the present investigation. 展开更多
关键词 micropolar solid micropolar fluid THERMOELASTIC reflection coefficient transmission coefficient half space
下载PDF
The micropolar fluid model for blood flow through a tapered artery with a stenosis 被引量:15
18
作者 Kh.S.Mekheimer M.A.El Kot 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第6期637-644,共8页
A micropolar model for axisymmetric blood flow through an axially nonsymmetreic but radially symmetric mild stenosis tapered artery is presented. To estimate the effect of the stenosis shape, a suitable geometry has b... A micropolar model for axisymmetric blood flow through an axially nonsymmetreic but radially symmetric mild stenosis tapered artery is presented. To estimate the effect of the stenosis shape, a suitable geometry has been considered such that the axial shape of the stenosis can be changed easily just by varying a parameter (referred to as the shape parameter). The model is also used to study the effect of the taper angle Ф. Flow parameters such as the velocity, the resistance to flow (the resistance impedance), the wall shear stress distribution in the stenotic region and its magnitude at the maximum height of the stenosis (stenosis throat) have been computed for different values of the shape parameter n, the taper angle Ф, the coupling number N and the micropolar parameter m. It is shown that the resistance to flow decreases with increasing the shape parameter n and the micropolar parameter m while it increases with increasing the coupling number N. So, the magnitude of the resistance impedance is higher for a micropolar fluid than that for a Newtonian fluid model. Finally, the velocity profile, the wall shear stress distribution in the stenotic region and its magnitude at the maximum height of the stenosis are discussed for different values of the parameters involved on the problem. 展开更多
关键词 micropolar fluid Blood flow Tapered artery
下载PDF
Laminar flow of micropolar fluid in rectangular microchannels 被引量:8
19
作者 Shangjun Ye Keqin Zhu W. Wang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2006年第5期403-408,共6页
Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a mic... Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a micropolar fluid model where the effects of micro-rotation of fluid molecules were taken into account. But both the curl of velocity vector and the curl of micro-rotation gyration vector were given incorrectly in the Cartesian coordinates and then the micro-rotation gyration vector had only one component in the z-direction. Besides, the gradient term of the divergence of micro-rotation gyration vector was missed improperly in the angular moment equation. In this paper, the governing equations for laminar flows of micropolar fluid in rectangular microchannels are reconstructed. The numerical results of velocity profiles and micro-rotation gyrations are obtained by a procedure based on the Chebyshev collocation method. The micropolar effects on velocity and micro-rotation gyration are discussed in detail. 展开更多
关键词 micropolar fluid. Microchannel Flowrate reduction Chebyshev collocation method
下载PDF
Slip flow of Maxwell viscoelasticity-based micropolar nanoparticles with porous medium: a numerical study 被引量:3
20
作者 H. WAQAS M. IMRAN +2 位作者 S. U. KHAN S. A. SHEHZAD M. A. MERAJ 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2019年第9期1255-1268,共14页
This article presents the mass and heat transport aspects in viscoelastic nanofluid flows under the presence of velocity slip conditions. To explore the nonNewtonian behavior, a Maxwell viscoelasticity-based micropola... This article presents the mass and heat transport aspects in viscoelastic nanofluid flows under the presence of velocity slip conditions. To explore the nonNewtonian behavior, a Maxwell viscoelasticity-based micropolar is considered. Moreover, a porous medium saturates the stretching sheet. A set of similarity variables is introduced to derive the dimensionless ordinary differential equations of velocity, concentration, and temperature profiles. The numerical solution is computed by using the MATLAB bvp4c package. The salient flow features of velocity, concentration, and temperature profiles are described and discussed through various graphs. It is observed that with an increase in the slip parameter, the micro-rotation velocity also increases. The temperature of nanoparticles gets maximum values by varying the viscoelastic parameter and the porosity parameter while an opposite trend is noted for the micro-rotation parameter. The local Nusselt number and the local Sherwood number increase by increasing the viscoelastic parameter, the porosity parameter, and the slip velocity parameter. The graphical computation is performed for a specified range of parameters, such as 0 ≤ M ≤ 2.5, 0 ≤σm ≤ 2.5, 0 ≤ K1 ≤ 1.5, 0.5 ≤ Pr ≤ 3.0, 0 ≤σ≤ 1.5, 0.5 ≤ Sc ≤ 2.0, 0.2 ≤ Nb ≤ 0.8, and 0.2 ≤ Nt ≤ 0.8. 展开更多
关键词 viscoelasticity-based micropolar nanofluid porous medium slip effect numerical method
下载PDF
上一页 1 2 16 下一页 到第
使用帮助 返回顶部