期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Multiparameter Numerical Investigation of Two Types of Moving Interactions Between the Deep-Sea Mining Vehicle Track Plate and Seabed Soil:Digging and Rotating Motions
1
作者 SUN Peng-fei LYU Hai-ning +1 位作者 YANG Jian-min XU Zhi-yong 《China Ocean Engineering》 SCIE EI CSCD 2024年第3期408-423,共16页
To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions... To ensure the safe performance of deep-sea mining vehicles(DSMVs),it is necessary to study the mechanical characteristics of the interaction between the seabed soil and the track plate.The rotation and digging motions of the track plate are important links in the contact between the driving mechanism of the DSMV and seabed soil.In this study,a numerical simulation is conducted using the coupled Eulerian–Lagrangian(CEL)large deformation numerical method to investigate the interaction between the track plate of the DSMV and the seabed soil under two working conditions:rotating condition and digging condition.First,a soil numerical model is established based on the elastoplastic mechanical characterization using the basic physical and mechanical properties of the seabed soil obtained by in situ sampling.Subsequently,the soil disturbance mechanism and the dynamic mechanical response of the track plate under rotating and digging conditions are obtained through the analysis of the sensitivity of the motion parameters,the grouser structure,the layered soil features and the soil heterogeneity.The results indicate that the above parameters remarkably influence the interaction between the DSMV and the seabed soil.Therefore,it is important to consider the rotating and digging motion of the DSMV in practical engineering to develop a detailed optimization design of the track plate. 展开更多
关键词 deep-sea mining vehicle rotating motion digging motion track plate-seabed soil interaction CEL numerical method
下载PDF
Turning traction force of tracked mining vehicle based on rheological property of deep-sea sediment 被引量:7
2
作者 Feng XU Qiu-hua RAO Wen-bo MA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第6期1233-1240,共8页
Based on main physical and mechanical properties of deep-sea sediment from C-C poly-metallic nodule mining area in the Pacific Ocean, the best sediment simulant was successfully prepared by mixing bentonite with a cer... Based on main physical and mechanical properties of deep-sea sediment from C-C poly-metallic nodule mining area in the Pacific Ocean, the best sediment simulant was successfully prepared by mixing bentonite with a certain content of water. Compression-shear coupling rheological constitutive model of the sediment simulant was established by endochronic theory and the coupling rheological parameters were obtained by compressive and compression-shear creep tests. A new calculation formula of turning traction force of the tracked mining vehicle was first derived based on the coupling rheological model and consideration of pushing resistance and sinkage of the tracked mining vehicle. Effects of the turning velocity, crawler spacing and contacting length of crawler with deep-sea sediment on the turning traction force were analyzed. Research results can provide theoretical foundation for operation safety and optimal design of the tracked mining vehicle. 展开更多
关键词 turning traction force compression-shear coupling rheology deep-sea sediment tracked mining vehicle
下载PDF
Predicting the sinkage of a moving tracked mining vehicle using a new rheological formulation for soft deep-sea sediment 被引量:5
3
作者 许锋 饶秋华 马雯波 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2018年第2期230-237,共8页
The sinkage of a moving tracked mining vehicle is greatly af fected by the combined compression-shear rheological properties of soft deep-sea sediments. For test purposes, the best sediment simulant is prepared based ... The sinkage of a moving tracked mining vehicle is greatly af fected by the combined compression-shear rheological properties of soft deep-sea sediments. For test purposes, the best sediment simulant is prepared based on soft deep-sea sediment from a C-C poly-metallic nodule mining area in the Pacific Ocean. Compressive creep tests and shear creep tests are combined to obtain compressive and shear rheological parameters to establish a combined compressive-shear rheological constitutive model and a compression-sinkage rheological constitutive model. The combined compression-shear rheological sinkage of the tracked mining vehicle at dif ferent speeds is calculated using the Recur Dyn software with a selfprogrammed subroutine to implement the combined compression-shear rheological constitutive model. The model results are compared with shear rheological sinkage and ordinary sinkage(without consideration of rheological properties). These results show that the combined compression-shear rheological constitutive model must be taken into account when calculating the sinkage of a tracked mining vehicle. The combined compression-shear rheological sinkage decrease with vehicle speed and is the largest among the three types of sinkage. The developed subroutine in the Recur Dyn software can be used to study the performance and structural optimization of moving tracked mining vehicles. 展开更多
关键词 SINKAGE RECURDYN soft deep-sea sediment combined compression-shear rheology tracked mining vehicle
下载PDF
Fire behavior of mining vehicles in underground hard rock mines 被引量:4
4
作者 Hansen Rickard 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第4期627-634,共8页
The results from a number of investigations and fire experiments are presented and analyzed in order to characterize the fire behavior of mining vehicles in underground hard rock mines. The analysis also includes fire... The results from a number of investigations and fire experiments are presented and analyzed in order to characterize the fire behavior of mining vehicles in underground hard rock mines. The analysis also includes fire safety and fire protection measures with respect to the mining vehicle fire behavior.Earlier studies on fires in underground hard rock mines have shown that vehicles or mobile equipment are the dominant sources of fire. A better knowledge about the fire behavior of vehicles in underground hard rock mines is therefore needed. During the analysis the direction and flow rate of the ventilation in a drift was found to have a significant impact on the fire behavior, causing for example flame tilt with rapid fire spread. The shielded sections of a vehicle will be less affected by the ventilation flow resulting in for example a decreased flame spread. It was also found that spray fires may result in considerable heat release rate but are generally of shorter duration and will not make any significant contributions to the overall heat release rate of the fully developed vehicle fire. The fire duration of a loader tire from a full-scale fire experiment was found to be at least 200 min and will largely determine the total fire duration of the vehicle. A different scenario with different conditions with for example a slower flame spread resulted in an even longer fire duration. The radiative and convective fraction will be a key factor when determining the heat transfer mechanisms involved in a fire and will vary from material to material.Calculations show that the radiative fraction of the tire fires on two mining vehicles is significantly lower than found in earlier experiments. The design and construction of the mining vehicle will have an important impact on the fire behavior and could possibly mitigate the consequences of a fire and allow fire personnel to extinguish a fire that otherwise would have had a too high heat release rate. 展开更多
关键词 Fire behavior mining vehicle Underground mine Full-scale fire experiments
下载PDF
Obstacle performance of cobalt-enriching crust wheeled mining vehicle 被引量:3
5
作者 黄中华 刘少军 谢雅 《Journal of Central South University of Technology》 EI 2006年第2期180-183,共4页
A cobalt-enriching crust mining vehicle with four independent driven wheels was proposed. The influence of center-of-gravity position of mining vehicle on obstacle performance was studied. The results show that the mi... A cobalt-enriching crust mining vehicle with four independent driven wheels was proposed. The influence of center-of-gravity position of mining vehicle on obstacle performance was studied. The results show that the mining vehicle has optimal obstacle performance with center-of-gravity position in the middle of suspension. A virtual prototype based on ADAMS software was built and its obstacle performance was simulated. Simulation results show that the mining vehicle with four independent driven wheels has excellent obstacle performance, the maximum climbing capacity is no less than 30°, the maximal ditch width and shoulder height are no less than wheel radius of mining vehicle. Thus wheeled mining vehicle is feasible for cobalt-enriching crust commercial mining. 展开更多
关键词 wheeled mining vehicle cobalt-enriching crust obstacle performance
下载PDF
Long-term economic sensitivity analysis of light duty underground mining vehicles by power source
6
作者 Schatz Richard S. Nieto Antonio Lvov Serguei N. 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2017年第3期567-571,共5页
LHD's are expensive vehicles; therefore, it is important to accurately define the financial consequences associated with the investment of purchasing the mining equipment. This study concentrates on longterm incre... LHD's are expensive vehicles; therefore, it is important to accurately define the financial consequences associated with the investment of purchasing the mining equipment. This study concentrates on longterm incremental and sensitivity analysis to determine whether it is feasible to incorporate current battery technology into these machines. When revenue was taken into account, decreasing the amount of haulage in battery operated equipment by 5% or 200 kg per h amounts to a $4.0 × 10~4 loss of profit per year. On average it was found that using battery operated equipment generated $9.5 × 10~4 more in income annually, reducing the payback period from seven to two years to pay back the additional $1.0 × 10~5 investment of buying battery powered equipment over cheaper diesel equipment. Due to the estimated 5% increase in capital, it was observed that electric vehicles must possess a lifetime that is a minimum of one year longer than that of diesel equipment. 展开更多
关键词 Sensitivity analysis Underground mining vehicles Battery power Battery mining equipment Economic evaluation
下载PDF
Deep-sea rock mechanics and mining technology:State of the art and perspectives 被引量:3
7
作者 Zenghui Liu Kai Liu +4 位作者 Xuguang Chen Zhengkuo Ma Rui Lv Changyun Wei Ke Ma 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第9期1083-1115,共33页
The review covers the development and the state of the art in deep-sea mining rock mechanics,equipment and challenges.It begins by introducing the significance of deep-sea mining,the types and geographical distributio... The review covers the development and the state of the art in deep-sea mining rock mechanics,equipment and challenges.It begins by introducing the significance of deep-sea mining,the types and geographical distribution of deep-sea resources.Section 2 reviews the mechanical properties and fracture mechanism of seabed and related continental rocks,which contributes to the advancement of relevant technologies and theories.Deep-sea mining systems developed by coastal countries are presented in Section 3.Seabed mineral collection systems are critically assessed in Section 4.Subsea mining vehicle is reviewed by walking mechanism and controlling system in Section 5.In Section 6,the development of subsea lifting system is detailed by dividing it into hydraulic and pneumatic lifting modes,and some technical problems in the lifting system are described.An in-depth description of surface support systems is presented in Section 7,which includes the deep-sea mining ship,dynamic positioning system,heave compensation system,launch and retrieval system,mineral disposing system as well as the storage and transferring systems.Section 8 discusses the challenges in the deep-sea mining,in terms of natural occurrence conditions,international legal framework and cooperative mining,environmental protection and economic benefits,etc.Finally,a brief summary and some aspects of prospective research are presented in Section 9. 展开更多
关键词 Deep-sea mining Deep-sea minerals Seabed mineral collection system Subsea mining vehicle Subsea lifting system
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部