Nano-MnFe2O4 particles were synthesized by co-precipitation phase inversion method and low-temperature combustion method respectively, using MnCl2, FeCl3, Mn(NO3)2, Fe(NO3)3, NaOH and C6H8O7. X-ray diffraction (...Nano-MnFe2O4 particles were synthesized by co-precipitation phase inversion method and low-temperature combustion method respectively, using MnCl2, FeCl3, Mn(NO3)2, Fe(NO3)3, NaOH and C6H8O7. X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravim-etry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC) were used to characterize the structure, morphology, thermal stability of MnFe2O4 and its catalytic performance to ammonium perchlorate. Results showed that single-phased and uniform spinel MnFe2O4 was obtained. The average particle size was about 30 and 20 nm. The infrared absorption peaks appeared at about 420 and 574 cm-1, and the particles were stable below 524 ℃. Using the two prepared catalysts, the higher thermal decomposition temperature of ammonium perchlorate was decreased by 77.3 and 84.9 ℃ respectively, while the apparent decomposition heat was increased by 482.5 and 574.3 J?g?1. The catalytic mechanism could be explained by the favorable electron transfer space provided by outer d orbit of transition metal ions and the high specific surface absorption effect of MnFe2O4 particles.展开更多
Magnetic MnFe2O4-bentonite was synthesized by chemical co-precipitation method(CCM) and applied as catalyst in heterogeneous activation of persulfate(PS) to oxidize a target pollutant, 2,4-dichlorophenol(2,4-DCP...Magnetic MnFe2O4-bentonite was synthesized by chemical co-precipitation method(CCM) and applied as catalyst in heterogeneous activation of persulfate(PS) to oxidize a target pollutant, 2,4-dichlorophenol(2,4-DCP), in aqueous solutions. The surface morphology and structure of MnFe2On-bentonite were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), energy dispersive X-ray(EDX) and X-ray photoelectron spectroscopy(XPS) analyses.The catalytic activity of MnFe2O4-bentonite for 2,4-DCP degradation was evaluated considering the effects of various process parameters, such as mass ratio of MnFe2O4 to bentonite, concentration of catalyst, PS concentration, and pH. The MnFe2O4-bentonite hybrid exhibited higher catalytic activity than pure MnFe2O4. Treatment with 5 g/L MnFe2O4-bentonite at 30℃ for 240 rain oxidized 92% of 100 mg/L 2,4-DCP(70.2% mineralization), whereas treatment with pure MnFe2O4 under the same condition oxidized only 70% of the pollutant. This result indicate the erdlanced performance of the activated PS. Moreover, MnFe2O4-bentonite exhibits stable performance with minimal loss in activity after five successive runs. Thus, MnFe2O4-bentonite could be a promising catalyst in oxidative degradation of 2,4-DCE展开更多
This paper reports a stable heterogeneous nanoparticles catalyst MnFe2O4@PANI@Ag for the degradation of azo dyes. In this synthesizing method, MnFe204 is used as magnetic core and polyaniline (PANI) a linker to stab...This paper reports a stable heterogeneous nanoparticles catalyst MnFe2O4@PANI@Ag for the degradation of azo dyes. In this synthesizing method, MnFe204 is used as magnetic core and polyaniline (PANI) a linker to stabilize the Ag nanoparticles (NPs) on the surface of catalyst. The method has a high ability to prevent Ag NPs from aggregation on the PANI surface, thus resulting in small size and highly dispersed Ag NPs. The composition and nano-structural features of polycrystalline sample were studied by X-ray powder diffractometry, Fourier transform infrared spectroscopy, and scanning electron microsco- py. Vibrating sample magnetometer measurements proved the super-paramagnetic property of the catalyst, and UV results demonstrated that MnFe2O4@PANI@Ag has a high ability to reduce the azo dyes, which come from industrial wastes in the form of pollutant. The nanocomposites could be readily separated by magnet and reused for the next four reductions with high generation efficiency.展开更多
基金Supported by the National Natural Science Foundation of China (90305008, 51077072).
文摘Nano-MnFe2O4 particles were synthesized by co-precipitation phase inversion method and low-temperature combustion method respectively, using MnCl2, FeCl3, Mn(NO3)2, Fe(NO3)3, NaOH and C6H8O7. X-ray diffraction (XRD), transmission electron microscope (TEM), Fourier transform infrared spectroscopy (FT-IR), thermogravim-etry-differential thermal analysis (TG-DTA) and differential scanning calorimetry (DSC) were used to characterize the structure, morphology, thermal stability of MnFe2O4 and its catalytic performance to ammonium perchlorate. Results showed that single-phased and uniform spinel MnFe2O4 was obtained. The average particle size was about 30 and 20 nm. The infrared absorption peaks appeared at about 420 and 574 cm-1, and the particles were stable below 524 ℃. Using the two prepared catalysts, the higher thermal decomposition temperature of ammonium perchlorate was decreased by 77.3 and 84.9 ℃ respectively, while the apparent decomposition heat was increased by 482.5 and 574.3 J?g?1. The catalytic mechanism could be explained by the favorable electron transfer space provided by outer d orbit of transition metal ions and the high specific surface absorption effect of MnFe2O4 particles.
基金Supported by the Key Project of the National Natural Science Foundation of China(No.41530636) and the National Natural Science Foundation of China(Nos.41302184, 41471252 ).
文摘Magnetic MnFe2O4-bentonite was synthesized by chemical co-precipitation method(CCM) and applied as catalyst in heterogeneous activation of persulfate(PS) to oxidize a target pollutant, 2,4-dichlorophenol(2,4-DCP), in aqueous solutions. The surface morphology and structure of MnFe2On-bentonite were characterized by X-ray diffraction(XRD), scanning electron microscope(SEM), energy dispersive X-ray(EDX) and X-ray photoelectron spectroscopy(XPS) analyses.The catalytic activity of MnFe2O4-bentonite for 2,4-DCP degradation was evaluated considering the effects of various process parameters, such as mass ratio of MnFe2O4 to bentonite, concentration of catalyst, PS concentration, and pH. The MnFe2O4-bentonite hybrid exhibited higher catalytic activity than pure MnFe2O4. Treatment with 5 g/L MnFe2O4-bentonite at 30℃ for 240 rain oxidized 92% of 100 mg/L 2,4-DCP(70.2% mineralization), whereas treatment with pure MnFe2O4 under the same condition oxidized only 70% of the pollutant. This result indicate the erdlanced performance of the activated PS. Moreover, MnFe2O4-bentonite exhibits stable performance with minimal loss in activity after five successive runs. Thus, MnFe2O4-bentonite could be a promising catalyst in oxidative degradation of 2,4-DCE
基金supported by Fatih University under BAP(Grant No:P50021301-Y(3146)
文摘This paper reports a stable heterogeneous nanoparticles catalyst MnFe2O4@PANI@Ag for the degradation of azo dyes. In this synthesizing method, MnFe204 is used as magnetic core and polyaniline (PANI) a linker to stabilize the Ag nanoparticles (NPs) on the surface of catalyst. The method has a high ability to prevent Ag NPs from aggregation on the PANI surface, thus resulting in small size and highly dispersed Ag NPs. The composition and nano-structural features of polycrystalline sample were studied by X-ray powder diffractometry, Fourier transform infrared spectroscopy, and scanning electron microsco- py. Vibrating sample magnetometer measurements proved the super-paramagnetic property of the catalyst, and UV results demonstrated that MnFe2O4@PANI@Ag has a high ability to reduce the azo dyes, which come from industrial wastes in the form of pollutant. The nanocomposites could be readily separated by magnet and reused for the next four reductions with high generation efficiency.