The optical feedback modulations of a passively mode-locked semiconductor laser with quantum dot structure were investigated in this study. The delay-induced dynamics of QD MLL under the condition of optical feedback ...The optical feedback modulations of a passively mode-locked semiconductor laser with quantum dot structure were investigated in this study. The delay-induced dynamics of QD MLL under the condition of optical feedback have been studied by exploiting a time domain traveling wave(TDTW) model. The conventional TDTW model was improved to make it suitable for studying optical feedback system, especially the system with long external cavity structure. Combing the TDTW model with optical feedback and carrier rate equations, the pulse variation of a single section QD MLL was studied. This new model shows good agreement with the published experimental data. The roundtrip time and local light intensity modulation to the pulse evolution of QD MLL were studied. The results show that when the time for a light to go to and return from external cavity is equal to the integral times of the period of laser pulse without external feedback, resonance will be formed, and the period of pulse sequence is the shortest. The results also show that the stronger the local light intensity modulation is, the shorter the pulse period is.展开更多
Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers r...Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.展开更多
The mode-locked laser diode has emerged as a promising candidate as a signal source for photonic radar systems,wireless data transmission, and frequency comb spectroscopy. They have the advantages of small size, low c...The mode-locked laser diode has emerged as a promising candidate as a signal source for photonic radar systems,wireless data transmission, and frequency comb spectroscopy. They have the advantages of small size, low cost,high reliability, and low power consumption, thanks to semiconductor technology. Mode-locked lasers based on silicon photonics advance these qualities by the use of highly advanced silicon manufacturing technology. This paper will begin by giving an overview of mode-locked laser diode literature, and then focus on mode-locked lasers on silicon. The dependence of mode-locked laser performance on design details is presented.展开更多
In this paper, we review recent results on hybrid silicon mode-locked lasers with a focus on low phase noise optical pulse generation. Taking a high level design approach to lowering phase noise, we show the need for ...In this paper, we review recent results on hybrid silicon mode-locked lasers with a focus on low phase noise optical pulse generation. Taking a high level design approach to lowering phase noise, we show the need for long on-chip optical delay lines for mode-locked lasers to reach and overcome material limits. Key results include demonstration of the longest (cavity length 9 cm) integrated on-chip mode locked laser, 14 dB reduction of Lorentzian noise on a 20 GHz radio-frequency (RF) signal, and greater than 55 dB optical supermode noise suppres- sion using harmonically mode locked long cavity laser, 10 GHz passively mode locked laser with 15 kHz linewidth using on-chip all optical feedback stabilization.展开更多
This study reports a passive mode-locked Thulium-Holmium co-doped fiber laser featuring a figure-9 shaped resonator structure.The laser utilizes a nonlinear amplifying loop mirror(NALM)as the mode-locking device.By in...This study reports a passive mode-locked Thulium-Holmium co-doped fiber laser featuring a figure-9 shaped resonator structure.The laser utilizes a nonlinear amplifying loop mirror(NALM)as the mode-locking device.By increasing pump power,the laser’s output evolution was experimentally observed,showing that bright-dark pulse pairs first split into double pulses and then into a second harmonic state.Additionally,the time intervals between bright and dark pulses and between double pulses increased with higher pump power.The RF spectrum of the bright-dark pulse pairs exhibited envelope modulation,with a modulation frequency approximately equal to the reciprocal of the time interval between bright and dark pulses.When the pump power increased from 0.46 W to 0.72 W,the reciprocal of the modulation frequency showed a linear growth trend.These findings contribute to understanding the evolution patterns of bright-dark pulse pairs in passive mode-locked fiber lasers.展开更多
Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order mo...Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on.展开更多
Dissipative soliton resonance(DSR) was previously studied in separated mode-locked fiber lasers within different dispersion regimes including anomalous, near-zero and normal dispersion. Here we propose a method to stu...Dissipative soliton resonance(DSR) was previously studied in separated mode-locked fiber lasers within different dispersion regimes including anomalous, near-zero and normal dispersion. Here we propose a method to study DSR in a single mode-locked laser in these different dispersion regimes. This is achieved by virtue of a waveshaper which can control the laser dispersion readily using software, avoiding the usual tedious cutback method. We find that dispersion has a negligible effect on DSR since the pulse duration keeps constant while dispersion is varied. Moreover, we examine the dynamics of DSR on the parameters of the SA including modulation depth and saturation power, and find that the pulse duration can be changed in a large range when the saturation power is decreased. Our numerical simulations could be important to guide relative experimental studies.展开更多
Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperatur...Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.展开更多
Broadband, high-speed wavelength-swept lasers can substantially enhance applications in optical coherence tomography, chemical spectroscopy, and fiber-optic sensing. We report the demonstration of Fourier-domain mode-...Broadband, high-speed wavelength-swept lasers can substantially enhance applications in optical coherence tomography, chemical spectroscopy, and fiber-optic sensing. We report the demonstration of Fourier-domain mode-lock lasers operating at about 90kHz effective sweep rate over a 158nm sweep range using a single-band design and over a 284nm sweep range across the 1.3 μm to 1.5μm wavelength spectrum using a unique broadband design. A novel dual-detection full-range Fourier-domain optical coherence tomography system is developed which provides 7 I-tm axial resolution (in air)at about 90 kHz axial scan rate for mirror-image resolved Doppler imaging in a human finger and an African frog tadpole.展开更多
We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable ...We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.展开更多
We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dis...We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.展开更多
In past years, rare-earth-doped fluoride fiber lasers(FFLs) have developed rapidly in the mid-infrared(mid-IR)region. However, due to the lack of fiber optic devices and challenge of fluoride fiber splicing, most mid-...In past years, rare-earth-doped fluoride fiber lasers(FFLs) have developed rapidly in the mid-infrared(mid-IR)region. However, due to the lack of fiber optic devices and challenge of fluoride fiber splicing, most mid-IR FFLs have been demonstrated with free-space optic elements, limiting the advantages of all-fiber lasers for flexible delivery, stability, and compactness. Here, we report, to the best of our knowledge, the first pulsed all-fiber FFL in the mid-IR region. By taking advantage of the integration of black phosphorus flake, stable Q-switched and mode-locked pulses were obtained at 2.8 μm wavelength. We believe that this all-fiber design will promote the application of pulsed FFL in the mid-IR region.展开更多
Wavelength-tunable ultrashort pulse source with high energy is highly desired for a lot of applications. The wavelength-tunable all-normal-dispersion (ANDi) mode-locked fiber laser, which can be compressed easily an...Wavelength-tunable ultrashort pulse source with high energy is highly desired for a lot of applications. The wavelength-tunable all-normal-dispersion (ANDi) mode-locked fiber laser, which can be compressed easily and amplified by an all-fiber structure, is a promising seed of such a source with compact structures. The pulse compression and amplification at different center wavelengths (from 1026 to 1058nm) of the tunable ANDi Yb- doped mode-locked fiber lasers that we previously proposed are experimentally investigated in this work. It is found that, for different wavelengths, the duration and chirp of the direct output pulse from the oscillator vary considerably, however, the duration of compressed pulse fluctuates less. For the amplification process, due to the unf/at gain spectrum of Yb-doped fiber, the gain at a short wavelength is larger than that at a long wavelength. Consequently, the trends of spectrum distortions induced by the amplification process are different for different wavelengths. These results and analyses will be helpful for the design of a high-energy and wavelength-tunable ultrashort pulse source based on an ANDi seed.展开更多
The output characteristics of the Er-doped mode-locked fiber laser using a single-walled carbon nanotube saturable absorber are investigated theoretically with a nonlinear Schrtidinger equation and a saturable absorpt...The output characteristics of the Er-doped mode-locked fiber laser using a single-walled carbon nanotube saturable absorber are investigated theoretically with a nonlinear Schrtidinger equation and a saturable absorption equation using realistic parameters. Stable self-starting mode-locking pulses are achieved under net normal, net zero, and net anomalous cavity group velocity dispersion (GVD) respectively. A spectrum with a flat top is obtained from the net normal cavity GVD laser while a spectrum with Kelly side-bands is obtained from the net anomalous cavity GVD laser. The characteristics of the pulse duration changing with cavity GVD and modulation depth of the single-walled carbon nanotubes are discussed. The characteristics of the mode-locking pulses from net normal, net zero, and net anomalous cavity GVD mode-locked fiber lasers are compared. These systematical results are useful for designing mode-locked fiber lasers with saturable absorbers made by different kinds of carbon nano-materials.展开更多
A diode-pumped Yb3+:YAl3(BO3)3 (Yb:YAB) laser system was demonstrated with continuous wave (CW) and pulsed output. The polarized CW outputs and femtosecond mode-locked lasers with semiconductor saturable-absorber mirr...A diode-pumped Yb3+:YAl3(BO3)3 (Yb:YAB) laser system was demonstrated with continuous wave (CW) and pulsed output. The polarized CW outputs and femtosecond mode-locked lasers with semiconductor saturable-absorber mirrors (SESAM) at the fundamental wavelength were measured. For the CW output, polarization ratios were 88.1% (for e-ray) and 87.2% (for o-ray). For the mode-locked system, polarization ratio reached 38.5%, and the repetition frequency was 117.6 MHz.展开更多
Two types of the dual mode-locked fiber lasers for asynchronous absolute distance measurement are investigated, The lasers are linear and ring cavity with repetition rate of 70 MHz and 100 MHz, respectively. The group...Two types of the dual mode-locked fiber lasers for asynchronous absolute distance measurement are investigated, The lasers are linear and ring cavity with repetition rate of 70 MHz and 100 MHz, respectively. The group velocity dispersion is not compensated in the first type of the lasers, while the others are fully done. The timing jitter with the Allan deviation below averaging time of 0.2 s during the distance measurement for around 1 m of both types of lasers were 2.5 ps with 600 nm and 1.6 ps with 200 nm. We concluded that the phase noise resulted from the intra-cavity dispersion is the main contribution for the uncertainty of the ranging in these two types of the lasers.展开更多
In this study we present an all-normal-dispersion Yb-doped fiber laser passively mode-locked with topological insulator(Bi2Te3) saturable absorber. The saturable absorber device is fabricated by depositing Bi2Te3 on...In this study we present an all-normal-dispersion Yb-doped fiber laser passively mode-locked with topological insulator(Bi2Te3) saturable absorber. The saturable absorber device is fabricated by depositing Bi2Te3 on a tapered fiber through using pulsed laser deposition(PLD) technology, which can give rise to less non-saturable losses than most of the solution processing methods. Owing to the long interaction length, Bi2Te3 is not exposed to high optical power, which allows the saturable absorber device to work in a high power regime. The modulation depth of this kind of saturable absorber is measured to be 10%. By combining the saturable absorber device with Yb-doped fiber laser, a mode-locked pulse operating at a repetition rate of 19.8 MHz is achieved. The 3-d B spectral width and pulse duration are measured to be 1.245 nm and317 ps, respectively.展开更多
An all-fiber dumbbell-shaped dual-amplifier mode-locked Er-doped laser that can function in dissipative soliton resonance(DSR)regime is demonstrated.A nonlinear optical loop mirror(NOLM)and a nonlinear amplifying loop...An all-fiber dumbbell-shaped dual-amplifier mode-locked Er-doped laser that can function in dissipative soliton resonance(DSR)regime is demonstrated.A nonlinear optical loop mirror(NOLM)and a nonlinear amplifying loop mirror(NALM)are employed to initiate the mode-locking pulses.Unlike conventional single-amplifier structure,the output peak power of which remains unchanged when pump power is varied,the proposed structure allows its output peak power to be tuned by changing the pump power of the two amplifiers while the pulse duration is directly determined by the amplifier of nonlinear amplifying loop mirror.The entire distribution maps of peak power and pulse duration clearly demonstrate that the two amplifiers are related to each other,and they supply directly a guideline for designing tunable peak power DSR fiber laser.Pulse width can change from 800 ps to 2.6 ns and peak power varies from 13 W to 27 W.To the best of our knowledge,the peak power tunable DSR pulse is observed for the first time in dumbbell-shaped Er-doped all-fiber mode-locked lasers.展开更多
A balanced optical microwave phase detector(BOMPD) based on a 3 × 3 coupler is presented. This system was developed to extract ultra-low-jitter microwave signals from optical pulse trains emitted by mode-locked E...A balanced optical microwave phase detector(BOMPD) based on a 3 × 3 coupler is presented. This system was developed to extract ultra-low-jitter microwave signals from optical pulse trains emitted by mode-locked Er-fiber lasers, and synchronized microwave and laser systems. We demonstrate that the BOMPD achieves a precision of synchronization of less than 100 femtosecond of timing jitter. The experimental setup can be applied to the soft X-ray free-electron laser located on the campus of the Shanghai synchrotron radiation facility. A microwave signal with a 2.856 GHz frequency is extracted from a238 MHz mode-locked Er-laser, with an absolute timing jitter of 34 fs in the 10 Hz–10 MHz frequency offset range.In addition, the microwave and 238 MHz optical pulse signals are synchronized with a relative timing jitter of16 fs at the same frequency offset range.展开更多
We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by contro...We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the intercavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.展开更多
基金Sponsored by the Research Project of Xiamen University of Technology(Grant No.KCZX2019148)the Research Project of Xiamen Municipal Bureau of Science and Technology(Grant No.3502Z20193055)。
文摘The optical feedback modulations of a passively mode-locked semiconductor laser with quantum dot structure were investigated in this study. The delay-induced dynamics of QD MLL under the condition of optical feedback have been studied by exploiting a time domain traveling wave(TDTW) model. The conventional TDTW model was improved to make it suitable for studying optical feedback system, especially the system with long external cavity structure. Combing the TDTW model with optical feedback and carrier rate equations, the pulse variation of a single section QD MLL was studied. This new model shows good agreement with the published experimental data. The roundtrip time and local light intensity modulation to the pulse evolution of QD MLL were studied. The results show that when the time for a light to go to and return from external cavity is equal to the integral times of the period of laser pulse without external feedback, resonance will be formed, and the period of pulse sequence is the shortest. The results also show that the stronger the local light intensity modulation is, the shorter the pulse period is.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11621404,11561121003,11727812,61775059,12074122,62022033,and 11704123)Shanghai Rising-Star Program,the Sustainedly Supported Foundation by the National Key Laboratory of Science and Technology on Space Microwave(Grant No.HTKT2022KL504008)+1 种基金Shanghai Natural Science Foundation(Grant No.23ZR1419000)the National Key Laboratory Foundation of China(Grant No.6142411196307).
文摘Nyquist pulses have wide applications in many areas,from electronics to optics.Mode-locked lasers are ideal platforms to generate such pulses.However,how to generate high-quality Nyquist pulses in mode-locked lasers remains elusive.We address this problem by managing different physical effects in mode-locked fiber lasers through extensive numerical simulations.We find that net dispersion,linear loss,gain and filter shaping can affect the quality of Nyquist pulses significantly.We also demonstrate that Nyquist pulses experience similariton shaping due to the nonlinear attractor effect in the gain medium.Our work may contribute to the design of Nyquist pulse sources and enrich the understanding of pulse shaping dynamics in mode-locked lasers.
基金Defense Advanced Research Projects Agency(DARPA)EPHI and DODOS contracts
文摘The mode-locked laser diode has emerged as a promising candidate as a signal source for photonic radar systems,wireless data transmission, and frequency comb spectroscopy. They have the advantages of small size, low cost,high reliability, and low power consumption, thanks to semiconductor technology. Mode-locked lasers based on silicon photonics advance these qualities by the use of highly advanced silicon manufacturing technology. This paper will begin by giving an overview of mode-locked laser diode literature, and then focus on mode-locked lasers on silicon. The dependence of mode-locked laser performance on design details is presented.
文摘In this paper, we review recent results on hybrid silicon mode-locked lasers with a focus on low phase noise optical pulse generation. Taking a high level design approach to lowering phase noise, we show the need for long on-chip optical delay lines for mode-locked lasers to reach and overcome material limits. Key results include demonstration of the longest (cavity length 9 cm) integrated on-chip mode locked laser, 14 dB reduction of Lorentzian noise on a 20 GHz radio-frequency (RF) signal, and greater than 55 dB optical supermode noise suppres- sion using harmonically mode locked long cavity laser, 10 GHz passively mode locked laser with 15 kHz linewidth using on-chip all optical feedback stabilization.
文摘This study reports a passive mode-locked Thulium-Holmium co-doped fiber laser featuring a figure-9 shaped resonator structure.The laser utilizes a nonlinear amplifying loop mirror(NALM)as the mode-locking device.By increasing pump power,the laser’s output evolution was experimentally observed,showing that bright-dark pulse pairs first split into double pulses and then into a second harmonic state.Additionally,the time intervals between bright and dark pulses and between double pulses increased with higher pump power.The RF spectrum of the bright-dark pulse pairs exhibited envelope modulation,with a modulation frequency approximately equal to the reciprocal of the time interval between bright and dark pulses.When the pump power increased from 0.46 W to 0.72 W,the reciprocal of the modulation frequency showed a linear growth trend.These findings contribute to understanding the evolution patterns of bright-dark pulse pairs in passive mode-locked fiber lasers.
文摘Broad area quantum cascade lasers(BA QCLs)have significant applications in many areas,but suffer from demanding pulse operating conditions and poor beam quality due to heat accumulation and generation of high order modes.A structure of mini-array is adopted to improve the heat dissipation capacity and beam quality of BA QCLs.The active region is etched to form a multi-emitter and the channels are filled with In P:Fe,which acts as a lateral heat dissipation channel to improve the lateral heat dissipation efficiency.A device withλ~4.8μm,a peak output power of 122 W at 1.2%duty cycle with a pulse of 1.5μs is obtained in room temperature,with far-field single-lobed distribution.This result allows BA QCLs to obtain high peak power at wider pump pulse widths and higher duty cycle conditions,promotes the application of the mid-infrared laser operating in pulsed mode in th e field of standoff photoacoustic chemical detection,space optical communication,and so on.
基金Project supported by the Innovation Program for Quantum Science and Technology(Grant No.2023ZD0301000)the National Natural Science Foundation of China(Grant Nos.11621404,11561121003,11727812,61775059,12074122,62022033,and 11704123)+2 种基金Sustainedly supported by the National Key Laboratory of Science and Technology on Space Microwave(Grant No.HTKT2022KL504008)the Shanghai Natural Science Foundation(Grant No.23ZR1419000)the National Key Laboratory Foundation of China(Grant No.6142411196307)。
文摘Dissipative soliton resonance(DSR) was previously studied in separated mode-locked fiber lasers within different dispersion regimes including anomalous, near-zero and normal dispersion. Here we propose a method to study DSR in a single mode-locked laser in these different dispersion regimes. This is achieved by virtue of a waveshaper which can control the laser dispersion readily using software, avoiding the usual tedious cutback method. We find that dispersion has a negligible effect on DSR since the pulse duration keeps constant while dispersion is varied. Moreover, we examine the dynamics of DSR on the parameters of the SA including modulation depth and saturation power, and find that the pulse duration can be changed in a large range when the saturation power is decreased. Our numerical simulations could be important to guide relative experimental studies.
基金supported by National Natural Science Foundation of China (Grant Nos.61475162,61675150,and 61535009)Tianjin Natural Science Foundation (Grant No.18JCYBJC16900)Tianjin Research Program of Application Foundation and Advanced Technology (Grant No.17JCJQJC43500)
文摘Passively mode-locked fiber lasers emit femtosecond pulse trains with excellent short-term stability. The quantum-limited timing jitter of a free running femtosecond erbium-doped fiber laser working at room temperature is considerably below one femtosecond at high Fourier frequency. The ultrashort pulse train with ultralow timing jitter enables absolute time-of-flight measurements based on a dual-comb implementation, which is typically composed of a pair of optical frequency combs generated by femtosecond lasers. Dead-zone-free absolute distance measurement with sub-micrometer precision and kHz update rate has been routinely achieved with a dual-comb configuration, which is promising for a number of precision manufacturing applications, from large step-structure measurements prevalent in microelectronic profilometry to three coordinate measurements in large-scale aerospace manufacturing and shipbuilding. In this paper, we first review the sub-femtosecond precision timing jitter characterization methods and approaches for ultralow timing jitter mode-locked fiber laser design. Then, we provide an overview of the state-of-the-art dual-comb absolute ranging technology in terms of working principles, experimental implementations, and measurement precisions. Finally, we discuss the impact of quantum-limited timing jitter on the dual-comb ranging precision at a high update rate. The route to highprecision dual-comb range finder design based on ultralow jitter femtosecond fiber lasers is proposed.
基金Acknowledgement This work was supported in part by the Florida I4 Corridor, the New York State Foundation for Science, Technology, and Innovation (NYSTAR), the Royal Thai Government, and the Photonics Technology Access Program (PTAP) sponsored by the Defense Advanced Research Projects Agency and National Science Foundation (DARPA & NSF).
文摘Broadband, high-speed wavelength-swept lasers can substantially enhance applications in optical coherence tomography, chemical spectroscopy, and fiber-optic sensing. We report the demonstration of Fourier-domain mode-lock lasers operating at about 90kHz effective sweep rate over a 158nm sweep range using a single-band design and over a 284nm sweep range across the 1.3 μm to 1.5μm wavelength spectrum using a unique broadband design. A novel dual-detection full-range Fourier-domain optical coherence tomography system is developed which provides 7 I-tm axial resolution (in air)at about 90 kHz axial scan rate for mirror-image resolved Doppler imaging in a human finger and an African frog tadpole.
基金Supported by the University of Malaya under Grant No PG173-2015B
文摘We demonstrate an ultrafast fiber laser based on transition metal dichalcogenide materials which are tungsten disulfide (WS<sub>2</sub>) and molybdenum disulfide (MoS<sub>2</sub>) as saturable absorber (SA). These materials are fabricated via a simple drop-casting method. By employing WS<sub>2</sub>, we obtain a stable harmonic mode-locking at the threshold pump power of 184 mW, and the generated soliton pulse has 3.48 MHz of repetition rate. At the maximum pump power of 250 mW, we also obtain a small value of pulse duration, 2.43 ps with signal-to-noise ratio (SNR) of 57 dB. For MoS<sub>2</sub> SA, the pulse is generated at 105 mW pump power with repetition rate of 1.16 MHz. However, the pulse duration cannot be detected by the autocorrelator device as the pulse duration recorded is 468 ns, with the SNR value of 35 dB.
文摘We report on a theoretical and experimental study of an all-normal-dispersion (ANDi) Yb-doped mode-locked fiber laser, in which nonlinear polarization rotation (NPR) is used to realize mode-locking without any dispersion compensation. Based on the coupled nonlinear Schr6dinger (CNLS) equation, a model simulating the mode-locked process of an all-normal-dispersion ring fiber laser is developed, which shows that the achievement of stable mode-locking depends on the alignment of the polarization controller (PC) along the fast-polarization axis of the fiber, the birefringence intensity, and the net cavity dispersion. According to the theoretical analysis, stable mode-locked pulses with pulse duration 300 ps and average output power 33.9 mW at repetition rate 36 MHz are obtained.
基金National Basic Research Program of China(2013CBA01505)National Natural Science Foundation of China(NSFC)(11721091,61675130)+1 种基金National Postdoctoral Program for Innovative Talents(BX20170149)China Postdoctoral Science Foundation(2017M620150)
文摘In past years, rare-earth-doped fluoride fiber lasers(FFLs) have developed rapidly in the mid-infrared(mid-IR)region. However, due to the lack of fiber optic devices and challenge of fluoride fiber splicing, most mid-IR FFLs have been demonstrated with free-space optic elements, limiting the advantages of all-fiber lasers for flexible delivery, stability, and compactness. Here, we report, to the best of our knowledge, the first pulsed all-fiber FFL in the mid-IR region. By taking advantage of the integration of black phosphorus flake, stable Q-switched and mode-locked pulses were obtained at 2.8 μm wavelength. We believe that this all-fiber design will promote the application of pulsed FFL in the mid-IR region.
基金Supported by the Initiative Scientific Research Program of Tsinghua University
文摘Wavelength-tunable ultrashort pulse source with high energy is highly desired for a lot of applications. The wavelength-tunable all-normal-dispersion (ANDi) mode-locked fiber laser, which can be compressed easily and amplified by an all-fiber structure, is a promising seed of such a source with compact structures. The pulse compression and amplification at different center wavelengths (from 1026 to 1058nm) of the tunable ANDi Yb- doped mode-locked fiber lasers that we previously proposed are experimentally investigated in this work. It is found that, for different wavelengths, the duration and chirp of the direct output pulse from the oscillator vary considerably, however, the duration of compressed pulse fluctuates less. For the amplification process, due to the unf/at gain spectrum of Yb-doped fiber, the gain at a short wavelength is larger than that at a long wavelength. Consequently, the trends of spectrum distortions induced by the amplification process are different for different wavelengths. These results and analyses will be helpful for the design of a high-energy and wavelength-tunable ultrashort pulse source based on an ANDi seed.
基金supported by the National Key Basic Research Progrm of China(Grant No.2013CB922404)the National Natural Science Foundation of China(Grant No.61177047)the Key Project of the National Natural Science Foundation of China(Grant No.61235010)
文摘The output characteristics of the Er-doped mode-locked fiber laser using a single-walled carbon nanotube saturable absorber are investigated theoretically with a nonlinear Schrtidinger equation and a saturable absorption equation using realistic parameters. Stable self-starting mode-locking pulses are achieved under net normal, net zero, and net anomalous cavity group velocity dispersion (GVD) respectively. A spectrum with a flat top is obtained from the net normal cavity GVD laser while a spectrum with Kelly side-bands is obtained from the net anomalous cavity GVD laser. The characteristics of the pulse duration changing with cavity GVD and modulation depth of the single-walled carbon nanotubes are discussed. The characteristics of the mode-locking pulses from net normal, net zero, and net anomalous cavity GVD mode-locked fiber lasers are compared. These systematical results are useful for designing mode-locked fiber lasers with saturable absorbers made by different kinds of carbon nano-materials.
基金This work was supported by the Beijing elitist fund and Ph. D. fund from Beijing University of Technology.
文摘A diode-pumped Yb3+:YAl3(BO3)3 (Yb:YAB) laser system was demonstrated with continuous wave (CW) and pulsed output. The polarized CW outputs and femtosecond mode-locked lasers with semiconductor saturable-absorber mirrors (SESAM) at the fundamental wavelength were measured. For the CW output, polarization ratios were 88.1% (for e-ray) and 87.2% (for o-ray). For the mode-locked system, polarization ratio reached 38.5%, and the repetition frequency was 117.6 MHz.
文摘Two types of the dual mode-locked fiber lasers for asynchronous absolute distance measurement are investigated, The lasers are linear and ring cavity with repetition rate of 70 MHz and 100 MHz, respectively. The group velocity dispersion is not compensated in the first type of the lasers, while the others are fully done. The timing jitter with the Allan deviation below averaging time of 0.2 s during the distance measurement for around 1 m of both types of lasers were 2.5 ps with 600 nm and 1.6 ps with 200 nm. We concluded that the phase noise resulted from the intra-cavity dispersion is the main contribution for the uncertainty of the ranging in these two types of the lasers.
基金Project supported by the National Natural Science Foundation of China(Grant No.61378024)the Natural Science Fund of Guangdong ProvinceChina(Grant No.S2013010012235)
文摘In this study we present an all-normal-dispersion Yb-doped fiber laser passively mode-locked with topological insulator(Bi2Te3) saturable absorber. The saturable absorber device is fabricated by depositing Bi2Te3 on a tapered fiber through using pulsed laser deposition(PLD) technology, which can give rise to less non-saturable losses than most of the solution processing methods. Owing to the long interaction length, Bi2Te3 is not exposed to high optical power, which allows the saturable absorber device to work in a high power regime. The modulation depth of this kind of saturable absorber is measured to be 10%. By combining the saturable absorber device with Yb-doped fiber laser, a mode-locked pulse operating at a repetition rate of 19.8 MHz is achieved. The 3-d B spectral width and pulse duration are measured to be 1.245 nm and317 ps, respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61435009,61235008,and 61405254).
文摘An all-fiber dumbbell-shaped dual-amplifier mode-locked Er-doped laser that can function in dissipative soliton resonance(DSR)regime is demonstrated.A nonlinear optical loop mirror(NOLM)and a nonlinear amplifying loop mirror(NALM)are employed to initiate the mode-locking pulses.Unlike conventional single-amplifier structure,the output peak power of which remains unchanged when pump power is varied,the proposed structure allows its output peak power to be tuned by changing the pump power of the two amplifiers while the pulse duration is directly determined by the amplifier of nonlinear amplifying loop mirror.The entire distribution maps of peak power and pulse duration clearly demonstrate that the two amplifiers are related to each other,and they supply directly a guideline for designing tunable peak power DSR fiber laser.Pulse width can change from 800 ps to 2.6 ns and peak power varies from 13 W to 27 W.To the best of our knowledge,the peak power tunable DSR pulse is observed for the first time in dumbbell-shaped Er-doped all-fiber mode-locked lasers.
基金supported by the National Natural Science Foundation of China(No.11175241)
文摘A balanced optical microwave phase detector(BOMPD) based on a 3 × 3 coupler is presented. This system was developed to extract ultra-low-jitter microwave signals from optical pulse trains emitted by mode-locked Er-fiber lasers, and synchronized microwave and laser systems. We demonstrate that the BOMPD achieves a precision of synchronization of less than 100 femtosecond of timing jitter. The experimental setup can be applied to the soft X-ray free-electron laser located on the campus of the Shanghai synchrotron radiation facility. A microwave signal with a 2.856 GHz frequency is extracted from a238 MHz mode-locked Er-laser, with an absolute timing jitter of 34 fs in the 10 Hz–10 MHz frequency offset range.In addition, the microwave and 238 MHz optical pulse signals are synchronized with a relative timing jitter of16 fs at the same frequency offset range.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60372061)the Scientific Forefront and Interdisciplinary Innovation Project of Jilin University, China (Grant No. 200903296)
文摘We numerically investigate the formation and interaction of a parabolic-shaped pulse pair in a passively mode-locked Yb-doped fiber laser. Based on a lumped model, the parabolic-shaped pulse pair is obtained by controlling the intercavity average dispersion and gain saturation energy, Moreover, pulse repulsive and attractive motion are also achieved with different pulse separations. Simulation results show that the phase shift plays an important role in pulse interaction, and the interaction is determined by the inter-cavity average dispersion and gain saturation energy, i.e., the strength of the interaction is proportional to the gain saturation energy, a stronger gain saturation energy will result in a higher interaction intensity. On the contrary, the increase of the inter-cavity dispersion will counterbalance some interaction force. The results also show that the interaction of a parabolic-shaped pulse pair has a larger interaction distance compared to conventional solitons.